Peer

Assessment of genetic diversity and phylogenetic relationship of local coffee populations in southwestern Saudi Arabia using DNA barcoding

Habib Khemira¹, Mosbah Mahdhi^{1,2}, Muhammad Afzal³, Mohammed D.Y. Oteef⁴, Taieb Tounekti⁵, Zarraq AL-Faifi⁶ and Wail Alsolami⁶

¹ Centre for Environmental Research and Studies, Jazan University, Jazan, Saudi Arabia

² Laboratory of Biodiversity and Valorization of Bioresources in Arid Zones, Faculty of Sciences of Gabes, University of Gabes, Gabes, Tunisia

³ Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia

⁴ Department of Chemistry, College of Science, Jazan University, Jazan, Saudi Arabia

⁵ Laboratory of Process Engineering & Industrial Systems (LR11ES54), National Engineering School of Gabes, University of Gabes, Gabes, Tunisia

⁶ Department of Biology, College of Science, Jazan University, Jazan, Saudi Arabia

ABSTRACT

The genetic diversity of local coffee populations is crucial to breed new varieties better adapted to the increasingly stressful environment due to climate change and evolving consumer preferences. Unfortunately, local coffee germplasm conservation and genetic assessment have not received much attention. Molecular tools offer substantial benefits in identifying and selecting new cultivars or clones suitable for sustainable commercial utilization. New annotation methods, such as chloroplast barcoding, are necessary to produce accurate and high-quality phylogenetic analyses. This study used DNA barcoding techniques to examine the genetic relationships among fifty-six accessions collected from the southwestern part of Saudi Arabia. PCR amplification and sequence characterization were used to investigate the effectiveness of four barcoding loci: atpB-rbcl, trnL-trnF, trnT-trnL, and trnL. The maximum nucleotide sites, nucleotide diversity, and an average number of nucleotide differences were recorded for atpBrbcl, while trnT-trnL had the highest variable polymorphic sites, segregating sites, and haploid diversity. Among the four barcode loci, trnT-trnL recorded the highest singleton variable sites, while trnL recorded the highest parsimony information sites. Furthermore, the phylogenetic analysis clustered the *Coffea arabica* genotypes into four different groups, with three genotypes (KSA31, KSA38, and KSA46) found to be the most divergent genotypes standing alone in the cluster and remained apart during the analysis. The study demonstrates the presence of considerable diversity among coffee populations in Saudi Arabia. Furthermore, it also shows that DNA barcoding is an effective technique for identifying local coffee genotypes, with potential applications in coffee conservation and breeding efforts.

Subjects Agricultural Science, Genetics, Molecular Biology, Plant Science **Keywords** Coffea arabica, Chloroplastic DNA, Barcode, Genetic diversity, Population structure, Saudi Arabia

Submitted 18 August 2023 Accepted 27 October 2023 Published 24 November 2023

Corresponding author Habib Khemira, habibkhemira@yahoo.com

Academic editor Sushil Kumar

Additional Information and Declarations can be found on page 16

DOI 10.7717/peerj.16486

Copyright 2023 Khemira et al.

Distributed under Creative Commons CC-BY 4.0

OPEN ACCESS

How to cite this article Khemira H, Mahdhi M, Afzal M, Oteef MDY, Tounekti T, AL-Faifi Z, Alsolami W. 2023. Assessment of genetic diversity and phylogenetic relationship of local coffee populations in southwestern Saudi Arabia using DNA barcoding. *PeerJ* 11:e16486 http://doi.org/10.7717/peerj.16486

INTRODUCTION

Coffee is one of the most commercially significant crops, and the second most traded commodity after oil (Mussatto et al., 2011). In addition to its high export value, coffee has also gained in cultural significance over the past few decades. Despite there being more than 125 reported species in the genus Coffea, only two species, Coffea arabica L. (also known as Arabica coffee) and C. canephora Pierre ex A. Froehner (known as Robusta coffee) are grown commercially (Mishra, 2019). The total annual global coffee production in 2022 was 10.2 million tons, about 60% of which were Arabica coffee (USDA, 2023). Coffee's genetic development is progressing at a sluggish pace despite its enormous economic relevance (Mishra, 2019). The collection, characterization, and wise use of accessible germplasm material for any crop plant species contribute to its genetic development and long-term viability (Nguyen & Norton, 2020). Therefore, enhancing diversity from both local and foreign sources is critical for the improvement of crops (*Migicovsky et al.*, 2019). For historical reasons, the main issue with Arabica coffee has been its narrow genetic base that limits its adaptation to changing environments (*Mishra*, 2019). To get around this problem, breeders made use of wild coffee diploid species to introduce new genes into Arabica genotypes (Mishra, 2019). For instance, the leaf rust-resistant Arabica cultivar Timor Hybrid got its resistance from its C. canephora parent; it was later used as a parent to develop several new rust-resistant cultivars such as Catimor and Ruiru 11 (World Coffee Research, 2023). For bean and liquor quality traits, the wild tetraploid Arabica genotypes from the species' center of origin and the little-known ancient varieties from the Arabian Peninsula offer a wide gene pool to explore (Montagnon et al., 2021). Despite the potential importance of coffee heirlooms from the Arabian Peninsula as a source of genetic diversity, there is limited information available on these genotypes. This information is essential for the development of new coffee varieties that can better adapt to changing environmental conditions, increasing pest and disease pressure and changing consumer preferences (Herrera & Lambot, 2017). Furthermore, since over 60% of wild coffee species are in danger of extinction due to accelerated environmental change, gathering complete information and characterizing this germplasm is of utmost importance (Davis et al., 2019).

Another issue facing the coffee industry as it struggles to cope with an over-supplied market is adulteration. It has long been known that coffee is often adulterated with less expensive and readily available plant material (*Oliveira & Franca, 2015*). Coffee adulteration has become a more serious issue for the industry in recent years due to the significant expansion in the variety of coffee recipes, stores, and ultimately consumers (*Choudhary et al., 2020*). Therefore, developing molecular means like genetic barcodes to identify and authenticate the varieties can help mitigate the problem.

In Saudi Arabia and Yemen, *C. arabica* has been cultivated for at least four centuries on the terraced slopes and narrow valleys of the western mountains at different altitudes ranging mostly from 1200 to 2000 m above sea level (a.s.l.) (*Al-Zaidi et al., 2016; Al-Asmari, Zeid & Al-Attar, 2020*). Most of what is grown now in southwestern Saudi Arabia are old cultivars that have been around for hundreds of years (*Tounekti et al., 2017*). It is likely

that these diverse populations are a result of successive introductions of genetic material from Eastern Ethiopia by Arab traders over centuries of uninterrupted exchange across the narrow strait of Bab El-Mandeb (*Montagnon et al.*, 2022). Therefore, it is safe to assume that the southwestern corner of the Arabian Peninsula contains the most genetic diversity of *C. arabica* outside the species' center of origin in the Ethiopian highlands (*Montagnon et al.*, 2021). Regrettably, the scientific community has shown only limited interest in these genetic resources, with the notable exception being the 1989 FAO expedition to southern Yemen (*Eskes, 1989*) and three subsequent studies (*Tounekti et al., 2017; Montagnon et al., 2021; Al-Ghamedi et al., 2023*). These studies reported the existence of considerable diversity among coffee populations in the Arabian Peninsula. It is worth noticing that the present coffee populations have evolved over hundreds of years in a semi-arid environment (*De Pauw, 2002*) marked by recurring droughts, uneven distribution of rainfall, heat stress and high irradiance. Therefore, it is expected that these genotypes could be the source of interesting genes that confer stress tolerance (*Tounekti et al., 2018*).

In recent years, DNA metabarcoding has emerged as a progressive alternative approach enabling qualitative analysis (species or genus identification for certain taxa) and to some extent, quantitative analysis of complex biological mixtures. This method utilizes highthroughput sequencing (HTS) and comparative analysis of specific DNA sequences known as "DNA barcodes" to differentiate the species present within the mixture (*Omelchenko et al., 2022*). One of the main challenges in plant barcoding is the selection of an appropriate DNA barcode for the target taxa (*Coissac, Riaz & Puillandre, 2012; Taylor & Harris, 2012*). The effectiveness of the primary chloroplast markers, initially suggested by the CBOL group to consist of matK and rbcL, is a crucial factor to consider in this context. The same study also demonstrated that the trnL marker reliably identifies 50% of the plant species considered, affirming its credibility as a taxonomic tool for plant identification (*Valentini et al., 2009*).

The difference among the coffee species have been established based on phylogenetic analysis using different barcode intergenic spacer sequences (Cros et al., 1998; Tesfaye et al., 2014), introns (Tesfaye et al., 2007), plastid DNA, and internal transcribed spacer (ITS) region of rDNA (Lashermes et al., 1997), and different combination of four plastid and ITS primers (Jingade et al., 2019). Similarly, the chloroplast DNA (cpDNA) sequence variation is also widely used for identification and for making phylogenetic inferences at different taxonomic levels (Li et al., 2019). Introns and intergenic spacers are known to exhibit high rates of mutation (Barakat et al., 2010). The trnT-trnL, trnL-trnF and atpB-rbcL intergenic spacers, the trnL intron region were successfully used for species identification at low taxonomic levels. These regions also have been used in phylogenetic studies to figure out the cytoplasmic differences as well as the demographic history of several species (Barakat et al., 2010; Mashaly et al., 2017). These markers were successfully used for the identification of species and the construction of phylogenies at different taxonomic levels within the Rubiaceae family (Kårehed et al., 2008; Ginter, Razafimandimbison & Bremer, 2015). Therefore, these four barcode loci were used for the identification of local coffee genotypes present in the southwestern region of Saudi Arabia.

Overall, further research is necessary to fully comprehend the diversity and potential of diploid and tetraploid coffee species and to utilize this information to develop new coffee varieties that can better meet the needs of farmers and consumers in the future. The present study aims to use DNA barcoding to identify the local coffee genotypes in Saudi Arabia, to estimate the genetic diversity of the local coffee populations and to examine their genetic relatedness using chloroplast intergenic spacer markers.

MATERIALS AND METHODS

Plant material

The plant material for the study was collected as previously described by *Al-Ghamedi et al.* (2023). A survey was carried out at several sites in the Sarawat mountain range, running parallel to the Red Sea from the southeast to the northwest through the three administrative regions of Jazan, Assir, and Al-Baha. The survey covered a narrow strip of terraced mountains located between latitudes 17 °N and 20 °N, the most northern location where coffee is commercially grown in the world. The coffee gardens included in the survey were found at altitudes ranging from 900 to 2000 m a.s.l. In total, we collected young leaves from 56 accessions, from Jebel Fayfa (Fayfa district), Eddayer, Maadi (Haroub district), Jebel Al-Gahr (Al-Rayth district), Rayda valley (Assouda district in Assir region), Mahayel Assir district, Al-Majarda district and Jebel Shada (Al-Mekhwah district of Al-Baha region) (Table 1). We tagged and sampled 3-4 trees representing each tree population. Each accession was given a code starting with the acronym "KSA" (*e.g.*, KSA-1), but, for the sake of simplicity, we dropped the acronym in the figures. The letter "R" was added to the code of accessions 1–19, 45, and 51 to indicate that they were sourced from a small, local coffee germplasm collection established in the Fayfa district.

DNA extraction

Portions of this text were previously published as part of a preprint (*Khemira et al., 2023*). Plant material, consisting of young leaves from various *C. arabica* accessions, was collected from representative trees in each population, transported to the laboratory in a storage container and stored at -20 °C prior to DNA extraction. The leaves were sanitized by immersing them in a 5% sodium hypochlorite solution for 1–2 min and then rinsing them with sterile distilled water. The material was then ground in liquid nitrogen and stored in an -80 °C freezer. DNA was extracted from 100 mg of mixed powder using an innuPREP Plant DNA Kit (Analytik, Jena, Germany), following the manufacturer's protocol. DNA quality and concentration were determined using a Nanodrop ND-1000 spectrophotometer (Saveen Werner, Limhamn, Sweden).

Chloroplastic DNA amplification and sequencing

Four chloroplast DNA regions were considered (Table 2). PCR was performed in a 25 μ l volume containing 2 μ l of template DNA, 10 μ l of 1X innuMix Standard PCR, and 1 μ M of each primer (Table 2) (*Khemira et al., 2023*). The Gene Amp PCR System 9700 was used with the following program: initial denaturation at 94 °C for 5 min, 35 cycles of denaturation at 94 °C for 1 min, annealing at 49–52 °C for 60–75 s, and elongation at

#	Accession no.	Region	District	Altitude (m a.s.l.)	Latitude
1	KSA1R	Jazan	Khacher/Al-Zoughli	1,254	17°18′03″
2	KSA2R	Jazan	Khacher/Al-Guatil	1,484	17°19′01″1
3	KSA3R	Jazan	Khacher/Al-Guatil	1,484	17°19′01″1
4	KSA4R	Jazan	Jebel Fayfa	1,541	17°15′21″
5	KSA5R	Jazan	Wadi Dafa	1,254	17°25′41″
5	KSA6R	Jazan	Tallan	1,672	17°23′12″
7	KSA7R	Jazan	Tallan	1,672	17°23′12″
3	KSA8R	Jazan	Tallan	1,546	17°23′01″
)	KSA9R	Jazan	Tallan	1,672	17°23′12″
0	KSA10R	Jazan	Khacher/Al-Zoughli	1,254	17°18′03″
1	KSA11R	Assir	Rayda	1,594	18°11′37″
2	KSA12R	Jazan	Maaddi	1,287	17°29′29″
3	KSA13R	Jazan	Maaddi	1,344	17°29′29″
4	KSA15R	Al-Baha	Shada Al-ala	1,548	19°50′54″
.5	KSA16R	Assir	Rayda	1,594	18°11′37″
6	KSA17R	Assir	Rayda	1,519	18°11′37″
7	KSA18R	Assir	Al-Majarda	1,329	19°09′35″
.8	KSA19R	Assir	Al-Majarda	1,300	19°09′35″
.9	KSA20	Jazan	Jebel Fayfa	1,260	17°15′20″
20	KSA21	Jazan	Jebel Fayfa	1,260	17°15′20″
21	KSA22	Jazan	Jebel Fayfa	1,260	17°15′20″
22	KSA23	Jazan	Jebel Fayfa	1,260	17°15′20″
23	KSA24	Jazan	Jebel Fayfa	1,260	17°15′20″
24	KSA25	Jazan	Jebel Fayfa	1,260	17°15′20″
25	KSA26	Jazan	Jebel Fayfa	1,550	17°15′24″
26	KSA27	Jazan	Jebel Fayfa	1,550	17°15′24″
27	KSA28	Jazan	Jebel Fayfa	1,550	17°15′24″
28	KSA29	Jazan	Al-Gahr	1,846	17°38′08″
29	KSA30	Jazan	Al-Gahr	1,846	17°38′08″
30	KSA31	Jazan	Al-Gahr	1,846	17°38′08″
81	KSA32	Jazan	Al-Gahr	1,846	17°38′08″
32	KSA33	Jazan	Al-Gahr	1,846	17°38′08″
33	KSA34	Jazan	Jebel Fayfa	1,660	17°15′55″
34	KSA35	Jazan	Jebel Fayfa	1,660	17° 15′ 55″
5	KSA36	Jazan	Jebel Fayfa	1,450	17° 15′ 59″
36	KSA37	Jazan	Eddayer	1,100	17°22′10″
37	KSA38	Jazan	Eddayer	1,228	17°22′10″
38	KSA39	Jazan	Eddayer	1,228	17°22′10″
39	KSA40	Jazan	Haroub	1,100	17°29′29″
40	KSA41	Assir	Rayda	1,450	17 29 29 18°11′37″

 Table 1
 Altitude and latitude of the sites where the coffee accessions were sourced. The sites are located between longitudes 42°22′ and 43°07′E.

(continued on next page)

Table 1 (continued)

#	Accession no.	Region	District	Altitude (m a.s.l.)	Latitude
41	KSA42	Assir	Rayda	1,450	18°11′37″N
42	KSA43	Assir	Rayda	1,400	18°11′37″N
43	KSA44	Jazan	Jebel Fayfa	1,524	17°15′48″N
44	KSA45R	Jazan	Jebel Fayfa	1,524	17°15′48″N
45	KSA46	Jazan	Al-Gahr	1,750	17°39′01″N
46	KSA47	Jazan	Al-Gahr	1,750	17°39′01″N
47	KSA48	Jazan	Jebel Fayfa	1,260	17°15′20″N
48	KSA49	Jazan	Jebel Fayfa	1,260	17°15′20″N
49	KSA50	Jazan	Jebel Fayfa	1,260	17°15′20″N
50	KSA51R	Jazan	Jebel Fayfa	1,524	17°17′13″N
51	KSA52	Jazan	Jebel Fayfa	1,550	17°15′24″N
52	KSA59	Assir	Al-Majarda	1,329	19°09′35″N
53	KSA60	Assir	Al-Majarda	1,300	19°09′35″N
54	KSA61	Al-Baha	Shada Al-ala	1,548	19°50′54″N
55	KSA62	Al-Baha	Shada Al-ala	1,548	19°50′54″N
56	KSA63	Al-Baha	Shada Al-ala	1,548	19°50′54″N

1 CATTACAAATGCGATGCTCT TCTACCGATTTCGCCATATC trnT-trnL Hybridation: 50 °C/1 min Elongation: 72 °C/1 min [29] 2 CGAAATCGGTAGACGCTACG GGGGATAGAGGGACTTGAAC trnL Hybridation: 49 °C/1.15 min Elongation: 72 °C/1.15 min [29] 3 GGTTCAAGTCCCTCTATCCC trnL-trnF Hybridation: 52 °C/1 min The stice 72 °C/1 min [29]				
Sr#	Sequence 5'-3'	Target	PCR condition	Source
1		trnT-trnL		[29]
2		trnL		[29]
3	GGTTCAAGTCCCTCTATCCC ATTTGAACTGGTGACACGAG	TrnL-trnF	Hybridation:52 °C/1 min Elongation: 72 °C/1min	[29]
4	GAAGTAGTAGGATTGATTCTC TACAGTTGTCCATGTACCAG	atpB-rbcL	Hybridation: 50 °C/1 min Elongation: 72 °C/1min	[30]

72 °C for 60–75 s, followed by a final polymerization at 72 °C for 10 min. To check the effectiveness of PCR, positive control using sterile water was included in all amplifications. The PCR products were checked by electrophoresis on 1% agarose gel in TAE buffer, and DNA was visualized under UV light after staining with ethidium bromide.

The amplified products were purified using the GFX PCR kit (GE Healthcare, Chicago, IL, USA). Sequencing reactions were carried out by Congenic using Sanger technology, separately for each strand to obtain independent forward and reverse sequences. The forward and reverse fragments were aligned, and additional reactions were conducted in case of any discrepancies.

Sequence analysis

The scanner software-2 was utilized to determine the quality of the sequences. The four barcode samples of each *C. arabica* genotype were manually curated and aligned using the Contig assembly program in Bio Edit 7.0 software to ensure high-quality sequences.

Nucleotide sequences obtained from the 57 accessions were initially aligned using CLUSTAL W (Thompson, Higgins & Gibson, 1994) and analyzed with MEGA program version X. The number of individuals, number of nucleotide sites, variable polymorphic sites, number of segregating sites, number of haplotypes, nucleotide diversity, and average number of nucleotide differences of each barcode marker and consensus sequence were measured using DNAsp (v6) (Rozas et al., 2019). The quantification of insertion events in the sequence was determined by the number of variable sites where the addition of one or more nucleotides signals polymorphism. Likewise, the number of deletions was determined by the variable sites where polymorphism arises due to the removal of one or more nucleotides. The identification of the number of transitions in the sequences was based on the number of variable sites where polymorphism occurred due to the exchange between two purines (A and G) or two pyrimidines (C and T). On the other hand, the number of transversions was determined by the variable sites where polymorphism resulted from the replacement of a purine with a pyrimidine. To determine the number of mutation events that have occurred in a sequence, the sum of variable sites and the number of distinct mutations observed at the same nucleotide site across different samples are combined. This quantification considers both different types of polymorphisms and multiple occurrences of mutations within the sequence. Various parameters were estimated for each sequence region to differentiate them, based on the number of monomorphic or polymorphic sites, the number of parsimony informative sites (PIS), nucleotide diversity (π), haplotype diversity (Hd), and the total number of mutations (Hosein et al., 2017; Rabaan et al., 2020), singleton variable site (STVC) (Pettengill & Neel, 2010). The percentage of polymorphic sites for each sequence was determined by dividing the number of variable nucleotides by the length of the entire region and multiplying the result by 100 (*Chen et al., 2023*).

Evolutionary analysis by Maximum Likelihood method

The Maximum Likelihood method and the Kimura 2-parameters model proposed by *Kimura (1980)* were used to assess the evolutionary relationships among the genotypes. The tree with the highest log likelihood (-22360.57) is shown. The Neighbor-Join and BioNJ algorithms were applied to a matrix of pairwise distances obtained using the Maximum Composite Likelihood approach to obtain the initial tree for the heuristic search. The topology with the superior log likelihood value was retained. The tree was drawn to scale with the length of the branches proportional to the number of substitutions per site. This analysis involved 57 nucleotide sequences. There was a total of 5381 diverse positions present in the final dataset. Evolutionary analyses were conducted in MEGA X (*Kumar et al., 2018*).

RESULTS

The successful amplification of all four intergenic spacer barcode sequences (atpB-rbcl, TrnT-trnL, TrnL-trnF, TrnL) was achieved, resulting in a single band of the expected size. The respective sequences for each barcode were submitted to the National Center for Biotechnology Information (NCBI) *via* Bankit submission. The accession number of each barcode for the 56 *C. arabica* genotypes is presented in Table 3. All genotypes were

identified as *C. arabica* for all barcodes except KSA2R, KSA41, KSA42, and KSA43 for primer atpB-rbcl.

The number of nucleotide sites (NNS), variable polymorphic sites (VPS), number of segregating sites (NSS), number of haplotypes (NH), nucleotide diversity (ND), and average number of nucleotide differences(ANND) for each barcode primer and the cumulative results for all four primers (Table 4). The combined sequences showed the highest NNS (4114), followed by the atpB-rbcl primer, while the trnL primer had the lowest NNS. The trnT-trnL primer had the highest number of variable polymorphic sites VPS (341), followed by atpB-rbcl, while the lowest (154) was recorded for TrnL-trnF. The combined sequences had the highest number of segregating sites (NSS) followed by the trnT-trnL primer, while trnL and trnL-trnF had the lowest number. The number of haplotypes was highest for trnT-trnL and lowest for trnL-trnF and atpB-rbcl while trnL and the combination of all four markers were intermediate. The primer atpB-rbcl had the highest ND, followed by trnT-trnL (0.051), with TrnL-trnF showing the lowest ND. Additionally, the atpB-rbcl had the highest ANND (185.54), while TrnL-trnF exhibited the lowest value (25.23) for ANND.

The nucleotide base composition of each barcode primer was determined and is presented in Table 5. The average nucleotide base composition of atpB-rbcl was recorded as 33.15% T(U), 16.60% C, 34.49% A, and 15.76% G. For trnL, the composition was 26.7% T(U), 15.9% C, 37.6% A, and 19.8% G. trnT-trnL had a composition of 39.18% T(U), 13.88% C, 33.84% A, and 13.10% G. For trnL-trnF the composition was 32.83% T(U), 19.81% C, 32.21% A, and 15.13% G (Table 5). The singleton variable sites (STVS) and parsimony information sites (PIS) for each chloroplast barcode are presented in Table S1. The trnT-trnL barcode recorded the highest number of STVS (338), followed by trnL-trnF (133), trnL (52), then atpB-rbcl which had the lowest number (1). Similarly, for grand total of PIS was 182 for trnL, 155 for trnT-trnL, 137 for atpB-rbcl and 45 for TrnL-trnF (Table S1). A phylogenetic analysis was constructed based on the concatenated sequences of all four barcode primers using the maximum likelihood method and Kimura 2-parameters model (Fig. 1). The percentage of trees in which the associated taxa clustered together is shown next to the branches. This analysis involved 56 nucleotide sequences, and the final dataset comprised 4,114 positions. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The final phylogenetic tree divided the 56 accessions into four distinct groups. The first group contained six accessions (KSA42, KSA29, KSA2R, KSA41, KSA43, and KSA11R) that were mostly from the Rayda district of Assir region. The second group contained seven accessions (KSA51R, KSA3R, KSA27, KSA60, KSA4R, KSA7R, and KSA1R), all from the Jazan Region except KSA60 was from Assir. The third group was formed of 12 accessions (KSA45R, KSA13R, KSA39, KSA25, KSA35, KSA59, KSA52, KSA36, KSA24, KSA22, KSA37 and KSA46), all collected from the Jazan Region except KSA59 from the north of Assir Region. The fourth and largest group contained 43 accessions that can be further subdivided into four subgroups. The first subgroup (IVa) was a diverse one and contained 12 accessions originating from the three regions. Subgroup IVb contained three accessions (KSA33, KSA28 and KSA5R) all from the Jazan Region. Subgroup IVc contained seven accessions, six from Jazan and one

 Table 3
 Accession numbers of four barcode primers of 56 Coffea arabica genotypes.

KSAIR OQ718327 OQ914867 OQ914923 OQ953999 KSA2R - OQ914868 OQ914925 OQ954001 KSA3R OQ914863 OQ914877 OQ914926 OQ954001 KSA4R OQ914864 OQ914877 OQ914926 OQ954001 KSA6R OQ914865 OQ914872 OQ914928 OQ954001 KSA6R OQ914865 OQ914873 OQ914929 OQ954005 KSA7R OQ914860 OQ914873 OQ914930 OQ954005 KSA9R OQ85002 OQ14875 OQ914931 OQ954007 KSA10R OQ85005 OQ14877 OQ914933 OQ954007 KSA12R OQ85005 OQ14877 OQ914935 OQ954001 KSA12R OQ85005 OQ14877 OQ914935 OQ954011 KSA12R OQ851071 OQ914881 OQ914935 OQ954011 KSA12R OQ851715 OQ914883 OQ914935 OQ954013 KSA12R OQ851716 OQ914883 OQ914935 OQ954013 K	Genotype ID	atpB-rbcl	trnL-trnF	trnT-trnL	trnL
KSA3R OQ84406 OQ91469 OQ914925 OQ954001 KSA5R OQ914663 OQ914870 OQ914927 OQ954002 KSA5R OQ914865 OQ914872 OQ914927 OQ954003 KSA6R OQ914865 OQ914873 OQ914929 OQ954005 KSA6R OQ850301 OQ14875 OQ914931 OQ954006 KSA1R OQ850303 OQ14875 OQ914932 OQ954006 KSA1R OQ850303 OQ14875 OQ14933 OQ954006 KSA1R OQ850306 OQ14877 OQ14933 OQ954001 KSA12R OQ850306 OQ14877 OQ14935 OQ954012 KSA12R OQ850306 OQ14879 OQ14935 OQ954011 KSA12R OQ851716 OQ14881 OQ14933 OQ954013 KSA12R OQ851717 OQ14882 OQ14933 OQ954014 KSA18R OQ851719 OQ14885 OQ14941 OQ954014 KSA21 OQ851720 OQ14885 OQ14941 OQ954014	KSA1R	OQ718327	OQ914867	OQ914923	OQ953999
KSA4R 0.0914863 0.0914870 0.0914926 0.0954002 KSA5R 0.0914864 0.0914871 0.0914927 0.0954003 KSA6R 0.0914866 0.0914871 0.0914929 0.0954003 KSA7R 0.0914866 0.0914871 0.0914931 0.0954007 KSA8R 0.055303 0.0914876 0.0914931 0.0954007 KSA10R 0.055303 0.0914877 0.0914933 0.0954007 KSA12R 0.055303 0.0914877 0.0914933 0.0954007 KSA12R 0.055305 0.0914877 0.0914933 0.0954007 KSA12R 0.055305 0.0914878 0.0914936 0.0925401 KSA12R 0.0651715 0.0914881 0.0914936 0.09254013 KSA18R 0.0651718 0.0914883 0.0914939 0.0954015 KSA120 0.0651718 0.0914885 0.0914914 0.0954015 KSA23 0.067574 0.0914885 0.0914914 0.0954015 KSA24 0.067574 0.0914885	KSA2R	-	OQ914868	OQ914924	OQ954000
KSA5RQQ914864QQ914871QQ914927QQ95003KSA6RQQ914866QQ914872QQ914928QQ954061KSA7RQQ85001QQ914873QQ914930QQ954005KSA8RQQ85002QQ14875QQ914931QQ954007KSA10RQQ85003QQ914876QQ914932QQ954007KSA11RQQ85005QQ14877QQ914932QQ954010KSA12RQQ85005QQ14878QQ914935QQ954010KSA12RQQ851715QQ14880QQ14935QQ954013KSA13RQQ851716QQ14880QQ14935QQ954013KSA16RQQ851717QQ14881QQ914977QQ954013KSA17RQQ851717QQ14883QQ14935QQ954013KSA18RQQ851718QQ14885QQ14939QQ954017KSA18RQQ851719QQ14885QQ14940QQ954016KSA20QQ851720QQ14885QQ14914QQ954016KSA22QQ872545QQ14886QQ14941QQ954016KSA23QQ872545QQ14886QQ14941QQ954021KSA24QQ872545QQ14886QQ14941QQ954021KSA25QQ872545QQ14886QQ14945QQ954021KSA26QQ872545QQ14896QQ14945QQ954021KSA27QQ872545QQ14895QQ14945QQ954021KSA28QQ872551QQ14896QQ14955QQ954021KSA29QQ87255QQ14896QQ14955QQ954021KSA30QQ87255QQ14896QQ14955	KSA3R	OQ844066	OQ914869	OQ914925	OQ954001
KSA6RQQ914865QQ914872QQ914928QQ954004KSA7RQQ914866QQ14873QQ914929QQ954005KSA8RQQ85001QQ14875QQ914920QQ954006KSA10RQQ85002QQ14875QQ914932QQ954008KSA11RQQ85034QQ14876QQ914933QQ954009KSA12RQQ85036QQ14878QQ914935QQ954012KSA13RQQ85036QQ14878QQ914935QQ954012KSA13RQQ851715QQ14881QQ914935QQ954012KSA18RQQ851715QQ14881QQ914935QQ954013KSA17RQQ851717QQ14881QQ914939QQ954015KSA18RQQ851718QQ14885QQ14940QQ954015KSA19RQQ851720QQ14885QQ14940QQ954015KSA21QQ872545QQ14885QQ14941QQ954015KSA22QQ872545QQ14885QQ14941QQ954015KSA24QQ872547QQ14885QQ14941QQ954022KSA25QQ872545QQ14891QQ14945QQ954022KSA26QQ872551QQ14891QQ14945QQ954024KSA27QQ872551QQ14895QQ14945QQ954024KSA28QQ872551QQ14895QQ14945QQ954024KSA36QQ872556QQ14897QQ14955QQ954024KSA36QQ872556QQ14897QQ14955QQ954024KSA36QQ872561QQ14904QQ954024QQ54024KSA36QQ872561QQ14904QQ91495 <th>KSA4R</th> <th>OQ914863</th> <th>OQ914870</th> <th>OQ914926</th> <th>OQ954002</th>	KSA4R	OQ914863	OQ914870	OQ914926	OQ954002
KA7RQQ914866QQ914873QQ914929QQ954081KSA8RQQ85001QQ14874QQ914910QQ954005KSA9RQQ85002QQ14875QQ914932QQ954007KSA10RQQ85003QQ14876QQ914933QQ954009KSA12RQQ85005QQ14877QQ914934QQ954010KSA12RQQ85005QQ14879QQ914935QQ954012KSA13RQQ851715QQ14882QQ914936QQ954012KSA17RQQ851717QQ14882QQ914936QQ954013KSA17RQQ851718QQ14882QQ914939QQ954016KSA18RQQ851718QQ14884QQ14949QQ954016KSA20QQ851720QQ14884QQ91493QQ954016KSA22QQ872545QQ14886QQ14940QQ954018KSA23QQ872546QQ14886QQ14941QQ954012KSA23QQ872547QQ14889QQ14941QQ954012KSA24QQ872547QQ14889QQ14944QQ954023KSA25QQ872540QQ14890QQ14946QQ954023KSA26QQ872550QQ14891QQ14947QQ954023KSA27QQ872550QQ14892QQ14945QQ954023KSA33QQ872551QQ14894QQ14945QQ954024KSA34QQ872551QQ14895QQ14951QQ954024KSA33QQ872551QQ14896QQ14951QQ954024KSA33QQ872551QQ14896QQ14951QQ954024KSA34QQ872551QQ14896QQ14951 <t< th=""><th>KSA5R</th><th>OQ914864</th><th>OQ914871</th><th>OQ914927</th><th>OQ954003</th></t<>	KSA5R	OQ914864	OQ914871	OQ914927	OQ954003
KSA8RQQ850301QQ914874QQ914930QQ954006KSA9RQQ850303QQ914875QQ914931QQ954007KSA10RQQ850303QQ914876QQ914933QQ954009KSA11RQQ850305QQ14877QQ914933QQ954009KSA12RQQ850305QQ14878QQ914935QQ954001KSA13RQQ850305QQ14879QQ914935QQ954012KSA17RQQ851715QQ914880QQ914936QQ954012KSA17RQQ851715QQ914881QQ914939QQ954015KSA17RQQ851719QQ14882QQ914939QQ954015KSA17RQQ851719QQ14882QQ914939QQ954015KSA18RQQ851719QQ14884QQ149404QQ954016KSA20QQ82545QQ14886QQ14941QQ954016KSA21QQ872545QQ14886QQ14944QQ954021KSA23QQ872546QQ14886QQ14944QQ954021KSA24QQ872547QQ14886QQ14945QQ954021KSA25QQ872548QQ914891QQ14947QQ954022KSA26QQ872550QQ14891QQ14949QQ954022KSA27QQ872551QQ14893QQ14949QQ954025KSA31QQ872551QQ14895QQ14949QQ954025KSA32QQ872550QQ14896QQ14951QQ94026KSA34QQ872550QQ14896QQ14951QQ94026KSA35QQ872556QQ14896QQ14954QQ94030KSA36QQ872556QQ14896QQ1	KSA6R	OQ914865	OQ914872	OQ914928	OQ954004
KSA9RQQ850302QQ914875QQ914931QQ954007KSA10RQQ850303QQ914876QQ914932QQ954008KSA11RQQ850305QQ914877QQ914933QQ954001KSA12RQQ850305QQ914878QQ914933QQ9540101KSA13RQQ851715QQ14878QQ914935QQ954012KSA16RQQ851716QQ914881QQ914937QQ954013KSA17RQQ851717QQ14882QQ914937QQ954013KSA17RQQ851717QQ14882QQ914938QQ954014KSA17RQQ851717QQ14882QQ149497QQ954015KSA18RQQ851719QQ14884QQ914937QQ954016KSA20QQ851720QQ914885QQ14941QQ954016KSA21QQ872547QQ914886QQ14941QQ954016KSA22QQ872547QQ14886QQ14943QQ954021KSA24QQ872547QQ14889QQ14945QQ94021KSA25QQ872547QQ14891QQ14945QQ954021KSA26QQ872547QQ14891QQ14945QQ954021KSA27QQ872551QQ14891QQ14945QQ954021KSA28QQ872551QQ14895QQ14945QQ954021KSA29QQ872551QQ14895QQ14945QQ954021KSA30QQ872551QQ14895QQ14951QQ954021KSA31QQ872555QQ14895QQ14951QQ954021KSA33QQ872555QQ14895QQ14951QQ954021KSA33QQ872555QQ14895 <td< th=""><th>KSA7R</th><th>OQ914866</th><th>OQ914873</th><th>OQ914929</th><th>OQ954005</th></td<>	KSA7R	OQ914866	OQ914873	OQ914929	OQ954005
KSA10RQQ850303QQ914876QQ914932QQ954008KSA11RQQ850305QQ914877QQ914933QQ954001KSA12RQQ850305QQ914879QQ914935QQ954011KSA13RQQ850306QQ14879QQ914935QQ954012KSA15RQQ851715QQ914880QQ914936QQ954013KSA17RQQ851716QQ914881QQ914937QQ954013KSA18RQQ851717QQ914882QQ914936QQ954015KSA19RQQ851719QQ14883QQ14940QQ954016KSA20QQ851720QQ14886QQ14941QQ954017KSA21QQ872541QQ14886QQ14941QQ954017KSA22QQ872545QQ914886QQ14941QQ954020KSA23QQ872546QQ14887QQ14944QQ954021KSA24QQ872546QQ14890QQ14944QQ954021KSA25QQ872548QQ14890QQ14944QQ954022KSA26QQ872551QQ14891QQ14945QQ954021KSA27QQ872551QQ14891QQ14945QQ954021KSA28QQ872551QQ14895QQ14951QQ954026KSA30QQ872551QQ14895QQ14951QQ954026KSA33QQ872551QQ14896QQ14951QQ954026KSA34QQ872551QQ14896QQ14951QQ954031KSA35QQ872551QQ14896QQ14955QQ94030KSA34QQ872557QQ14896QQ14955QQ94031KSA34QQ872557QQ14896QQ949	KSA8R	OQ850301	OQ914874	OQ914930	OQ954006
KSA11RQQ850304QQ914877QQ914933QQ954009KSA12RQQ850305QQ14878QQ914935QQ954012KSA13RQQ850305QQ914879QQ914935QQ954012KSA15RQQ851715QQ14880QQ14936QQ954012KSA15RQQ851716QQ14881QQ914937QQ954013KSA17RQQ851717QQ14882QQ914938QQ954015KSA17RQQ851718QQ914884QQ14939QQ954015KSA19RQQ851719QQ14884QQ14940QQ954016KSA22QQ87254QQ914885QQ914941QQ954016KSA23QQ872546QQ14886QQ14942QQ954016KSA24QQ872547QQ14887QQ914943QQ954020KSA25QQ872546QQ14887QQ914943QQ954022KSA26QQ872547QQ14891QQ91494QQ954022KSA26QQ872551QQ14891QQ91494QQ954022KSA27QQ872551QQ14893QQ14945QQ954025KSA28QQ872551QQ14893QQ14945QQ954026KSA30QQ872551QQ14895QQ14955QQ954026KSA31QQ872551QQ14895QQ14955QQ954026KSA33QQ872555QQ14895QQ14955QQ954026KSA34QQ872555QQ14895QQ14955QQ954035KSA35QQ872555QQ14897QQ14955QQ954036KSA34QQ872556QQ14897QQ14955QQ954036KSA35QQ872556QQ14991QQ9540	KSA9R	OQ850302	OQ914875	OQ914931	OQ954007
KSA12RQQ85005QQ91478QQ914934QQ954010KSA13RQQ85006QQ14879QQ914935QQ954011KSA15RQQ851715QQ914880QQ914936QQ954013KSA17RQQ851717QQ914882QQ914933QQ954015KSA17RQQ851718QQ914883QQ914939QQ954015KSA17RQQ851719QQ14884QQ914940QQ954015KSA12RQQ872545QQ914886QQ914941QQ954015KSA22QQ872545QQ914886QQ914942QQ954015KSA23QQ872546QQ14886QQ914942QQ954012KSA24QQ872547QQ14886QQ914945QQ954012KSA25QQ872546QQ14891QQ914945QQ95402KSA26QQ872547QQ14891QQ914945QQ95402KSA26QQ872551QQ14891QQ914945QQ95402KSA27QQ872551QQ14893QQ14949QQ95402KSA28QQ872551QQ14893QQ14949QQ95402KSA30QQ872551QQ14893QQ14949QQ95402KSA31QQ872551QQ14896QQ14951QQ95402KSA33QQ872551QQ14896QQ14951QQ95402KSA33QQ872551QQ14896QQ14955QQ95402KSA33QQ872551QQ14896QQ14955QQ95402KSA33QQ872556QQ14896QQ14955QQ95403KSA34QQ872556QQ14896QQ14955QQ95403KSA35QQ872560QQ14902QQ14955 <t< th=""><th>KSA10R</th><td>OQ850303</td><td>OQ914876</td><td>OQ914932</td><td>OQ954008</td></t<>	KSA10R	OQ850303	OQ914876	OQ914932	OQ954008
KSA13R QQ850306 QQ914879 QQ914935 QQ954011 KSA15R QQ851715 QQ914880 QQ914936 QQ954012 KSA16R QQ851716 QQ914881 QQ914937 QQ954013 KSA17R QQ851717 QQ14882 QQ914933 QQ954015 KSA18R QQ851718 QQ914883 QQ914930 QQ954015 KSA19R QQ851719 QQ914885 QQ914941 QQ954015 KSA20 QQ872545 QQ914885 QQ914942 QQ954015 KSA22 QQ872545 QQ914887 QQ914943 QQ954015 KSA23 QQ872546 QQ14887 QQ14945 QQ954015 KSA24 QQ872547 QQ14889 QQ14945 QQ954012 KSA25 QQ872540 QQ14891 QQ914945 QQ954012 KSA26 QQ872551 QQ14891 QQ914945 QQ954015 KSA27 QQ872551 QQ14891 QQ914950 QQ954025 KSA28 QQ872551 QQ14891 QQ914950 QQ954025	KSA11R	OQ850304	OQ914877	OQ914933	OQ954009
KSA15R0Q8517150Q9148800Q9149360Q954012KSA16R0Q8517160Q9148810Q9149370Q954015KSA17R0Q8517170Q9148820Q9149380Q954015KSA18R0Q8517180Q9148830Q9149390Q954015KSA19R0Q8517190Q9148850Q9149410Q954016KSA200Q8517200Q9148850Q9149420Q954018KSA210Q8725450Q9148860Q9149430Q954019KSA230Q8725460Q9148880Q9149450Q954021KSA240Q8725470Q9148880Q9149450Q954021KSA250Q8725470Q9148910Q9149450Q954021KSA260Q8725470Q9148910Q9149450Q954025KSA270Q8725510Q9148930Q9149450Q954026KSA280Q8725510Q9148930Q9149490Q954025KSA310Q8725550Q9148950Q9149510Q954026KSA330Q8725550Q9148950Q9149510Q954031KSA330Q8725570Q9148950Q9149510Q954031KSA340Q8725570Q9148950Q9149510Q954031KSA350Q8725560Q914890Q9149510Q954031KSA360Q8725570Q9148950Q9149510Q954031KSA360Q8725570Q9148910Q9149510Q954031KSA360Q8725570Q9149910Q9149510Q954031KSA360Q8725570Q9149910Q9149510Q954031KSA360Q872559 </th <th>KSA12R</th> <td>OQ850305</td> <td>OQ914878</td> <td>OQ914934</td> <td>OQ954010</td>	KSA12R	OQ850305	OQ914878	OQ914934	OQ954010
KSA16R QQ851716 QQ914881 QQ914937 QQ954013 KSA17R QQ851717 QQ914882 QQ914938 QQ954015 KSA18R QQ851718 QQ914883 QQ914939 QQ954015 KSA19R QQ851719 QQ914884 QQ914940 QQ954015 KSA20 QQ872541 QQ914885 QQ14942 QQ954017 KSA21 QQ872545 QQ14887 QQ914943 QQ954021 KSA23 QQ872547 QQ914888 QQ914943 QQ954021 KSA24 QQ872547 QQ914881 QQ914945 QQ954021 KSA25 QQ872548 QQ914989 QQ914945 QQ954021 KSA26 QQ872551 QQ914893 QQ914945 QQ954021 KSA27 QQ872551 QQ914893 QQ914945 QQ954021 KSA28 QQ872551 QQ14893 QQ914945 QQ954021 KSA30 QR72552 QQ14895 QQ14951 QQ954021 KSA31 QQ872553 QQ14895 QQ14951 QQ954021	KSA13R	OQ850306	OQ914879	OQ914935	OQ954011
KSA17RQQ851717QQ914882QQ914938QQ954014KSA18RQQ851718QQ914883QQ914939QQ954015KSA19RQQ851720QQ914885QQ914941QQ954017KSA20QQ872544QQ914886QQ914942QQ954018KSA22QQ872545QQ914886QQ914943QQ954019KSA23QQ872546QQ914887QQ914943QQ954021KSA24QQ872547QQ914889QQ914945QQ954021KSA25QQ872548QQ914890QQ914946QQ954022KSA26QQ872550QQ914891QQ914947QQ954023KSA28QQ872551QQ914892QQ914949QQ954025KSA30QQ872552QQ914893QQ914949QQ954025KSA31QQ872553QQ914895QQ914951QQ954026KSA33QQ872555QQ914895QQ914951QQ954026KSA34QQ872555QQ914895QQ914951QQ954026KSA33QQ872555QQ914895QQ914951QQ954026KSA34QQ872557QQ14895QQ914951QQ954026KSA35QQ872556QQ14895QQ914955QQ954026KSA36QQ872556QQ14895QQ914955QQ954026KSA35QQ872561QQ14901QQ914955QQ954035KSA36QQ872561QQ14901QQ914956QQ954035KSA37QQ872562QQ14901QQ14956QQ954035KSA38QQ872561QQ14905QQ14956QQ954035KSA39QQ872563QQ1	KSA15R	OQ851715	OQ914880	OQ914936	OQ954012
KSA18R QQ851718 QQ914883 QQ914939 QQ954015 KSA19R QQ851719 QQ914884 QQ914940 QQ954016 KSA20 QQ851720 QQ914885 QQ914941 QQ954017 KSA21 QQ872544 QQ914886 QQ914942 QQ954018 KSA22 QQ872545 QQ914886 QQ914942 QQ954018 KSA23 QQ872546 QQ914886 QQ914944 QQ954021 KSA24 QQ872547 QQ914889 QQ914944 QQ954021 KSA24 QQ872548 QQ914891 QQ914945 QQ954021 KSA25 QQ872550 QQ914891 QQ91494 QQ954025 KSA28 QQ872551 QQ914893 QQ914949 QQ954025 KSA29 QQ872553 QQ914895 QQ914949 QQ954025 KSA31 QQ872553 QQ914895 QQ914951 QQ954025 KSA33 QQ872555 QQ914895 QQ914951 QQ954025 KSA33 QQ872555 QQ14895 QQ914951 QQ954025	KSA16R	OQ851716	OQ914881	OQ914937	OQ954013
KSA19RQQ81719QQ914884QQ914940QQ954016KSA20QQ851720QQ914855QQ914941QQ954017KSA21QQ872544QQ914886QQ914942QQ954018KSA22QQ872545QQ914887QQ914943QQ954019KSA23QQ872546QQ914888QQ914944QQ954021KSA24QQ872547QQ914889QQ914945QQ954021KSA25QQ872548QQ914890QQ914946QQ954021KSA26QQ872550QQ914891QQ914947QQ954021KSA28QQ872551QQ914893QQ914949QQ954025KSA29QQ872551QQ14893QQ914950QQ954026KSA30QQ872553QQ14895QQ914951QQ954026KSA31QQ872554QQ14897QQ14953QQ954026KSA33QQ872555QQ14897QQ14953QQ954026KSA33QQ872556QQ14897QQ14953QQ954026KSA33QQ872559QQ14900QQ14955QQ954031KSA35QQ872554QQ14901QQ14955QQ954031KSA35QQ872558QQ14901QQ14957QQ954031KSA36QQ872559QQ14901QQ14957QQ954031KSA36QQ872561QQ14901QQ14956QQ954031KSA39QQ872561QQ14904QQ14960QQ54036KSA39QQ872562QQ14904QQ14960QQ54036KSA40QQ872563QQ14905QQ14961QQ54036KSA410QQ14950QQ94	KSA17R	OQ851717	OQ914882	OQ914938	OQ954014
KSA20QQ851720QQ14885QQ914941QQ954017KSA21QQ872544QQ914886QQ914942QQ954018KSA22QQ872545QQ914887QQ914943QQ954019KSA23QQ872546QQ914888QQ914944QQ954020KSA24QQ872547QQ914889QQ914945QQ954021KSA25QQ872548QQ914890QQ914946QQ954022KSA26QQ872551QQ914891QQ914947QQ954023KSA27QQ872551QQ914893QQ914949QQ954025KSA28QQ872552QQ14893QQ914950QQ954025KSA30QQ872553QQ914895QQ914951QQ954027KSA31QQ872555QQ914895QQ914953QQ954028KSA33QQ872555QQ914896QQ914953QQ954029KSA33QQ872556QQ914897QQ914953QQ954029KSA33QQ872557QQ914897QQ914955QQ954031KSA34QQ872557QQ914899QQ914955QQ954031KSA35QQ872558QQ914901QQ914956QQ954031KSA35QQ872550QQ914901QQ914955QQ954035KSA35QQ872561QQ914903QQ914959QQ54035KSA38QQ872561QQ914903QQ914959QQ54035KSA39QQ872562QQ914904QQ914960QQ54035KSA41-QQ872563QQ914905QQ914961QQ54035KSA41-QQ872563QQ914905QQ914961QQ54035KSA41-	KSA18R	OQ851718	OQ914883	OQ914939	OQ954015
KSA21QQ872544QQ914886QQ914942QQ954018KSA22QQ872545QQ914887QQ914943QQ954019KSA23QQ872546QQ914888QQ914944QQ954020KSA24QQ872547QQ914889QQ914945QQ954021KSA25QQ872548QQ914890QQ914946QQ954022KSA26QQ872550QQ914891QQ914947QQ954023KSA27QQ872551QQ914893QQ914949QQ954025KSA28QQ872552QQ914893QQ914949QQ954026KSA30QQ872552QQ914895QQ914950QQ954026KSA31QQ872555QQ914895QQ914951QQ954026KSA33QQ872556QQ914896QQ914952QQ954028KSA34QQ872556QQ914897QQ914953QQ954031KSA35QQ872556QQ914897QQ914955QQ954031KSA36QQ872556QQ914896QQ914955QQ954031KSA35QQ872556QQ914901QQ914955QQ954032KSA36QQ872556QQ914901QQ914955QQ954032KSA37QQ872560QQ914902QQ914955QQ954032KSA38QQ872561QQ914903QQ914959QQ954035KSA39QQ872562QQ914904QQ914960QQ954035KSA40QQ872563QQ914905QQ914960QQ954035KSA41_QQ914905QQ914960QQ954035KSA41_QQ914905QQ914960QQ954035KSA41_	KSA19R	OQ851719	OQ914884	OQ914940	OQ954016
KSA22QQ872545QQ914887QQ914943QQ954019KSA23QQ872546QQ914888QQ914944QQ954020KSA24QQ872547QQ914890QQ914945QQ954021KSA25QQ872548QQ914890QQ914947QQ954023KSA26QQ872550QQ914892QQ914948QQ954024KSA28QQ872551QQ914893QQ914949QQ954025KSA29QQ872553QQ914895QQ914950QQ954026KSA31QQ872553QQ914895QQ914951QQ954027KSA32QQ872555QQ914896QQ914952QQ954028KSA33QQ872556QQ914897QQ14955QQ954028KSA34QQ872557QQ914898QQ914954QQ954030KSA35QQ872558QQ14901QQ14955QQ954031KSA36QQ872558QQ14901QQ14955QQ954032KSA36QQ872560QQ14901QQ14957QQ954035KSA37QQ872561QQ914903QQ14959QQ954035KSA36QQ872561QQ914904QQ14959QQ954035KSA39QQ872563QQ14904QQ14959QQ954035KSA39QQ872563QQ14904QQ14960QQ954036KSA40QQ872563QQ14905QQ14961QQ954037KSA41-QQ97266QQ914966QQ954036KSA41-QQ97266QQ914966QQ954036	KSA20	OQ851720	OQ914885	OQ914941	OQ954017
KSA23QQ872546QQ914888QQ914944QQ954020KSA24QQ872547QQ914890QQ914945QQ954021KSA25QQ872548QQ914890QQ914946QQ954022KSA26QQ872549QQ914891QQ914947QQ954023KSA27QQ872550QQ914892QQ914948QQ954024KSA28QQ872551QQ914893QQ914950QQ954025KSA29QQ872552QQ914895QQ914950QQ954026KSA30QQ872553QQ914895QQ914951QQ954027KSA31QQ872555QQ914896QQ914952QQ954028KSA32QQ872556QQ914897QQ914953QQ954031KSA33QQ872556QQ914898QQ914951QQ954031KSA35QQ872556QQ914899QQ914955QQ954032KSA35QQ872559QQ914901QQ914957QQ954032KSA36QQ872559QQ914901QQ914957QQ954033KSA37QQ872561QQ914903QQ914959QQ954035KSA38QQ872561QQ914903QQ914959QQ954035KSA39QQ872562QQ914904QQ914950QQ954035KSA39QQ872563QQ914905QQ914960QQ954035KSA39QQ872563QQ914905QQ914961QQ954035KSA39QQ872563QQ914905QQ914960QQ954035KSA30QQ872563QQ914905QQ914960QQ954035KSA39QQ872563QQ914905QQ914960QQ954036KSA30QQ872563<	KSA21	OQ872544	OQ914886	OQ914942	OQ954018
KSA24QQ872547QQ914889QQ914945QQ954021KSA25QQ872548QQ914890QQ914946QQ954022KSA26QQ872550QQ914891QQ914947QQ954023KSA27QQ872551QQ914893QQ914949QQ954025KSA28QQ872551QQ914893QQ914950QQ954026KSA30QQ872553QQ914895QQ914951QQ954027KSA31QQ872554QQ914896QQ914952QQ954028KSA32QQ872555QQ914897QQ914953QQ954029KSA33QQ872556QQ914897QQ914954QQ954030KSA34QQ872557QQ914899QQ914955QQ954031KSA35QQ872558QQ914901QQ914956QQ954032KSA36QQ872559QQ914901QQ914957QQ954035KSA37QQ872561QQ914903QQ914959QQ954035KSA38QQ872563QQ914904QQ914959QQ954035KSA39QQ872563QQ914905QQ914960QQ954035KSA40QQ872563QQ914905QQ914961QQ954037KSA41QQ914905QQ914961QQ954037	KSA22	OQ872545	OQ914887	OQ914943	OQ954019
KSA25QQ872548QQ914890QQ914946QQ954022KSA26QQ872559QQ914891QQ914947QQ954023KSA27QQ872550QQ914892QQ914948QQ954025KSA28QQ872551QQ914893QQ914950QQ954025KSA29QQ872553QQ914895QQ914951QQ954027KSA31QQ872553QQ914896QQ914952QQ954028KSA32QQ872555QQ914896QQ914953QQ954028KSA33QQ872556QQ914897QQ914953QQ954030KSA34QQ872557QQ914898QQ914955QQ954031KSA35QQ872558QQ914900QQ914955QQ954031KSA36QQ872559QQ914901QQ914957QQ954032KSA37QQ872560QQ914902QQ914958QQ954034KSA38QQ872561QQ914903QQ914959QQ954035KSA39QQ872563QQ914904QQ914960QQ954035KSA40QQ872563QQ914905QQ14961QQ954035KSA41-QQ914905QQ14962QQ914961	KSA23	OQ872546	OQ914888	OQ914944	OQ954020
KSA26 QQ872549 QQ914891 QQ914947 QQ954023 KSA27 QQ872550 QQ914892 QQ914948 QQ954024 KSA28 QQ872551 QQ914893 QQ914949 QQ954025 KSA29 QQ872552 QQ914894 QQ914950 QQ954026 KSA30 QQ872553 QQ914895 QQ914950 QQ954027 KSA31 QQ872553 QQ914895 QQ914950 QQ954027 KSA31 QQ872555 QQ914896 QQ914951 QQ954027 KSA33 QQ872555 QQ914897 QQ914952 QQ954028 KSA33 QQ872556 QQ914897 QQ914953 QQ954029 KSA33 QQ872557 QQ914897 QQ914953 QQ954030 KSA34 QQ872557 QQ914899 QQ914955 QQ954032 KSA35 QQ872558 QQ914901 QQ914957 QQ954033 KSA36 QQ872560 QQ914902 QQ914958 QQ954034 KSA38 QQ872561 QQ914903 QQ914959 QQ954035	KSA24	OQ872547	OQ914889	OQ914945	OQ954021
KSA27QQ872550QQ914892QQ914948QQ954024KSA28QQ872551QQ914893QQ914949QQ954026KSA29QQ872552QQ914894QQ914950QQ954026KSA30QQ872553QQ914895QQ914951QQ954027KSA31QQ872555QQ914896QQ914952QQ954028KSA32QQ872556QQ914898QQ914954QQ954030KSA34QQ872557QQ914899QQ914955QQ954031KSA35QQ872558QQ914901QQ914956QQ954032KSA36QQ872559QQ914901QQ914957QQ954033KSA37QQ872561QQ914902QQ914958QQ954035KSA38QQ872562QQ914903QQ914959QQ954035KSA39QQ872563QQ914905QQ914960QQ954036KSA40QQ872563QQ914905QQ914961QQ954037KSA41-QQ914906QQ914962QQ914961	KSA25	OQ872548	OQ914890	OQ914946	OQ954022
KSA28QQ872551QQ914893QQ914949QQ954025KSA29QQ872552QQ914894QQ914950QQ954026KSA30QQ872553QQ914895QQ914951QQ954027KSA31QQ872554QQ914896QQ914952QQ954028KSA32QQ872555QQ914897QQ914953QQ954029KSA33QQ872556QQ914898QQ914954QQ954030KSA34QQ872557QQ914899QQ914955QQ954031KSA35QQ872558QQ914900QQ14956QQ954032KSA36QQ872559QQ914901QQ914957QQ954033KSA37QQ872561QQ914903QQ914959QQ954034KSA39QQ872562QQ914904QQ14960QQ954035KSA40QQ872563QQ914905QQ14961QQ954037KSA41_QQ872563QQ914905QQ914961QQ954037	KSA26	OQ872549	OQ914891	OQ914947	OQ954023
KSA29QQ872552QQ914894QQ914950QQ954026KSA30QQ872553QQ914895QQ914951QQ954027KSA31QQ872554QQ914896QQ914952QQ954028KSA32QQ872555QQ914897QQ914953QQ954029KSA33QQ872556QQ914898QQ914955QQ954030KSA34QQ872557QQ914899QQ914955QQ954031KSA35QQ872558QQ914901QQ914956QQ954032KSA36QQ872560QQ914902QQ914958QQ954034KSA37QQ872561QQ914903QQ914959QQ954035KSA39QQ872562QQ914904QQ914960QQ954036KSA40QQ872563QQ914905QQ914961QQ954037KSA41-QQ914906QQ914962QQ954036	KSA27	OQ872550	OQ914892	OQ914948	OQ954024
KSA30QQ872553QQ914895QQ914951QQ954027KSA31QQ872554QQ914896QQ914952QQ954028KSA32QQ872555QQ914897QQ914953QQ954029KSA33QQ872556QQ914898QQ914954QQ954030KSA34QQ872557QQ914899QQ914955QQ954031KSA35QQ872558QQ914900QQ914956QQ954032KSA36QQ872559QQ914901QQ914957QQ954033KSA37QQ872560QQ914902QQ914958QQ954034KSA38QQ872561QQ914903QQ914959QQ954035KSA39QQ872563QQ914905QQ914960QQ954036KSA40QQ872563QQ914905QQ914961QQ954037KSA41-QQ914906QQ914962QQ914961	KSA28	OQ872551	OQ914893	OQ914949	OQ954025
KSA31QQ872554QQ914896QQ914952QQ954028KSA32QQ872555QQ914897QQ914953QQ954029KSA33QQ872556QQ914898QQ914954QQ954030KSA34QQ872557QQ914990QQ914955QQ954031KSA35QQ872558QQ914900QQ914956QQ954032KSA36QQ872559QQ914901QQ914957QQ954033KSA37QQ872560QQ914902QQ914958QQ954034KSA38QQ872561QQ914903QQ914959QQ954035KSA39QQ872562QQ914904QQ914960QQ954036KSA40QQ872563QQ914905QQ914961QQ954037KSA41-QQ914906QQ914962QQ954038	KSA29	OQ872552	OQ914894	OQ914950	OQ954026
KSA32QQ872555QQ914897QQ914953QQ954029KSA33QQ872556QQ914898QQ914954QQ954030KSA34QQ872557QQ914899QQ914955QQ954031KSA35QQ872558QQ914900QQ914956QQ954032KSA36QQ872559QQ914901QQ914957QQ954033KSA37QQ872560QQ914902QQ914958QQ954034KSA38QQ872561QQ914903QQ914959QQ954035KSA39QQ872562QQ914904QQ914960QQ954037KSA40QQ872563QQ914905QQ914961QQ954037KSA41-QQ914966QQ914962QQ954038	KSA30	OQ872553	OQ914895	OQ914951	OQ954027
KSA33OQ872556OQ914898OQ914954OQ954030KSA34OQ872557OQ914899OQ914955OQ954031KSA35OQ872558OQ914900OQ914956OQ954032KSA36OQ872559OQ914901OQ914957OQ954033KSA37OQ872560OQ914902OQ914958OQ954034KSA38OQ872561OQ914903OQ914959OQ954035KSA39OQ872562OQ914904OQ914960OQ954036KSA40OQ872563OQ914905OQ914961OQ954037KSA41-OQ914906OQ914962OQ954038	KSA31	OQ872554	OQ914896	OQ914952	OQ954028
KSA34OQ872557OQ914899OQ914955OQ954031KSA35OQ872558OQ914900OQ914956OQ954032KSA36OQ872559OQ914901OQ914957OQ954033KSA37OQ872560OQ914902OQ914958OQ954034KSA38OQ872561OQ914903OQ914959OQ954035KSA39OQ872562OQ914904OQ914960OQ954036KSA40OQ872563OQ914905OQ914961OQ954037KSA41-OQ914906OQ914962OQ954038	KSA32	OQ872555	OQ914897	OQ914953	OQ954029
KSA35OQ872558OQ914900OQ914956OQ954032KSA36OQ872559OQ914901OQ914957OQ954033KSA37OQ872560OQ914902OQ914958OQ954034KSA38OQ872561OQ914903OQ914959OQ954035KSA39OQ872562OQ914904OQ914960OQ954036KSA40OQ872563OQ914905OQ914961OQ954037KSA41-OQ914906OQ914962OQ954038	KSA33	OQ872556	OQ914898	OQ914954	OQ954030
KSA36OQ872559OQ914901OQ914957OQ954033KSA37OQ872560OQ914902OQ914958OQ954034KSA38OQ872561OQ914903OQ914959OQ954035KSA39OQ872562OQ914904OQ914960OQ954036KSA40OQ872563OQ914905OQ914961OQ954037KSA41-OQ914906OQ914962OQ954038	KSA34	OQ872557	OQ914899	OQ914955	OQ954031
KSA37OQ872560OQ914902OQ914958OQ954034KSA38OQ872561OQ914903OQ914959OQ954035KSA39OQ872562OQ914904OQ914960OQ954036KSA40OQ872563OQ914905OQ914961OQ954037KSA41-OQ914906OQ914962OQ954038	KSA35	OQ872558	OQ914900	OQ914956	OQ954032
KSA38OQ872561OQ914903OQ914959OQ954035KSA39OQ872562OQ914904OQ914960OQ954036KSA40OQ872563OQ914905OQ914961OQ954037KSA41-OQ914906OQ914962OQ954038	KSA36	OQ872559	OQ914901	OQ914957	OQ954033
KSA390Q8725620Q9149040Q9149600Q954036KSA400Q8725630Q9149050Q9149610Q954037KSA41-0Q9149060Q9149620Q954038		OQ872560	OQ914902		OQ954034
KSA40OQ872563OQ914905OQ914961OQ954037KSA41-OQ914906OQ914962OQ954038		OQ872561	OQ914903		OQ954035
KSA41 – OQ914906 OQ914962 OQ954038		OQ872562	OQ914904	OQ914960	OQ954036
		OQ872563	OQ914905		OQ954037
KSA42 – OQ914907 OQ914963 OQ954039		-	OQ914906	OQ914962	OQ954038
	KSA42	-	OQ914907	OQ914963	OQ954039

(continued on next page)

Table 3 (continued)

Genotype ID	atpB-rbcl	trnL-trnF	trnT-trnL	trnL
KSA43	_	OQ914908	OQ914964	OQ954040
KSA44	OQ852764	OQ914909	OQ914965	OQ954041
KSA45R	OQ852765	OQ914910	OQ914966	OQ954042
KSA46	OQ852766	OQ914911	OQ914967	OQ954043
KSA47	OQ852767	OQ914912	OQ914968	OQ954044
KSA48	OQ852768	OQ914913	OQ914969	OQ954045
KSA49	OQ852769	OQ914914	OQ914970	OQ954046
KSA50	OQ852770	OQ914915	OQ914971	OQ954047
KSA51R	OQ852771	OQ914916	OQ914972	OQ954048
KSA52	OQ852772	OQ914917	OQ914973	OQ954049
KSA59	OQ852773	OQ914918	OQ914974	OQ954050
KSA60	OQ852774	OQ914919	OQ914975	OQ954051
KSA61	OQ852775	OQ914920	OQ914976	OQ954052
KSA62	OQ852776	OQ914921	OQ914977	OQ954053
KSA63	OQ852777	OQ914922	OQ914978	OQ954054

Notes.

KSA2; KSA41; KSA42; KSA43 were not identified in the database for atpB-rbcl barcode.

 Table 4
 Summary of nucleotide sites, variable polymorphic sites, number of segregating sites, haploid diversity, nucleotide diversity, and average number of nucleotide difference.

Barcode name	Individual	NNS	VPS	NSS	NH	ND	ANND
barcoue name	maiviauai	INING	VP3	1135	NП	ND	AMIND
atpB-rbcl	56	1,139	341	341	17	0.54	185.54
trnL	55	551	237	237	31	0.056	18.93
trnL-trnF	56	1,055	154	154	17	0.046	25.23
trnT-trnL	56	988	421	421	50	0.051	40.50
atpB-rbcl+trnL+trnL-trnF+trnT-trnL	223	4,114	651	651	37	0.11	295

Notes.

NNS, Number of nucleotide sites; VPS, variable polymorphic sites; NSS, number of segregating sites; NH, number of haplotypes; ND, Nucleotide diversity; ANND, average number of nucleotide difference.

from Al-Baha. Subgroup IVd contained 11 accessions, eight from the Jazan region, two from Assir and one from Al-Baha.

DISCUSSION

The genetic diversity present in any crop wild or primitive relatives plays a crucial role in the effectiveness of crop improvement programs. These wild or unknown genotypes exist in diverse habitats, many of which are currently facing significant threats due to habitat degradation and climate change (*Davis et al., 2019*). Therefore, developing molecular means like the genetic barcodes used to identify and validate the coffee varieties can help mitigate the problem.

In Saudi Arabia and Yemen, *C. arabica* has been cultivated for at least four centuries on the terraced slopes and narrow valleys of the western mountains at altitudes ranging mostly from 1,200 to 2,000 m above sea level (a.s.l.) (*Al-Zaidi et al., 2016; Al-Asmari, Zeid & Al-Attar, 2020*).

	atpb-rbcl					TrnL-TrnF						TrnL					TrnT-TrnL					
notypes	T(U)	С	A	G	Total	T(U)	с	A	G	Total	T(U)	с	A	G	Total	T(U)	с	A	G			
AIR	36.36	16.01	30.48	17.15	968	32.94	20.38	32.46	14.22	422	26.9	15.7	37.9	19.6	562	39.48	13.49	33.79	13.24			
A2R						33.25	19.21	33.50	14.04	406	28.5	15.5	35.8	20.2	1017	39.58	14.02	33.75	12.66			
A3R	35.60	15.89	31.48	17.03	969	33.25	19.76	32.53	14.46	415	27.3	15.5	38.0	19.3	561	39.14	13.83	34.20	12.84			
A4R	35.62	15.86	31.12	17.40	977	33.74	19.56	32.03	14.67	409	26.9	15.6	38.0	19.5	558	36.78	14.23	33.72	15.28			
A5R	35.34	15.89	31.57	17.21	982	33.58	20.34	31.86	14.22	408	27.6	15.7	37.7	19.0	562	37.93	14.81	33.60	13.67			
A6R	34.38	15.57	31.90	18.15	1047	33.66	19.85	32.20	14.29	413	27.9	16.1	36.9	19.1	559	39.63	13.46	34.69	12.22			
A7R	34.34	16.49	31.90	17.27	1025	32.94	19.81	32.94	14.32	419	26.4	16.3	38.0	19.3	569	39.15	13.66	34.88	12.32			
A8R	35.20	16.02	30.92	17.86	980	33.33	20.29	31.88	14.49	414	26.4	15.5	38.4	19.7	549	38.00	13.65	34.47	13.88			
A9R	35.79	15.79	30.97	17.44	975	27.97	17.72	34.27	20.05	429	26.4	15.6	38.3	19.6	556	38.63	13.92	33.18	14.27			
A10R	35.35	16.14	31.14	17.37	973	30.37	22.73	32.64	14.26	484	26.3	15.6	38.1	20.0	551	38.31	14.24	32.54	14.92			
A11R	31.89	17.34	35.36	15.41	1038	32.39	22.98	29.76	14.88	457	25.9	16.5	37.3	20.3	557	36.42	13.22	31.97	18.39			
A12R	32.69	16.04	36.33	14.93	991	34.00	18.60	32.00	15.40	500	27.0	15.7	38.0	19.3	548	39.53	13.84	33.54	13.09			
A13R	33.13	16.36	35.60	14.92	972	33.25	20.15	31.80	14.81	412	26.7	16.1	37.5	19.7	554	40.08	13.94	34.17	11.81			
A15R	32.80	16.10	36.22	14.89	994	33.66	20.34	31.72	14.29	413	27.0	15.4	37.9	19.7	544	39.85	14.25	33.92	11.98			
A16R	33.13	16.26	35.38	15.24	978	32.89	20.00	32.00	15.11	450	26.7	16.4	37.5	19.4	566	39.43	14.18	33.58	12.81			
A17R	32.66	16.13	36.19	15.02	992	33.98	19.28	32.05	14.70	415	26.8	15.5	37.6	20.1	548	39.87	13.96	33.71	12.45			
A18R	32.49	16.05	35.81	15.66	1022	33.09	20.19	31.63	15.09	411	26.9	15.8	37.7	19.6	551	40.30	14.23	33.88	11.59			
A19R	32.79	15.94	36.14	15.13	985	31.80	19.80	32.00	16.40	500	26.8	15.6	37.9	19.7	557	39.53	14.00	34.20	12.27			
A20	32.40	15.90	36.40	15.30	1000	33.41	19.95	31.73	14.90	416	26.1	15.4	38.3	20.1	566	38.99	13.74	33.79	13.49			
A21	33.16	15.76	36.23	14.84	977	30.93	19.77	34.19	15.12	430	26.1	15.3	38.2	20.4	555	39.88	14.00	33.50	12.63			
A22	32.99	16.55	35.65	14.81	979	32.49	19.22	33.18	15.10	437	26.6	15.0	38.4	20.0	515	39.88	14.00	33.75	12.38			
A23	33.07	15.95	35.80	15.18	1028	32.85	20.05	31.64	15.46	414	27.1	15.4	37.9	19.6	565	39.88	14.00	33.38	12.75			
A24	32.40	16.15	35.95	15.50	929	33.50	20.39	31.55	14.56	412	26.4	14.9	38.2	20.5	523	39.48	13.82	33.62	13.08			
A25	32.97	15.55	36.22	15.26	1016	28.67	14.00	34.89	22.44	450	26.5	16.6	37.0	19.9	548	39.88	14.00	33.63	12.50			
A26	32.90	15.33	36.45	15.33	1070	34.12	19.43	31.75	14.69	422	26.6	15.8	37.9	19.7	549	40.03	13.80	33.75	12.42			
A27	31.87	15.99	36.05	16.09	957	33.65	19.47	32.21	14.66	416	27.2	15.7	37.4	19.7	548	39.50	14.13	33.75	12.63			
A28	32.47	16.80	35.57	15.15	970	32.44	19.11	32.00	16.44	450	26.2	16.3	36.4	21.1	583	39.63	14.00	33.75	12.63			
A29	35.42	25.33	21.87	17.38	1070	33.57	19.08	31.40	15.94	414	25.7	16.8	36.0	21.5	600	39.15	14.09	33.29	13.47			
A30	32.48	16.45	36.16	14.91	979	32.77	19.76	32.77	14.70	415	26.0	15.6	38.3	20.0	569	39.60	13.70	33.62	13.08			
A31	33.23	16.16	35.69	14.93	978	32.53	20.24	32.53	14.70	415	25.1	16.0	39.2	19.7	589	33.37	11.21	40.97	14.45			
A32	32.72	16.62	35.49	15.18	975	33.41	20.58	32.20	13.80	413	27.1	15.9	37.7	19.3	554	39.88	13.88	33.63	12.63			

 Table 5
 Nucleotide base substitution matrix of four barcoding markers in Arabica coffe

(continued on next page)

Table 5 (continued)

atpb-rbcl					TrnL-TrnF							TrnL					TrnT-TrnL				
enotypes	T(U)	с	A	G	Total	T(U)	С	A	G	Total	T(U)	С	А	G	Total	T(U)	с	А	G	Tota	
(SA34	32.28	16.65	36.06	15.02	979	33.50	19.90	31.80	14.81	412	26.0	16.2	38.4	19.4	573	38.64	13.73	34.26	13.37	823	
SA35	32.67	16.04	36.16	15.14	1004	32.60	19.95	32.85	14.60	411	26.7	15.7	38.1	19.5	554	39.29	13.92	33.62	13.18	812	
SA36	33.54	15.90	35.28	15.28	975	31.66	19.36	33.94	15.03	439	26.5	16.0	37.9	19.6	551	39.41	13.63	34.32	12.64	807	
SA37	32.99	15.73	35.96	15.32	979	32.50	19.09	32.73	15.68	440	27.1	15.5	38.7	18.8	595	39.70	13.52	34.37	12.41	806	
SA38	32.96	15.61	36.14	15.30	974	33.49	20.48	31.33	14.70	415	27.1	15.9	37.7	19.3	584	40.08	14.03	34.13	11.76	791	
SA39	33.03	15.64	36.40	14.93	978	32.94	20.56	31.31	15.19	428	27.3	15.7	37.8	19.3	535	39.41	13.88	33.46	13.26	805	
SA40	32.39	16.47	35.21	15.93	923	33.01	19.86	32.54	14.59	418	26.4	15.7	38.1	19.9	554	39.18	13.84	33.37	13.60	809	
SA41						33.49	19.95	32.80	13.76	436	26.6	14.9	38.2	20.3	523	39.67	14.11	33.75	12.47	794	
SA42						34.49	20.14	30.79	14.58	432	26.4	15.5	37.3	20.8	576	40.05	14.30	33.58	12.06	80-	
SA43						33.82	20.19	31.63	14.36	411	27.0	14.7	37.9	20.4	530	39.88	13.75	33.75	12.63	80	
SA44	31.89	16.76	35.57	15.78	925	31.65	19.50	31.19	17.66	436	26.8	15.9	37.7	19.6	560	39.30	13.81	33.21	13.68	80	
SA45R	32.86	15.84	35.68	15.62	922	32.06	19.38	33.01	15.55	418	27.2	15.7	37.2	20.0	541	39.60	13.82	33.50	13.08	80	
SA46	32.86	16.43	35.61	15.10	980	32.64	19.44	32.18	15.74	432	26.7	15.8	37.3	20.2	544	39.35	14.16	33.58	12.91	79	
SA47	33.10	15.68	35.95	15.27	982	33.17	19.61	32.93	14.29	413	26.1	16.0	38.2	19.7	563	39.63	14.13	33.50	12.75	80	
SA48	32.39	16.30	35.65	15.65	920	33.63	19.41	32.05	14.90	443	28.6	21.6	32.4	17.4	574	39.63	14.16	33.66	12.55	80	
SA49	32.65	16.05	35.79	15.51	922	32.61	20.86	31.89	14.63	417	26.9	17.7	35.5	19.9	583	39.30	13.93	33.58	13.18	80	
SA50	32.68	16.02	35.82	15.48	924	32.27	21.59	30.00	16.14	440	26.9	15.4	37.9	19.8	551	39.78	13.97	33.29	12.97	80	
SA51R	32.39	15.71	36.51	15.38	923	33.58	19.95	32.12	14.36	411	26.5	16.5	37.9	19.1	570	39.46	13.93	33.91	12.70	81	
SA52	32.68	16.07	35.40	15.85	921	32.85	20.68	31.39	15.09	411	26.7	15.7	37.1	20.5	536	38.75	14.02	33.58	13.65	81	
SA59	32.36	16.13	35.71	15.80	924	33.50	19.75	31.50	15.25	400	26.3	15.6	38.5	19.6	556	38.27	13.49	33.54	14.70	82	
5A60	32.50	16.36	35.75	15.38	923	33.64	20.23	30.45	15.68	440	26.7	16.2	37.6	19.6	551	38.56	14.20	33.78	13.46	81	
5A61	32.29	15.87	35.64	16.20	926	32.70	20.14	32.46	14.69	422	25.9	16.6	37.0	20.5	595	39.23	14.20	33.50	13.08	80	
A62	32.86	16.02	36.22	14.90	980	32.00	18.00	35.50	14.50	400	27.4	15.6	36.9	20.0	544	39.70	13.86	33.58	12.86	80	
5A63	33.09	15.93	35.96	15.02	979	32.81	19.82	32.21	15.16	426	26.4	15.9	37.7	19.9	552	39.57	13.43	34.05	12.95	83	
/g.	33.15	16.60	34.49	15.76	963.8	32.83	19.81	32.21	15.13	425.82	26.7	15.9	37.6	19.8	566	39.18	13.88	33.84	13.10	81	

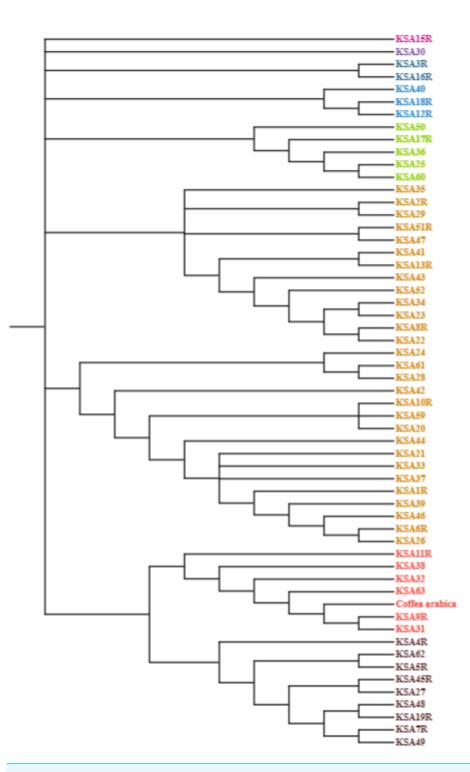


Figure 1 Evolutionary analysis by maximum likelihood method using four barcodes with 1,000 bootstraps constructed in MEGA 10.0 using the concatenated sequence of atpB-rbcl, trnL, trnT-trnL and trnL-trnF.

Full-size DOI: 10.7717/peerj.16486/fig-1

Food and beverages adulteration is another widespread malpractice of concern to both traders and consumers. In particular, coffee adulteration aims to mitigate the effects of high prices, product shortages, or reduce production expenses (*Flores-Valdez et al., 2020*). Therefore, there is a real need to develop methods and models for detecting and quantifying coffee adulterants commonly used in coffee.

It is estimated that approximately 60% of wild coffee species are at risk of extinction worldwide. Similarly, underutilized old varieties are disappearing from the orchards. This it underscores the pressing importance of preserving these species through both *in situ* and *ex situ* measures to safeguard their genetic diversity for future use.

While morphological descriptors are commonly used to characterize different coffee species, molecular markers are considered more efficient in distinguishing closely related species and cultivars (Mishra, Jingade & Huded, 2022). They are also more precise and reliable than morphological and biochemical markers (Hao et al., 2009). Furthermore, several studies have demonstrated that specific regions of the chloroplast genome can serve as DNA barcodes for a wide variety of plant species (Skuza et al., 2019; Meena et al., 2020). Selection of suitable plastid genomes offers sufficient genetic information for distinguishing between genotypes. Additionally, when choosing suitable DNA barcoding loci, the variable regions should be given a primary consideration (Mahadani & Ghosh, 2014). Therefore, the objective of this study was to identify fifty-six local Arabica coffee accessions in the southwestern Saudi Arabia and to evaluate the evolutionary and phylogenetic relationships among them by utilizing four DNA barcoding markers (atpB-rbcl, trnL-trnF, trnL, and trnT-trnL). This research aimed to investigate the potential of four DNA barcode loci(specifically, atpB-rbcL, TrnL, TrnL-trnF, and trnL-trnT from the chloroplast region) for the identification and provision of phylogenetic information on local Arabica coffee genotypes. All four regions were successfully amplified using universal primers, yielding clear and reliable results. However, earlier studies have indicated that there were cases of partial amplification from the respective barcode loci's using universal barcode primers (Hamon et al., 2017; Wu et al., 2021). Similarly, other studies have shown 100% success rate for PCR amplification and sequencing for mangrove (Guyeux et al., 2019), duckweeds (Meena et al., 2020), and Coffea (Taberlet et al., 1991). The PCR amplification and sequencing of rbcL fragments in core barcodes of mangrove DNA samples achieved a 100% success rate. Our results demonstrated higher universality and success rates compared to Kress et al. (2009) and were consistent with Pei et al. (2015), where success rates ranged from 90% to 100% in forest plant communities within tropical and subtropical regions.

Similarly, other studies (*Vickers, 2017*; *Wu et al., 2019b*) have indicated that additional barcode primers, including matK, rbcL, and trnL-trnF, have demonstrated successful amplification within coffee species. However, no significant differences were recorded in the rate of coffee identification between rbcL + trnH-psbA and other combinations of random fragments, which aligns with the findings of the present study using all four barcodes for genotype identification.

Despite the abundance of available data on DNA barcoding of angiosperms, there is currently limited information regarding specific barcodes that can guarantee an accurate species identification in all cases (*Weigand et al., 2019*). Often, a barcode that performs

effectively for one group of plants may prove inadequate for another group, especially in the case of recently diverged species (*Li et al., 2015*). The current study successfully identified all fifty-six accessions as *Coffea arabica*, except KSA2, KSA41, KSA42 and KSA43 for atpB-rbcl, showcasing the effectiveness of the universal DNA barcode primers. Likewise, multiple studies have extensively documented the reliability of matK and rbcL, either individually or in combination, as DNA barcodes that can be used with confidence across various plant species (*Carneiro de Melo Moura et al., 2019*). Several reports have recommended the utilization of rbcL as a valuable DNA barcode locus, primarily due to its relatively compact length of 500 bp, high success rate of PCR amplification, and excellent sequencing quality (*Wu et al., 2019a*; *Wu et al., 2019b*; *Hong et al., 2022*). However, other DNA barcodes, such as trnL-trnF and the trnL spacer, have also been suggested as reliable alternative barcodes for identification of species (*Kang, 2021*). The extent of sequence variation among the species or terminals under analysis is a crucial factor in determining the effectiveness of any barcoding locus (*Carneiro de Melo Moura et al., 2019*).

The number of singleton variable sites was found to be higher in trnL, trnL-trnF, and trnL-trnT compared to atpB-rbcl. Similarly, trnL and atpB-rbcl had more parsimony information sites than the rbcL barcode spacer region. These findings are consistent with a previous study by *Mishra, Jingade & Huded* (2022), which reported that trnL-trnF and matK barcodes exhibited greater variability than rbcl in Indian *C. arabica* genotypes. The present study also found similar results for PIS among the four barcodes analyzed. Similarly, previous research has indicated that trnL-trnF and matK loci exhibit greater sequence polymorphism than rbcL, as suggested by *Kimura* (1980) and *Kumar et al.* (2018). The current study's results support these findings. Hence, the present study found that all four barcode sequences, which were evaluated as candidate barcode markers, met the DNA barcoding criteria outlined by *Li et al.* (2015). Specifically, these markers exhibited sufficient sequence variability to enable effective discrimination among the Saudi coffee genotypes.

The phylogenetic analysis grouped the Saudi C. arabica genotypes into four groups with a clear influence of geographic origin suggesting the genotypes of each region share one or more common ancestor (Fig. 1). For instance, accessions KSA11R, KSA41, KSA42 and KSA43 from the isolated Rayda district of Assir region were grouped in clusters I and II. The accessions representing very old trees (KSA36, KSA44, KSA46, KSA47) segregated in the middle of the phylogenic tree in groups III and IVa. Similar results were reported by Mishra, Jingade & Huded (2022) where the grouping using single and multi-locus barcode primers was strongly influenced by the geographic origin of the genotypes. A molecular analysis of coffee genotypes from Saudi Arabia using SRAP markers grouped them into five distinct groups based mostly on their geographic origin (Al-Ghamedi et al., 2023). The accessions collected from Jazan region primarily clustered in groups II and IV, whereas those from Al-Baha and Assir regions formed a different group. Similar surveys of genetic diversity among coffee populations in northern Yemen (Montagnon et al., 2021) and southern Yemen (Eskes, 1989) found that each district (valley) have its own cultivars. Another study using genotyping by sequencing (GBS) showed that genetic closeness correlated with geographic proximity (Hamon et al., 2017). The current study provides further evidence

to support this finding. It was also suggested that chloroplast sequences provide more insights into species evolution because they are more conserved (*Guyeux et al., 2019*). For future studies on this economically significant crop, we recommend using sequencing and genome-wide association studies (GWAS) to discover additional polymorphic markers associated with important agro-morphological traits. These markers would be beneficial for a range of investigations in *Coffea*. Ultimately, the polymorphic markers established and confirmed in this research hold potential as a valuable genomic asset for molecular breeding, genotype identification, and biogeography studies on Arabica coffee.

CONCLUSION

To summarize, this study utilized a DNA barcoding approach to investigate and identify the molecular relationships among fifty-six Arabica coffee accessions collected from the southern region of Saudi Arabia. The three-barcode regions, namely trnT-trnL, trnL-trnF, and trnL, exhibited a higher sequence variability compared to the atpB-rbcl barcode region and effectively differentiated the local coffee genotypes by the presence of unique variable sites (singletons and parsimony). Moreover, the combination of DNA sequences from these barcode loci analyzed using the maximum likelihood phylogenetic method grouped similar coffee genotypes together, providing improved resolution and a better understanding of the population structure. These findings will contribute to future research on the characterization and conservation of Arabica coffee germplasm using DNA barcoding markers.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia has funded this research work through project number 1.092. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors: The Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia.

Competing Interests

The authors declare there are no competing interests.

Author Contributions

- Habib Khemira conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the article, funding search, and approved the final draft.
- Mosbah Mahdhi conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the article, funding search, and approved the final draft.

- Muhammad Afzal analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the article, and approved the final draft.
- Mohammed D.Y. Oteef conceived and designed the experiments, performed the experiments, prepared figures and/or tables, authored or reviewed drafts of the article, funding search, and approved the final draft.
- Taieb Tounekti conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the article, funding search, and approved the final draft.
- Zarraq AL-Faifi conceived and designed the experiments, performed the experiments, analyzed the data, authored or reviewed drafts of the article, funding search, and approved the final draft.
- Wail Alsolami conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the article, funding search, and approved the final draft.

DNA Deposition

The following information was supplied regarding the deposition of DNA sequences: Sequences are available at NCBI: OQ953999–OQ954054

Data Availability

The following information was supplied regarding data availability: The data are available in the Supplemental File.

Supplemental Information

Supplemental information for this article can be found online at http://dx.doi.org/10.7717/peerj.16486#supplemental-information.

REFERENCES

- **Al-Asmari KM, Zeid IMA, Al-Attar AM. 2020.** Coffee arabica in Saudi Arabia: an overview. *International Journal of Pharmaceutical and Phytopharmacological Research* **10**:71–78.
- Al-Ghamedi K, Alaraidh I, Afzal M, Mahdhi M, Al-Faifi Z, Oteef MD, Tounekti T, Alghamdi SS, Khemira H. 2023. Assessment of genetic diversity of local coffee populations in Southwestern Saudi Arabia using SRAP markers. *Agronomy* 13(2):302 DOI 10.3390/agronomy13020302.
- **Al-Zaidi AA, Baig MB, Shalaby MY, Hazber A. 2016.** Level of knowledge and its application by coffee farmers in the Udeen area, Governorate of Ibb—Republic of Yemen. *The Journal of Animal and Plant Sciences* **26**:1797–1804.
- Barakat A, Bagniewska-Zadworna A, Frost CJ, Carlson JE. 2010. Phylogeny and expression profiling of CAD and CAD-like genes in hybrid *Populus (P. deltoides × P. nigra)*: evidence from herbivore damage for subfunctionalization and functional divergence. *BMC Plant Biology* 10:100 DOI 10.1186/1471-2229-10-100.

- **Chen S, Ao L, Prodhan ZH, Zhao T, Li J, Li S, Zou Y. 2023.** Strict conservation of the ITS regions of the ribosomal RNA genes in Northern snakehead (Channa argus). *Research Square* DOI 10.21203/rs.3.rs-3241219/v1.
- **Choudhary A, Gupta N, Hameed F, Choton S. 2020.** An overview of food adulteration: concept, sources, impact, challenges and detection. *International Journal of Chemical Studies* **8**:2564–2573.
- **Coissac E, Riaz T, Puillandre N. 2012.** Bioinformatic challenges for DNA metabarcoding of plants and animals. *Molecular Ecology* **21**:1834–1847 DOI 10.1111/j.1365-294X.2012.05550.x.
- Cros J, Combes M-C, Trouslot P, Anthony F, Hamon S, Charrier A, Lashermes P. 1998. Phylogenetic analysis of chloroplast DNA variation in *Coffea* L. *Molecular Phylogenetics and Evolution* 9:109–117 DOI 10.1006/mpev.1997.0453.
- Davis AP, Chadburn H, Moat J, O'Sullivan R, Hargreaves S, Nic Lughadha E. 2019. High extinction risk for wild coffee species and implications for coffee sector sustainability. *Science Advances* 5:eaav3473 DOI 10.1126/sciadv.aav3473.
- **De Pauw E. 2002.** *An agroecological exploration of the Arabian Peninsula*. Beirut: International Center for Agricultural Research in the Dry Areas (ICARDA).
- **Eskes A. 1989.** Identification, description and collection of coffee types in PDR Yemen. Technical report of mission undertaken from 15 April to 7 1989. *Available at https:* //agritrop.cirad.fr/359247/1/ID359247.pdf.
- Flores-Valdez M, Meza-Márquez OG, Osorio-Revilla G, Gallardo-Velázquez T.
 2020. Identification and quantification of adulterants in coffee (*Coffea arabica* L.) using FT-MIR spectroscopy coupled with chemometrics. *Foods* 9:851
 DOI 10.3390/foods9070851.
- **Ginter A, Razafimandimbison SG, Bremer B. 2015.** Phylogenetic affinities of Myrioneuron and Cyanoneuron, generic limits of the tribe Argostemmateae and description of a new Asian tribe, Cyanoneuroneae (Rubiaceae). *Taxon* **64**:286–298 DOI 10.12705/642.2.
- Guyeux C, Charr J-C, Tran HT, Furtado A, Henry RJ, Crouzillat D, Guyot R, Hamon P. 2019. Evaluation of chloroplast genome annotation tools and application to analysis of the evolution of coffee species. *PLOS ONE* 14:e0216347 DOI 10.1371/journal.pone.0216347.
- Hamon P, Grover CE, Davis AP, Rakotomalala J-J, Raharimalala NE, Albert VA, Sreenath HL, Stoffelen P, Mitchell SE, Couturon E. 2017. Genotyping-bysequencing provides the first well-resolved phylogeny for coffee (*Coffea*) and insights into the evolution of caffeine content in its species: GBS coffee phylogeny and the evolution of caffeine content. *Molecular Phylogenetics and Evolution* 109:351–361 DOI 10.1016/j.ympev.2017.02.009.
- Hao DC, Huang BL, Chen SL, Mu J. 2009. Evolution of the chloroplast trnL-trnF region in the gymnosperm lineages *Taxaceae* and *Cephalotaxaceae*. *Biochemical Genetics* 47:351–369 DOI 10.1007/s10528-009-9233-7.
- Herrera JC, Lambot C. 2017. Chapter 1—The coffee tree—genetic diversity and origin. In: Folmer B, ed. *The craft and science of coffee*. London: Academic Press, 1–16.

- Hong Z, He W, Liu X, Tembrock LR, Wu Z, Xu D, Liao X. 2022. Comparative analyses of 35 complete chloroplast genomes from the genus Dalbergia (*Fabaceae*) and the identification of DNA barcodes for tracking illegal logging and counterfeit rosewood. *Forests* 13:626 DOI 10.3390/f13040626.
- Hosein FN, Austin N, Maharaj S, Johnson W, Rostant L, Ramdass AC, Rampersad SN.
 2017. Utility of DNA barcoding to identify rare endemic vascular plant species in Trinidad. *Ecology and Evolution* 7:7311–7333 DOI 10.1002/ece3.3220.
- Jingade P, Huded AK, Kosaraju B, Mishra MK. 2019. Diversity genotyping of Indian coffee (*Coffea arabica* L.) germplasm accessions by using SRAP markers. *Journal of Crop Improvement* 33:327–345 DOI 10.1080/15427528.2019.1592050.
- Kårehed J, Groeninckx I, Dessein S, Motley TJ, Bremer B. 2008. The phylogenetic utility of chloroplast and nuclear DNA markers and the phylogeny of the Rubiaceae tribe Spermacoceae. *Molecular Phylogenetics and Evolution* **49**:843–866 DOI 10.1016/j.ympev.2008.09.025.
- **Kang Y. 2021.** Molecular identification of Aquilaria species with distribution records in China using DNA barcode technology. *Mitochondrial DNA Part B* **6**:1525–1535 DOI 10.1080/23802359.2021.1914210.
- Khemira H, Mahdhi M, Afzal M, Oteef M, Tounekti T, Al-Faifi Z, Alsolami W. 2023. Assessment of genetic diversity and phylogenetic relationship of local coffee populations in Southwestern Saudi Arabia using DNA barcoding. 2023061304Preprints DOI 10.20944/preprints202306.1304.v1.
- Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. *Journal of Molecular Evolution* 16:111–120 DOI 10.1007/BF01731581.
- Kress WJ, Erickson DL, Jones FA, Swenson NG, Perez R, Sanjur O, Bermingham E. 2009. Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. *Proceedings of the National Academy of Sciences of the United States of America* 106:18621–18626.
- Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. *Molecular Biology and Evolution* 35(6):1547–1549 DOI 10.1093/molbev/msy096.
- Lashermes P, Combes M-C, Trouslot P, Charrier A. 1997. Phylogenetic relationships of coffee-tree species (*Coffea* L.) as inferred from ITS sequences of nuclear ribosomal DNA. *Theoretical and Applied Genetics* 94:947–955 DOI 10.1007/s001220050500.
- Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, Chen S. 2015. Plant DNA barcoding: from gene to genome. *Biological Reviews* **90**:157–166 DOI 10.1111/brv.12104.
- Li W, Zhang C, Guo X, Liu Q, Wang K. 2019. Complete chloroplast genome of *Camellia japonica* genome structures, comparative and phylogenetic analysis. *PLOS ONE* 14:e0216645 DOI 10.1371/journal.pone.0216645.
- Mahadani P, Ghosh SK. 2014. Utility of indels for species-level identification of a biologically complex plant group: a study with intergenic spacer in Citrus. *Molecular Biology Reports* 41:7217–7222 DOI 10.1007/s11033-014-3606-7.

- Mashaly A, Alajmi R, Mustafa AE-Z, Rady A, Alkhedir H. 2017. Species abundance and identification of forensically important flies of Saudi Arabia by DNA barcoding. *Journal of Medical Entomology* 54:837–843 DOI 10.1093/jme/tjx049.
- Meena RK, Negi N, Uniyal N, Shamoon A, Bhandari MS, Pandey S, Negi RK, Sharma R, Ginwal HS. 2020. Chloroplast-based DNA barcode analysis indicates high discriminatory potential of matK locus in Himalayan temperate bamboos. *3 Biotech* 10:1–13 DOI 10.3390/biotech10010001.
- Carneiro de Melo Moura C, Brambach F, Jair Hernandez Bado K, Krutovsky KV, Kreft H, Tjitrosoedirdjo SS, Siregar IZ, Gailing O. 2019. Integrating DNA barcoding and traditional taxonomy for the identification of dipterocarps in remnant lowland forests of Sumatra. *Plants* 8:461 DOI 10.3390/plants8110461.
- Migicovsky Z, Warschefsky E, Klein LL, Miller AJ. 2019. Using living germplasm collections to characterize, improve, and conserve woody perennials. *Crop Science* **59**:2365–2380 DOI 10.2135/cropsci2019.05.0353.
- Mishra MK. 2019. Genetic resources and breeding of coffee (Coffea spp.). In: Al-Khayri J, Jain S, Johnson D, eds. *Advances in plant breeding strategies: nut and beverage crops*. Cham: Springer Nature Switzerland AG, 475–515 DOI 10.1007/978-3-030-23112-5_12.
- Mishra M, Jingade P, Huded AKC. 2022. DNA barcoding analysis and phylogenetic relationships of Indian wild coffee species. *Turkish Journal of Botany* 46:109–122 DOI 10.55730/1300-008X.2675.
- Montagnon C, Mahyoub A, Solano W, Sheibani F. 2021. Unveiling a unique genetic diversity of cultivated Coffea arabica L. in its main domestication center: Yemen. *Genetic Resources and Crop Evolution* **68**:2411–2422 DOI 10.1007/s10722-021-01139-y.
- Montagnon C, Sheibani F, Benti T, Daniel D, Bote AD. 2022. Deciphering early movements and domestication of *Coffea arabica* through a comprehensive genetic diversity study covering Ethiopia and Yemen. *Agronomy* 12:3203 DOI 10.3390/agronomy12123203.
- Mussatto SI, Machado EM, Martins S, Teixeira JA. 2011. Production, composition, and application of coffee and its industrial residues. *Food and Bioprocess Technology* 4:661–672 DOI 10.1007/s11947-011-0565-z.
- Nguyen GN, Norton SL. 2020. Genebank phenomics: a strategic approach to enhance value and utilization of crop germplasm. *Plants* **9**:817.
- **Oliveira LS, Franca AS. 2015.** Chapter 31—An Overview of the Potential Uses for Coffee Husks. In: Preedy VR, ed. *Coffee in health and disease prevention*. San Diego: Academic Press, 283–291.
- Omelchenko DO, Krinitsina AA, Kasianov AS, Speranskaya AS, Chesnokova OV, Polevova SV, Severova EE. 2022. Assessment of ITS1, ITS2, 5'-ETS, and trnL-F DNA barcodes for metabarcoding of Poaceae pollen. *Diversity* 14:191 DOI 10.3390/d14030191.
- Pei N, Erickson DL, Chen B, Ge X, Mi X, Swenson NG, Zhang J-L, Jones FA, Huang C-L, Ye W. 2015. Closely-related taxa influence woody species discrimination via DNA

barcoding: evidence from global forest dynamics plots. *Scientific Reports* **5**:15127 DOI 10.1038/srep15127.

Pettengill JB, Neel MC. 2010. An evaluation of candidate plant DNA barcodes and assignment methods in diagnosing 29 species in the genus *Agalinis* (Orobanchaceae). *American Journal of Botany* 97:1391–1406 DOI 10.3732/ajb.0900176.

Rabaan AA, Al-Ahmed SH, Haque S, Sah R, Tiwari R, Malik YS, Dhama K, Yatoo MI, Bonilla-Aldana DK, Rodriguez-Morales AJ. 2020. SARS-CoV-2, SARS-CoV, and MERS-COV: a comparative overview. *Infezioni in Medicina* 28(2):174–184.

- Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins S, Sánchez-Gracia A. 2019. DnaSP version 6 for 32-bit and 64-bit environments [Computer software]. Universitat de Barcelona.
- **Skuza L, SzuĆKo I, Filip E, Adamczyk A. 2019.** DNA barcoding in selected species and subspecies of Rye (*Secale*) using three chloroplast loci (matK, rbcL, trnH-psbA). *Notulae Botanicae Horti Agrobotanici Cluj-Napoca* **47**:54–62.
- Taberlet P, Gielly L, Pautou G, Bouvet J. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. *Plant Molecular Biology* 17:1105–1109 DOI 10.1007/BF00037152.
- **Taylor H, Harris W. 2012.** An emergent science on the brink of irrelevance: a review of the past 8 years of DNA barcoding. *Molecular Ecology Resources* **12**:377–388 DOI 10.1111/j.1755-0998.2012.03119.x.
- **Tesfaye K, Borsch T, Govers K, Bekele E. 2007.** Characterization of *Coffea* chloroplast microsatellites and evidence for the recent divergence of *C. arabica* and *C. eugenioides* chloroplast genomes. *Genome* **50**:1112–1129 DOI 10.1139/G07-088.
- **Tesfaye K, Govers K, Bekele E, Borsch T. 2014.** ISSR fingerprinting of Coffea arabica throughout Ethiopia reveals high variability in wild populations and distinguishes them from landraces. *Plant Systematics and Evolution* **300**:881–897 DOI 10.1007/s00606-013-0927-2.
- Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Research* 22:4673–4680 DOI 10.1093/nar/22.22.4673.
- Tounekti T, Mahdhi M, Al-Turki TA, Khemira H. 2017. Genetic diversity analysis of coffee (*Coffee arabica* L.) germplasm accessions growing in the Southwestern Saudi Arabia using quantitative traits. *Natural Resources* 8:321–336 DOI 10.4236/nr.2017.85020.
- Tounekti T, Mahdhi M, Al-Turki T, Khemira H. 2018. Water relations and photoprotection mechanisms during drought stress in four coffee (*Coffea arabica*) cultivars from southwestern Saudi Arabia. *South African Journal of Botany* 117:17–25 DOI 10.1016/j.sajb.2018.04.022.
- Valentini A, Miquel C, Nawaz MA, Bellemain E, Coissac E, Pompanon F, Gielly L, Cruaud C, Nascetti G, Wincker P. 2009. New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trnL approach. *Molecular Ecology Resources* 9:51–60.

- Vickers NJ. 2017. Animal communication: when I'm calling you, will you answer too? *Current Biology* 27:R713–R715 DOI 10.1016/j.cub.2017.05.064.
- **USDA. 2023.** Coffee: world markets and trade. *Available at https://apps.fas.usda.gov/psdonline/circulars/coffee.pdf* (accessed on 15 September 2023).
- World Coffee Research. 2023. High-yielding, dwarf/compact hybrid tolerant to coffee leaf rust and resistant to coffee berry disease (CBD) released in Kenya. *Available at https://varieties.worldcoffeeresearch.org/varieties/ruiru-11* (accessed on 06 June 2023).
- Weigand H, Beermann AJ, Čiampor F, Costa FO, Csabai Z, Duarte S, Geiger MF, Grabowski M, Rimet F, Rulik B. 2019. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: gap-analysis and recommendations for future work. *Science of the Total Environment* 678:499–524
 DOI 10.1016/j.scitotenv.2019.04.247.
- Wu F, Li M, Liao B, Shi X, Xu Y. 2019b. DNA barcoding analysis and phylogenetic relation of mangroves in Guangdong Province, China. *Forests* 10:56 DOI 10.3390/f10010056.
- Wu L, Wu M, Cui N, Xiang L, Li Y, Li X, Chen S. 2021. Plant super-barcode: a case study on genome-based identification for closely related species of *Fritillaria*. *Chinese Medicine* 16:1–11 DOI 10.1186/s13020-020-00418-7.
- Wu D, Yan J, Shen X, Sun Y, Thulin M, Cai Y, Wik L, Shen Q, Oelrich J, Qian X. 2019a. Profiling surface proteins on individual exosomes using a proximity barcoding assay. *Nature Communications* 10:3854 DOI 10.1038/s41467-019-11486-1.