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ABSTRACT

Aim. To create a prognosis model based on mRNA-based stem index (mRNAsi) for
evaluating the prognostic outcomes of colon adenocarcinoma (COAD).

Background. Generation of heterogeneous COAD cells could be promoted by the
self-renewal and differentiation potential of cancer stem cells (CSCs). Biomarkers
contributing to the development of COAD stem cells remained to be discovered.
Objective. To develop and validate an mRNAsi-based risk model for estimating the
prognostic outcomes of patients suffering from COAD.

Methods. Samples were collected from Rectal Adenocarcinoma (TCGA-READ) Pan-
Cancer Atlas datasets, The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-
COAD), and the GSE87211 dataset. MRNAsi was calculated by one-class logistic
regression (OCLR) algorithm. Under the criterion of correlation greater than 0.4, genes
related to mRNAsi were screened and clustered. Meanwhile, differentially expressed
genes (DEGs) between molecular subtypes were identified to establish a risk model.
According to the median risk score value for immunotherapy and results from immune
cell infiltration and clinicopathological analyses, clusters and patients were divided into
high-RiskScore and low-RiskScore groups. Cell apoptosis and viability were detected
by flow cytometer and Cell Counting Kit-8 (CCK-8) assay, respectively.

Results. A negative correlation between mRNAsi and clinical stages was observed. Three
clusters of patients (C1, C2, and C3) were defined based on a total of 165 survival-
related mRNAsi genes. Specifically, C1 patients had greater immune cell infiltration
and a poorer prognosis. A 5-mRNAsi-gene signature (HEYL, FSTL3, FABP4, ADAMS,
and EBF4) served as a prediction index for COAD prognosis. High-RiskScore patients
had a poorer prognosis and higher level of immune cell infiltration. In addition, the
five genes in the signature all showed a high expression in COAD cells. Knocking down
HEYL promoted COAD cell apoptosis and inhibited viability.

Conclusion. Our mRNAsi risk model could better predict the prognosis of COAD
patients.

Subjects Bioinformatics, Molecular Biology, Gastroenterology and Hepatology, Oncology,
Medical Genetics
Keywords Cancer stem cells, Colon adenocarcinoma, Prognosis, Clusters, RiskScore, Immune
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INTRODUCTION

COAD is a malignant tumor of the digestive tract that mainly derives from the colon
gland epithelial cells and is the most common type of colon cancer (Dienstmann, Salazar
& Tabernero, 2015). According to the World Health Organization (WHO) report in 2018,
there are approximately 1.8 million patients suffering from with colon cancer worldwide,
and COAD has the fifth highest mortality rate (Dube et al., 2019; Hu et al., 2021b). Clinical
symptoms of COAD at early stage are not obvious, but as the cancer develops, positive fecal
octane blood, bloody stool, mucous pus and blood stool, and tenesmus may occur. Patients
with at middle and late stage will experience abdominal pain, intestinal obstruction, anemia
and some other symptoms (Li ¢ Martin, 2016). In clinical practice, patients with COAD
are often diagnosed at advanced stage when surgical outcomes are poor or the opportunity
for radical surgery is lost. Therefore, accurate genetic markers predictive of COAD survival
and prognosis should be developed for clinical diagnosis and treatment of COAD (Ji, Peng
& Wang, 2018).

Cancer stem cells (CSCs) are a group of cells with multidirectional differentiation
and self-renewal potential that maintain tumor heterogeneity and cause tumor growth,
recurrence and metastasis (Li ¢ Li, 2014). At present, CSCs are considered as a major
contributor to the failure of tumor chemoradiotherapy. Therefore, developing targeted
drugs against CSCs and further studying the mechanism of drug resistance, metastasis
and recurrence caused by CSCs is the key to the development of CSC-targeted therapy
(Lietal, 2021). In 1994, Lapidot et al. (1994) first isolated CSCs with immunophenotype
CD34+/CD38 — from acute myeloid leukemia (AML) cells, and they confirmed the self-
renewal ability of CSCs in mice with severe combined immunodeficiency. Integration of
deep learning method and artificial intelligence helps investigate the features of CSCs (Malta
et al., 2018). OCLR can quantify stemness by defining signatures and assess oncogenic
dedifferentiation. MRNAsi could be calculated based on transcriptome and epigenetic
feature sets extracted from untransformed pluripotent stem cells and their differentiated
progeny (Zhang et al., 2020).

In this study, CSC-related indicators were created based on The Cancer Genome Atlas
(TCGA) and the Gene Expression Omnibus (GEO) databases. ConsensusClusterPlus
was used to define mRNAsi-based molecular subtypes. Five mRNAsi-related genes were
discovered for COAD prognostic risk prediction using univariate regression analysis and
least absolute shrinkage and selection operator (LASSO) analyses. Finally, the level of
immune cell infiltration in COAD patients from different risk groups was assessed using
Estimation of STromal and Immune cells in MAlignant Tumour tissues using Expression
data (ESTIMATE) and CIBERSORT algorithms. The 5-mRNAsi-related gene signature
could improve the current prognostic prediction for COAD in clinical practice.

MATERIALS AND METHODS

Raw data
RNA-seq data of 373 COAD cases with clinical information were acquired from the
TCGA-COAD dataset (https:/portal.gdc.cancer.gov/), which was used as the training
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dataset. The TCGA-READ dataset with 146 COAD cases and the GSE87211 dataset with
197 COAD cases were used as independent validation datasets.

Calculation of mRNAsi

MRNAsi describes the similarity between stem cells and tumor cells based on gene
expression data. The mRNAsi ranges from 0 to 1, with a value close to 1 indicating a
less differentiated cells and stronger stem cell properties. In this study, the mRNAsi of
cells from the TCGA-COAD datasets was calculated by OCLR algorithm and the stemness
model of the Progenitor Cell Biology Consortium (PCBC, https:/progenitorcells.org))
(Malta et al., 2018; Wang et al., 2021).

Genes associated with mRNAsi

Under the threshold of |cor|>4 and p < 0.01, Spearman correlation coefficients and p values
were calculated for tumor stemness index of COAD samples and protein-coding genes in
TCGA-COAD. Next, survival-associated mRNAsi genes with p < 0.01 were filtered using
univariate Cox regression analysis by the Coxph function of R package survival.

Molecular subtypes

Based on prognostic genes related to mRNAsi, molecular subtyping for TCGA-COAD
samples was performed in the R package Consensus Cluster Plus 1.52.0 (Wilkerson ¢
Hayes, 2010). Km arithmetic and “l-spearman correlation” distance were applied to
run 500 bootstraps with each bootstrap involving specimens (>80%) of TCGA-COAD
samples dataset. The optimum k in the range between 2 and 10 was selected per cumulative
distribution function (CDF) and consistency matrix.

Construction of a prognostic model

Firstly, limma package and univariable Cox analysis were employed to screen differentially
expressed gene (DEGs) related to both COAD prognosis and mRNAsi among molecular
subtypes. LASSO regression in the glmnet package (Engebretsen ¢» Bohlin, 2019) was
conducted based on the prognosis genes. Finally, a RiskScore formula was developed as
follow to evaluate patients’ prognosis:

n
Risk Score = Z Bix Expi
k=0

Expi was the expression of the i gene and Bi was the Cox regression coefficient of the i
gene. Under the optimal threshold (R package survminer), samples in the training dataset
and independent validation datasets were classified into low- and high-RiskScore groups.
Finally, the “timeROC” package was used to analyze the area under the ROC curve (AUC)
for 1-, 3-, and 5-year survival (Blanche, Dartigues & Jacqmin-Gadda, 2013). Kaplan—-Meier
(KM) survival curves between low- and high-RiskScore groups of COAD were generated.

Gene enrichment and pathway activity analysis

Pathway analysis was conducted using “Fgsea” package in R. All KEGG candidate gene sets
were subjected to gene set enrichment analysis. The “ClusterProfiler” package was used
for functional annotation (Yu ef al., 2012).
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Furthermore, we aim to explore the oncogenic activity of different clusters in cell-specific
signaling pathways such as PI3K, VEGF, EGFR, p53 and MAPK. Here, we do this by using
the PROGENYy algorithm, which is a method capable of accurately inferring signaling
pathway activity from gene expression under different conditions (Schubert et al., 2018).
The PROGENYy algorithm can generate a core set of genes (Pathway RespOnsive GENes)
for the corresponding signaling pathway through a large number of publicly available
perturbation experiments. Subsequently, this core set of genes (Pathway RespOnsive
GENes) and known expression data were used to calculate signaling pathway activity
scores, and heat maps were produced to look at pathway activation in different molecular
subtypes (Schubert et al., 2018).

Immune cell abundance

The CIBERSORT algorithm (https:/cibersort.stanford.edu/) was applied to quantify relative
abundance of 22 immune cell types in COAD. Meanwhile, Immune Score, ESTIMATE
Score and Stromal Score were calculated by estimation of Stromal and Immune cells in
Malignant Tumors using Expression data (ESTIMATE) (Yang et al., 2021).

Drug sensitivity analysis

The half-maximal inhibitory concentration (IC50) values were calculated using the
“pRRophetic” package (Geeleher, Cox ¢» Huang, 2014) to predict the response to commonly
used chemotherapeutic drugs in different risk groups.

Cell growth and transient transfection

The expression of HEYL, FSTL3, FABP4, ADAMS, and EBF4 in normal colonic
epithelial cells NCM460 and colon cancer cell lines HCT116 and SW480 was detected
through RT-qPCR assay. NCM460, HCT116 and SW480 cell lines were acquired from
Beijing Bena Biotechnology Co. (Beijing, China) and cultured in DEME F-12 medium.
Transfection of the negative control (NC), HEYL siRNA (Sagon, China) was performed
with Lipofectamine 2000 (Invitrogen, USA). The siRNA sequence targeting HEYL
was ATCAACAGTAGCCTTTCTGAATT. The control siRNA sequence (si NC) was
AGAAGGCTGGGGCTCATTTG.

Quantitative reverse transcription-polymerase chain reaction
(RT-qPCR)

Total RNA was extracted from NCM460, HCT116 and SW480 cell lines with TRIzol
reagent (Thermo Fisher, Waltham, MA, USA). Using a LightCycler 480 PCR System and
FastStart Universal SYBR® Green Master (Roche, Indianapolis, IN, USA), RT-qPCR was
performed on the the acquired RNA from each sample (2 pug). A reaction volume were
prepared in a total amount of 20 pl that consisted of 0.5 pl of forward primer and 10ul
reverse primer, required amount of water, and 2 pl of cDNA template, with the cDNA
serving as a template. To conduct RT-qPCR reaction, an initial DNA denaturation phase
lasted for 30 s (s) at 95 °C, followed by 45 cycles for 15 s at 94 °C, for 30 s at 56 °C, and for
20 s at 72 °C. Each sample was run in triplicates. The data were standardized to the level of
GAPDH using the 2724CT method. See Table 1 for the sequences of primer pairs for the
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Table1 qRT-PCR primer sequences.

Gene Forward primer sequence (5'-3) Reverse primer sequence (5'-3’)
HEYL ATGAAGCGACCCAAGGAGCC GGCTACTGTTGATGCGGTCT
FSTL3 GTGCCTCCGGCAACATTGA GCACGAATCTTTGCAGGGA
FABP4 ACTGGGCCAGGAATTTGACG CTCGTGGAAGTGACGCCTT
ADAMS GAGGGTGAGCTACGTCCTTG CAGCCGTATAGGTCTCTGTGT
EBF4 TTCGTGGAAAAGGACCGAGAG GGCACATTTCGGGGTTCTTG
GAPDH AATGGGCAGCCGTTAGGAAA GCCCAATACGACCAAATCAGAG

genes. The experiment was performed following a previous published paper (Bustin et al.,
2009).

Flow cytometry

According to the manufacturer’s protocols, briefly, trypsin was employed for cell harvesting.
Cells at the concentration of 1x10°/200 wL were then resuspended in PBS, followed by
Annexin V-FITC and PI solution staining on ice for 30 min (min) away from light. The
samples were washed using PBS and then analyzed by BD FACS Calibur flow cytometer
(BD, Franklin Lakes, NJ, USA).

Cell counting Kit-8 assay (CCK-8)

CCK-8 assay (Beyotime, Jiangsu, China) was conducted strictly following the protocol.
Cells with different treatments were cultured at a density of 1x10° cells/well in 96-well
plates and added with CCK-8 solution. A microplate reader (Thermo Fisher, USA) was
applied to detect the OD 450 values of each well were detected using after 2-hour (h)
incubation at 37 °C.

RESULTS

Predicting overall survival for COAD patients by mRNAsi

The correlation analysis showed that mRNAsi was correlated with the N Stage, T stage, and
Stage (Fig. 1A). Samples in the TCGA-COAD dataset was divided into the high-mRNAsi
group and low-mRNAsi group, where the high mRNAsi group demonstrated a better
survival outcome (Fig. 1B). Moreover, samples with late clinical features had a low
mRNAsi (Fig. 1C). The survival outcomes of mRNAsi-high and mRNAsi-low of Stage I-TV
samples indicated that Stage IV samples with higher mRNAsi had shorter survival time
(Fig. 1D).

Identification of three clusters based on mRNAsi

A total of 165 mRNAsi-related genes of prognostic significance were screened using
spearman analysis and univariate Cox regression analysis. According to CDF (Figs. 2A)
and delta area (2B), samples in TCGA-COAD were classified three clusters when k =3
(Fig. 2C). KM survival curve showed that C3 patients with higher mRNAsi survived longer,
while Clwith lower mRNAsi had a worse survival outcome (Figs. 2D, 2E). The expression
heatmap of 165 mRNAsi-related genes in the three clusters showed that the expression
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Figure 1 Higher mRNAsi predicted prolonged overall survival in Patients with COAD. (A) Correla-
tion analysis between clinicopathological features and mRNAsi in TCGA-COAD cohort. (B) High and low
mRNAsi groups were analyzed by survival analysis. (C) mRNAsi difference analysis among various clini-
copathological features. (D) Analysis of survival differences in the two mRNAsi groups by Stage I-IV.
Full-size &) DOL: 10.7717/peerj.16477/fig-1

of risk genes was higher in C1, while protective genes showed a higher expression in C3
(Fig. 2F). Remarkable differences in Stage, T Stage, mRNAsi, Status N Stage in the 3 clusters
of TCGA-COAD cohort study were observed (Figs. 3A-3H).

Genomic landscape among molecular subtypes

Molecular characteristic information and published molecular subtypes were acquired
from previous research (Thorsson et al., 2018). C1 had higher intratumor heterogeneity,
loss of heterozygosity, homologous recombination defects, while C3 had higher purity
(Fig. 4A). Published molecular subtypes included CIN, GS, HM indel, and HM SNV,
and most samples in C1 were CIN (Fig. 4B). ARID1A, PTPRS and KIF26B genes showed
extensive somatic mutations in COAD (Fig. 4C).
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Figure 2 Identification of 3 clusters. (A) Cumulative distribution function. (B) Delta area of CDF. (C)
Sample clustering heatmap when k = 3. (D) KM survival curve of three clusters. (E) Differences in mR-
NAsi among three clusters in the TCGA-COAD cohort. (F) Heatmap of mRNAsi-related genes with prog-
nosis in TCGA-COAD dataset.

Full-size Gal DOI: 10.7717/peerj.16477/fig-2

Immune infiltration analysis in the 3 clusters

In TCGA-COAD cohort, dendritic_cells_activated, T_cells_CD4_memory_activated,
Plasma_cells, T_cells_CD4_memory_resting were enriched in C3, while Macrophages_M]1
and Macrophages_M2, Macrophages_MO0 were enriched in C1 (Fig. 5A). C1 had higher
ImmuneScore, ESTIMATEScore, and StromalScore, as shown by the results of ESTIMATE
analysis (Fig. 5B).

In addition, we obtained 29 gene signatures from previous studies (Bagaev et al., 2021).
Among these 29 gene signatures, ssGSEA results showed that Angiogenesis, fibroblasts, Pro
tumor Immune infiltrate, EMT signature were enriched in C1 (Figs. 5C, 5D).

PROGENY algorithm (Pathway RespOnsive GENes) was used to calculate the oncogenic
activity of cell-specific signaling pathways, and we observed that JAK-stat, NF-kB, TNF-a,
TGEF-b, p53, MAPK, Hypoxia pathways were activated in C1 (Figs. 5E, 5F).

Immunotherapy analysis in the three clusters

Firstly, T cell-inflamed GEP score was used to predict potential in cancer immunotherapy,
Th1/IFENYy gene signature (a cytokine with a key function in immune regulation and
anticancer immunity) and CYT score to reflect cytotoxic effect were higher in C1
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Gender (E), Age (F), Status (G) and mRNAsi (H) in three clusters.
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(Figs. 6A—6C). C1 showed upregulated expression of eight immune checkpoint genes
(Fig. 6D).

In addition, we collected therapeutic signatures from a previous study, which included
gene signatures predicting radiotherapy, oncogenic pathways, and gene signatures related
to targeted therapy (Hu et al., 2021a). These signatures have the potential to shape the
non-inflamed tumor microenvironment (TME). The enrichment score of those gene
signatures was calculated by the ssGSEA method. These therapeutic signatures showed
significant differences in the enrichment score among the three clusters (Fig. 6E).

Identification of DEGs among the 3 clusters

Limma analysis identified a total of 612 DEGs including nine differentially downregulated
genes and 603 differentially upregulated genes in C1 (Fig. 7A), 500 differentially upregulated
genes in C3 (Fig. 7B). GO and KEGG analysis demonstrated that differentially upregulated
genes in C1 were enriched in EMT-related pathways (Fig. 7C), differentially downregulated
genes in C3 were also enriched in EMT-related pathways (Fig. 7D).

Establishment of a RiskScore model for predicting COAD prognosis
Based on our identification of the three molecular subtypes, we screened a total of
656 DEGs among the three subtypes using the limma package. Subsequently, 110
prognosis-associated genes were further identified by univariate Cox analysis, and 20
genes with the most significant correlation with mRNAsi were determined. LASSO
analysis in glmnet package showed trajectory and confidence interval of lambda
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Figure 4 Genome Landscape. (A) The differences of number of segments, fraction altered, aneuploidy
score, tumor mutation burden, homologous recombination defects, of clusters in the TCGA-COAD
dataset. (B) Distribution of published molecular subtypes in three clusters. (C) Somatic mutation in three
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Full-size & DOI: 10.7717/peerj.16477/fig-4

(Figs. SIA-S1B). When lambda = 0.0244, 5 genes were used as model genes: RiskScore =
0.278*HEYL+0.091*FSTL3+0.07*FABP4+0.115*ADAMS8+0.057*EBF4

Next, the RiskScore was calculated for patients in TCGA-COAD dataset, and we observed
a shorter survival of samples in high-RiskScore group (Fig. 8A). High- and low-RiskScore
groups of patients were divided by the cutoff, and KM survival curves showed an overall
better survival low-RiskScore group from the TCGA-COAD dataset (Fig. 8B). In the
TCGA-COAD cohort, AUC for 1-year, 3-year and 5-year survival was 0.63, 0.64 and 0.72,
respectively (Fig. 8C). Low-risk samples in TCGA-READ cohort also survived longer than
those with high risk (Fig. 8D), with an AUC of 0.74, 0.75 and 0.66 for 1-year, 3-year and
5-year survival, respectively (Fig. 8E). In GSE87211 cohort, samples in low-RiskScore
survived longer (Fig. 8F), with an AUC of 0.73, 0.67 and 0.64 for 1-year, 3-year and 5-year
survival, respectively (Fig. 8G).
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Full-size & DOLI: 10.7717/peerj.16477/fig-5

Inhibiting the expressions of HEYL promoted the apoptosis of colon
cancer cells

We observed elevated expression levels of HEYL, FSTL3, FABP4, ADAMS, and EBF4 in
HCT116 and SW480 cell lines in comparison to normal colonic epithelial cells NCM460
(Figs. 9A-9E). This was in line with the predictions of the risk score model. Subsequently,
the expression of HEYL in HCT116 and SW480 cell lines was suppressed applying siRNA,
and we observed that the proportion of apoptotic HCT116 and SW480 cells (Figs. 9F-9G)
was increased and cell viability was reduced (Figs. 9H-91I).

The distribution of RiskScore in clinical features

The RiskScore difference analysis showed that higher clinical grade had higher RiskScore,
and that samples in low-mRNAsi group and C1 had higher RiskScore (Fig. 10A). The
majority samples in high-RiskScore were C1 patients and low-mRNAsi patients (Fig. 10B).
Moreover, patients in Stage I+1I, Stage III+IV, mRNAsi-high, mRNAsi-low, C1, C2 and
C3 with a low RiskScore had better survival (Fig. 10C).
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Immune infiltration analysis between the two risk groups

GSEA analysis showed that high-RiskScore samples were enriched in CAF and EMT-related
pathways (Fig. 11A). There was negative correlation between RiskScore and mRNAsi
(Fig. 11B). CIBERSORT analysis showed that T_cells_CD4_memory_resting, Plasma_cells,
and T_cells_CD4_memory_activated were enriched in RiskScore-low group (Fig. 11C).
22 immune cells were correlated with each other (Fig. 11D). ESTIMATE analysis showed
that StromalScore, ImmuneScore and ESTIMATEScore were higher in the high-RiskScore
group (Fig. 11E). RiskScore was positively related to fibroblasts, pro-tumor immune
infiltration, angiogenesis, and EMT-related gene signatures (Fig. 11F). The pathway and
RiskScore analysis demonstrated a positive correlation between the RiskScore and pathways
related to angiogenesis (Fig. 10G).
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Figure 8 Establishment and validation of RiskScore. (A) RiskScore, survival time, status, mRNAsi-
related prognosis genes expressions in TCGA-COAD dataset. (B) ROC KM survival curve of high
RiskScore group and low RiskScore group in TCGA-COAD dataset. (C) ROC analysis of RiskScore
in TCGA-COAD dataset. (D) KM survival curve of high RiskScore group and low RiskScore group in
TCGA-READ dataset. (E) ROC analysis of RiskScore in TCGA-READ dataset. (F) KM survival curve of
high RiskScore group and low RiskScore group in GSE87211 dataset. (G) ROC analysis of RiskScore in
GSE87211 dataset.

Full-size &l DOI: 10.7717/peerj.16477/fig-8

Immunotherapy analysis between high-RiskScore and low- RiskScore
groups

Tumor immunotherapy is thought to be effective in treating a variety of tumors (Cui,
Peng ¢ Chen, 2022). In this study, the high- RiskScore group showed higher Th1/IFNy
gene signature, T cell inflamed GEP score, and CYT score (Figs. 12A-12C). The expression
of eight immune checkpoint genes was increased in high- RiskScore group (Fig. 12D).
Furthermore, RiskScore was positively correlated with Th1/IENy gene signature, T cell-
inflamed GEP score, CYT score and immune checkpoint genes (Fig. 12E). Susceptible
diversity of common chemo medicines between the two groups was investigated and the
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Figure 9 Assessing the reliability of a risk score model through experimental testing. (A—E) The ex-
pression of HEYL, FSTL3, FABP4, ADAMS, and EBF4 in NCM460, HCT116 and SW480 cells (n = 3) was
detected by PCR. (F-G) Representative apoptosis results after inhibition of HEYL expression in HCT116
and SW480 cell lines (n = 3). (H-I) Representative CCK8 results after inhibition of HEYL expression in
HCT116 and SW480 cell lines (n = 3). % < 0.05, *x < 0.01, * % * < 0.001, % * ** < 0.0001. The results are
presented as mean + S.E.M.

Full-size & DOI: 10.7717/peerj.16477/fig-9

results indicated that the IC50 of gefitinib, vinorelbine, and cisplatin were higher in high-
RiskScore group and 5-Fluorouracil was higher in low-RiskScore group (Fig. 12F).

DISCUSSION

Study reported that conventional therapies do not target CSCs, therefore tumors can
eventually be regenerated by surviving CSCs (Cherciu et al., 2014). The interaction
between stromal and cancerous cells in solid tumors is mainly responsible for non-cell-
autonomous resistance and could extensively promote tumor growth in tumor immune
microenvironment. Cell-autonomous resistance is also known as therapeutic resistance
characteristics of cancer cells, especially for CSCs (Qu ef al., 2019).

This study analyzed the correlation of mRNA index in COAD tissues based on OCLR
(Malta et al., 2018). High-mRNAsi samples were found to have a better prognosis. By
comparing mRNAsi with clinical features, we found that patients with higher Stage also had
significantly higher mRNAsi. The results suggested the potential correlation between Stage
and CSCs. Furthermore, three molecular subtypes (C1, C2, and C3) showing significant
differences in immune characteristics, immunotherapy sensitivity and prognosis were
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Figure 10 The distribution of RiskScore in clinical features. In the TCGA-COAD cohort: (A)
differences in the distribution of RiskScore among different clinicopathological groups. (B) distribution
of RiskScore in published molecular subtypes and mRNAsi. (C) KM curves between high and low risk

groups among different clinicopathological groups.

Full-size & DOI: 10.7717/peerj.16477/fig-10

defined based on mRNAsi. Notably, our study demonstrated that C1 subtype had higher
intratumor heterogeneity, loss of heterozygosity, and homologous recombination defects,
and that the majority of C1 patients had low mRNAsi, indicating that mRNAsi-related
genes were responsible for a poorer prognosis in C1. These data demonstrated that the
mRNAsi may be used as an indicator to distinguish the heterogeneity within COAD and
help decide suitable clinical treatment choice for COAD patients.
Key genes were screened for COAD and further analyzed for their effects on the
cancer using functional annotation. The main biological processes were related to the
regulation of the PI3K-Akt signaling pathway, cell cycle, EMT-related pathways, ECM
receptor interaction, MAPK signaling pathway, which all have been reported to promote
self-renewal, apoptosis inhibition, and cell survival of CSCs.
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Pan et al. (2019) identified 13 key genes for bladder cancer based on mRNAsi-related
genes. In colorectal cancer, analysis on the impact of RCN3 on patients’ prognosis showed
that the expression level of RCN3 is an independent risk factor for a poor prognosis and
response to chemotherapy (Ma et al., 2022). These studies showed that the expression
of key genes is closely related to the OS of patients. In this study, five mRNAsi-related
genes were identified as independent predictors for the OS of COAD patients and further
utilized to generate a RiskScore for COAD. Based on various clinical features required
for the prognostic models, COAD samples were easily classified into high-RiskScore
and low-RiskScore groups by the mRNAsi signature. This supported a potential clinical
application significance of the mRNAsi signature.

Our mRNAsi signature consisted of HEYL, FSTL3, FABP4, ADAMS and EBF4. HEYL
as an important downstream effector of Notch pathway is high-expressed in some tumors
related to estrogen (Leimeister et al., 2000). HEYL-aromatase axis promotes CSCs via
endogenous estrogen-induced autophagy in castration-resistant prostate cancer (Lin et
al., 2021). Transformation of pluripotent stem cells to cardiogenic endothelial cells could
be increased by FSTL3 (Kelaini et al., 2018), but its role is unclear in tumor stem cells. In
addition, in vitro experiments confirmed that the five genes were low-expressed in COAD
cell lines, and that knocking out HEYL promoted apoptosis and inhibited cell viability.
These phenomena indicated that those genes may be vital for progression and occurrence
of COAD. Using enzyme-linked immunosorbent assay, Ru et al. (2019) detected that the
level of FABP4 is significantly higher in patients’ serum than that before surgery, and they
suggested that FABP4 expression is related to the pathogenesis of colorectal cancer. ADAMS
is expressed as an antigen of tyrosine kinase inhibitor-resistant chronic myeloid leukemia
cells in a model of chronic myeloid leukemia stem cells produced from chronic myeloid
leukemia-induced pluripotent stem cells (Miyauchi et al., 2018). In addition, Liu et al.
(2022) identified ADAMS as one of the key genes associated with metastasis and recurrence
in colorectal cancer by WGCNA. In particular, ADAMS could promote colon cancer cell
invasion by activating the TGF-f3/Smad2/3 signaling pathway to induce EMT. Similarly,
in our study we found that both differentially upregulated genes in C1 and differentially
downregulated genes in C3 were enriched in EMT-related pathways. The early B cytokine
(EBF) transcription factor family member EBF4 enhances cytotoxic activity in human
immune cells and affects FAS-mediated apoptosis (Kubo et al., 2022).

Potential mRNAsi to estimate COAD prognosis from large samples has been identified
applying bioinformatics analysis, but the current study still had some limitations. Firstly,
our samples lacked clinical follow-up information, which excluded potential factors such
as patients’ health conditions when screening biomarkers. Also, the results were not
convincing enough as they were obtained only by bioinformatics analyses, which therefore
required further experimental verification. Finally, the molecular processes and signaling
pathways obtained only from TCGA cases should be confirmed in other datasets in the
future.

In summary, we developed an mRNAsi-based gene signature that can accurately
prognosis, stage, mutation, immune profile, and immunotherapeutic differences for
COAD patients, providing a reliable guideline for further studies on the mechanisms
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of COAD heterogeneity. In addition, a prognostic system was produced based on five
mRNAsi-related genes as a prognostic indicator. In particular, the role of HEYL in COAD
stem cell characterization will be explored in depth in further studies. The current classifier
may be utilized as an accurate molecular diagnostic tool for assessing the prognostic risk
of COAD patients.
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