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ABSTRACT
Excessive induction of inflammatory and immune responses is widely considered as
one of vital factors contributing to the pathogenesis and progression of central nervous
system (CNS) diseases. Neutrophils are well-studied members of inflammatory and
immune cell family, contributing to the innate and adaptive immunity. Neutrophil-
released neutrophil extracellular traps (NETs) play an important role in the regulation
of various kinds of diseases, including CNS diseases. In this review, current knowledge
on the biological features of NETs will be introduced. In addition, the role of NETs in
several popular and well-studied CNS diseases including cerebral stroke, Alzheimer’s
disease,multiple sclerosis, amyotrophic lateral sclerosis (ALS), and neurological cancers
will be described and discussed through the reviewing of previous related studies.

Subjects Cell Biology, Molecular Biology, Immunology, Neurology
Keywords Neutrophil Extracellular Traps, Inflammation, Stroke, Neurodegenerative diseases,
Cancer

INTRODUCTION
Central nervous system (CNS) diseases refer to diseases that occur within the CNS, leading
to the disturbance of structure and functions of CNS (Boziki et al., 2020; Kang et al.,
2023; Nabors et al., 2020; Pellegrini et al., 2023). Despite the complexity of mechanisms
underlying CNS diseases, recent studies have revealed that overactivation of inflammation
and immunity is considered as a vital factor (Linnerbauer, Wheeler & Quintana, 2020;
Rodriguez Murua, Farez & Quintana, 2022; Scheffer & Latini, 2020; Yang & Zhou, 2019).
Duringinflammation- and immune-related responses, neutrophils are widely activated and
play a significant role in triggering cascade inflammation and immune reactions(Kanashiro
et al., 2020; Kara, Altunan & Unal, 2022; Khorooshi et al., 2020; Rossi, Constantin & Zenaro,
2020). In 2004, a special form of inflammatory reaction from neutrophils was initially
reported and named neutrophil extracellular traps (NETs) (Brinkmann et al., 2004). NETs
were characterized with the release of extracellular DNA traps. Such DNA traps were
observed to consist of DNA fibers decorated with granule proteins. During the last two
decades, along with the increasing knowledge of the physiological characteristics of NETs,
the influences of NETs in various kinds of diseases were largely reported (de Jesus Gonzalez-
Contreras & Zarate, 2022; Hidalgo et al., 2022; Khan et al., 2021; Papayannopoulos, 2018;
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Figure 1 Schematic illustration of crosstalk between NETs and inflammasome and autophagy.NETs
are highly associated with other inflammation- and immune-related mechanisms and processes including
the inflammasome and autophagy. The pathways of the crosstalk between NETs and the inflammasome
include the triggering of extracellular matrix remodeling process, cholesterol crystal challenge and induc-
tion of the TLR4-JNK pathway. For the crosstalk between NETs and autophagy, the possible pathways in-
clude the induction of the mTOR-dependent pathway, triggering neutrophil-mediated cell death process
and mediation of platelet factor 4 from platelets.

Full-size DOI: 10.7717/peerj.16465/fig-1

Poto et al., 2022; Rada, 2019). However, so far, the role of NETs in CNS diseases is not fully
elucidated, and the specific mechanisms remain unclarified. As a result, a study based on
the reviewing of previous related literature is demanded to illustrate the whole picture on
this issue. Our aim is to present a comprehensive view of NETs within the CNS system and
offer novel insights into the exploration of mechanisms of CNS diseases for researchers in
the field of CNS and biological science in this review. We believe that our article will offer
novel insights into the investigation of CNS diseases.

SURVEY METHODOLOGY
PubMed (https://pubmed.ncbi.nlm.nih.gov/) and Web of Science (https://www.
webofscience.com) were used to search for literature from 2000 to 2023. The search terms
applied for literature reviewing included ‘‘neutrophil extracellular traps, central nervous
system, cerebrovascular diseases, ischemic stroke, hemorrhagic stroke, neurodegenerative
diseases, immune-related diseases, neurological cancer, infection, multiple sclerosis,
amyotrophic lateral sclerosis, Alzheimer’s disease, inflammation, lipopolysaccharide,
peptidyl arginine deiminase 4, inflammasome, autophagy, therapy’’. The titles and abstracts
of the relevant literature were initially screened, and the full texts were obtained.

PART I: BIOLOGICAL FEATURES OF NETS
So far, much knowledge has been obtained on the biological features of NETs. In
the following contents, the general characteristics of NETs and its crosstalk between
other inflammation- and immune-related mechanisms and processes including the
inflammasome and autophagy will be described and discussed in detail (illustrated in
Fig. 1).

General characteristics of NETs
Since its first reported in 2004, NETs were initially named with the term of ‘‘neutrophil
extracellular trap-osis (NETosis)’’. The termNETosis was widely applied on the basis of the
reports showing that the extrusion of DNA stands could lead to neutrophil death, which
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contributed to the triggering of cascade inflammatory reaction (Berthelot et al., 2017;
Carmona-Rivera & Kaplan, 2016; Desai et al., 2016; Jorgensen, Rayamajhi & Miao, 2017;
Mahajan, Herrmann & Munoz, 2016). However, recent studies revealed that such release of
DNA strands would not always lead to cellular death (Galluzzi et al., 2018;Hamam, Khan &
Palaniyar, 2019; Papayannopoulos, 2018). As a result, the term ‘‘NETs’’ was recommended
to replace ‘‘NETosis’’ as stated by the Nomenclature Committee on Cell Death (NCCD) in
2018 (Galluzzi et al., 2018). Hereafter, the term ‘‘NETs’’ or ‘‘NET formation’’ will be used
instead of ‘‘NETosis’’ in the review.

According to modern knowledge on NETs, they were recognized as extracellular strands
of decondensed (unwound) DNA fibers in combination of histones and neutrophil granule
proteins including myeloperoxidase (MPO), matrix metalloproteinase (MMP), neutrophil
elastase (NE), cathepsin G, complement factors, and other enzymatically active proteases
and peptides (Demkow, 2021; Klopf et al., 2021; Linders et al., 2020; Varricchi et al., 2022).
The triggering and active processes of NETs were previously summarized and described by
us and other researchers (de Jesus Gonzalez-Contreras & Zarate, 2022; Hidalgo et al., 2022;
Shao et al., 2021a). In general, under normal conditions, nuclei DNA strands in neutrophils
are highly wrapped around histones into heterochromatin with protein-DNA interactions
to constrain the potential energy for DNA extension and transcriptional activity (Shao et al.,
2021a; Sorensen & Borregaard, 2016). However, in the challenge of certain stimuli such as
exogenous invasion, intracellular calcium ion flux and agents including lipopolysaccharide
(LPS) and phorbol 12-myristate 13-acetate (PMA), the condensed DNA strands in nucleus
are uncoiled as fibrous polymers and released outside the nucleus to form NETs (Awasthi
et al., 2023; Domer et al., 2021; Radermecker et al., 2019; Shao et al., 2021a). Based on the
current knowledge, two proteases are vital in the process ofNET formation, namely peptidyl
arginine deiminase 4 (PAD4) andNE (Al-Kuraishy et al., 2022; Shao et al., 2021a; Zhu et al.,
2022). PAD4 is in charge of catalyzing the conversion of arginine in histones to citrullines.
The citrullination in histones leads to the weakening of the original positive charge of
histones, failure of the strong histone-DNA binding and finally the decondensation of
DNA strands. Although so far, NET formation independent of PAD4 has been reported
(Kenny et al., 2017; Ravindran, Khan & Palaniyar, 2019), PAD4-dependent NETs are still
commonly acknowledged as the classic form of NETs. The function of NE is to facilitate
the destruction of histone-DNA binding via catalyzing and cleaving histones (Kumar et al.,
2018; Wei et al., 2022). After decondensation, DNA strands decorated with histones and
granule proteins are released extracellularly assisted by gasdermin D, a membrane protein
functioning in the formation of pores (Shang et al., 2022; Vats et al., 2022). The release of
NETs contributes to the further process in physiological and pathological conditions of
organisms.

So far, a variety of signaling pathways have been reported involved in the process of NET
formation. As previously demonstrated by us and others, many popular signaling proteins
have been shown to regulate NET formation, including c-Jun N-terminal kinase (JNK),
extracellular regulated protein kinase 1/2 (ERK1/2), Akt and Scr (Li et al., 2021b; Ma et
al., 2022; Shao et al., 2021a; Small et al., 2022; Wright et al., 2020). In addition, phorbol
12-myristate-13-acetate (PMA), a protein kinase C (PKC) activator, has been widely
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used as an effective NET inducer in fundamental researches (An et al., 2019; Domer et
al., 2021; Shirakawa et al., 2022). The involvement of various signaling proteins indicates
the complexity of mechanisms processes for NET formation. Notably, the crosstalk
between NETs and other vital inflammation- and immune related mechanisms, including
inflammasome and autophagy, have been drawn increasing attention. Those contents will
be discussed in detail in the following section.

Crosstalk between NETs and other inflammation- and immune-related
mechanisms
Inflammasome, as a member of innate immunity, is a multi-protein oligomer activated
under inflammation- and immune-related challenges (Bai et al., 2022; de Carvalho Ribeiro
& Szabo 2022; Toldo et al., 2022). It is mainly produced in macrophages, neutrophiles,
dendritic cells and other inflammatory and immune cells to contribute to the induction of
inflammatory and immune responses via the recognition of pathogen-associatedmolecular
patterns (PAMPs) or danger-associated molecular patterns (DAMPs) (Azumi et al., 2022;
Biasizzo & Kopitar-Jerala, 2020; Herwald & Egesten, 2016). As previously reviewed by us,
several kinds of inflammasomes have been reported, namely NOD-like receptor family,
pyrin domain-containing (NLRP)1, NLRP2, NLRP3, NLR family caspase recruitment
domain-containing protein 4 (NLRC4), and double-stranded DNA sensors absent in
melanoma 2 (AIM2) (Shao, Cao & Liu, 2018; Shao et al., 2015). The inflammasome
has been demonstrated to be involved in the pathogenesis and progression of various
kinds of diseases in many systems, including cardiovascular diseases, autoimmune
diseases, digestive system diseases, CNS diseases, respiratory diseases, metabolic diseases,
malignant tumors and so on (Anderson et al., 2022; Andina, Bonadies & Allam, 2021;
Jewell, Herath & Gordon, 2022; Qiu et al., 2022; Takahashi, 2022). So far, the crosstalk
between the inflammasome and NETs has been widely reported in various kinds of
diseases (Albrengues et al., 2018; Cristinziano et al., 2022; Hidalgo et al., 2022; Warnatsch et
al., 2015). For instance, on the occurrence of atherosclerosis, NETs are triggered to release
from neutrophils under the challenge of cholesterol crystals, which subsequently primes
macrophages for inflammasome-related cytokine interleukin-1β (IL-1β) production and
secretion (Warnatsch et al., 2015). In addition, NETs and NETs-mediated extracellular
matrix remodeling contribute greatly to awaken the dormant lung cancer cells through
LPS-mediated formation of inflammasomes in mice models (Albrengues et al., 2018).
Although so far, little evidence is available to investigate the relations between NETs and
inflammasome. However, it was recently reported that NETs could trigger the NLRP3
inflammasome activation and IL-18 secretion release during the occurrence of oxaliplatin-
induced peripheral neuropathy (OIPN) via the induction of the LPS-toll-like receptor 4
(TLR4)-JNK pathway (Lin et al., 2022). However, to further explore the crosstalk between
NETs and inflammasome, more studies are demanded for investigation.

Another mechanism worth mentioning is autophagy, which is commonly recognized
as a vital metabolic mechanism to degrade and recycle long-lived proteins and damaged
organelles (Kocak et al., 2022; Shao, Wang & Bai, 2022; Shao et al., 2021b). Since its initial
discovery by Christian de Duve in the 1960s (Klionsky et al., 2016), autophagy has been
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increasingly studied and reported to participate in the pathogenesis and progression of
various kinds of disorders (Ikeda, Zablocki & Sadoshima, 2022; Lei et al., 2022; Parmar et
al., 2022). Autophagy is also highly involved in various inflammation- and immune-related
diseases via the regulation of inflammatory and immune reaction, indicating autophagy
as a vital mechanism of inflammation and immunity (Goswami, Karadarevic & Castano-
Rodriguez, 2022; Hu et al., 2022b; Levine, Mizushima & Virgin, 2011; Tong et al., 2022).
The crosstalk between NETs and autophagy has been increasingly studied in the recent
decade (Guo et al., 2021; Huang et al., 2022b; Jiao et al., 2020; Skendros, Mitroulis & Ritis,
2018). Autophagy in neutrophils was proven to be highly associated with NETs-mediated
cell death (Skendros, Mitroulis & Ritis, 2018). In addition, autophagy was reported to be
involved in aging-related spontaneous formation of NETs via a mammalian target of
rapamycin (mTOR) -dependent manner (Guo et al., 2021). On the occurrence of sepsis,
neutrophil-mediated autophagy was shown to contribute to the systemic inflammatory
responses and immune dysfunction via the triggering of autophagy-driven NET formation
(Huang et al., 2022b; Jiao et al., 2020). In CNS diseases, Jin et al. (2022) reported that
NET formation was mediated by platelet factor 4 (PF4) from platelet via the regulation of
autophagy and contributed to thrombosis in patients with cerebral venous sinus thrombosis
(CVST). However, because of the lack of evidence on the connection between NETs and
autophagy, further studies are needed on this issue.

PART II: NETS IN CNS DISEASES
In the recent two decades, the role of NETs in CNS diseases and its underlying mechanisms
have been increasingly investigated. In the following contents, NETs in several kinds of
popular and well-studied kinds of CNS diseases including cerebral stroke, Alzheimer’s
disease, multiple sclerosis, amyotrophic lateral sclerosis (ALS), and neurological cancers
will be described and discussed through the reviewing of previous related studies (illustrated
in Fig. 2).

NETs in cerebral stroke
Cerebral stroke, also known as cerebrovascular accident, is a group of acute cerebrovascular
diseases (Hackam & Hegele, 2022). It leads to the damage to brain tissue caused by a sudden
rupture of a blood vessel in the brain or a blockage that prevents blood from flowing to
the brain (Minhas et al., 2022; Pan et al., 2022; Tuo, Zhang & Lei, 2022). Cerebral stroke
includes ischemic stroke and hemorrhagic stroke, and leads to large amount of death
with high incidence and teratogenic rate (Grysiewicz, Thomas & Pandey, 2008). On the
occurrence of cerebral stroke, especially ischemic stroke, cerebrovascular thrombosis
serves as a vital factor (Ding et al., 2022; Hu et al., 2022a; Zhou et al., 2022). So far, NETs
have been widely reported to be important in the pathological process of cerebral stoke,
and the role of NETs in stroke is most studied among all kinds of CNS diseases. The
level of NET formation was detected to be high in both venous and arterial thrombosis,
and NET-specific citrullinated histone 3 (citH3) was proven to possibly constitute a
useful prognostic marker and target in patients with acute stroke (Laridan, Martinod &
De Meyer, 2019). In the process of thrombosis, NETs were reported to contribute greatly
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Figure 2 Schematic illustration of role of NETs in CNS diseases.NETs released from neutrophils may
produce effects on the pathogenesis and progression of cerebral stroke via promoting thrombosis, influ-
encing cerebral revascularization and vascular remodeling, promoting cerebral hemorrhage, and aggra-
vating cerebral tissue damage. In Alzheimer’s disease, NETs may regulate complement system activation,
DNase-related genetic mutation, and LFA-1 integrin mediation. In multiple sclerosis, NETs may produce
a regulatory effect through changing IgG and IgG-IgM complex and regulating CD4+ T cells and lymph
nodes connection. In amyotrophic lateral sclerosis, NETs may lead to the neurodegenerative process and
peripheral motor pathway damage. In neurological cancers, NETs may regulate glioma and tumor mi-
croenvironment connection, enhance hypercoagulability and damage brain-blood barrier or brain-tumor
barrier.

Full-size DOI: 10.7717/peerj.16465/fig-2

to the formation of arterial or venous thrombi (Laridan, Martinod & De Meyer, 2019).
The formation of NETs was shown to promoted by activated platelets in stroke and
could, in turn, activate platelets, thus favoring thrombotic processes (Laridan et al., 2017;
Laridan, Martinod & De Meyer, 2019). In addition, NET-related variations were observed
in thrombus structure in patients with ischemic stroke as well as other vascular diseases
including coronary disease and peripheral artery disease. Such variations were shown to
produce a significant influence on thrombus stability (Farkas et al., 2019).

NETs were also shown to influence cerebral revascularization and vascular remodeling
after stoke (Abbasi et al., 2022; Kang et al., 2020; Mohamud Yusuf et al., 2021). It was
reported that disruption ofNET formation byDNase 1 as well as genetical or pharmacologic
inhibition of PAD4, one of the important enzymes for NET formation mentioned above,
increased neovascularization and vascular repair during stoke recovery (Kang et al.,
2020). In addition, increased NETs, as well as fibrin and von Willebrand Factor (vWF)
composition in thrombi, might reduce the likelihood of revascularization by altering
thrombus mechanical properties in patients with stroke (Abbasi et al., 2022).

Cerebral hemorrhage is another vital factor for stroke besides cerebral ischemia. NETs
were also demonstrated to influence the pathological processes of cerebral hemorrhage.
Wang et al. (2021) reported that NETs could promote tPA-induced cerebral tissue
plasminogen activator (tPA) via downregulation of cyclic GMP-AMP synthase (cGAS)
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in stroke patients. In addition, the application of RNase was shown to suppress NET
formation in mice subarachnoid hemorrhage models (Fruh et al., 2021). However, despite
of much evidence on the role and mechanisms of NETs in cerebral stroke in clinical and
animal studies, yet seldom related agents or therapies are available to be successfully applied
in clinical practice. Further studies are demanded for investigation.

NETs in Alzheimer’s disease
Alzheimer’s disease belongs to neurodegenerative diseases. Neurodegenerative diseases are
a group of diseases characterized by progressive loss of neuronal structure and function,
with the result of neuronal death (Haass & Selkoe, 2007). So far, three neurodegenerative
diseases are well-studied and popular, including Alzheimer’s disease, Parkinson’s disease
and Huntington’s disease (Fang et al., 2020; Peng, Trojanowski & Lee, 2020; Ross & Tabrizi,
2011). According to current knowledge on neurodegenerative diseases, abnormal protein
aggregation in neurons serve as the major cause of those three diseases, including
Alzheimer’s disease with β-amyloid accumulation, Parkinson’s disease with α-synulein
aggregation to form proteinaceous cytoplasmic Lewy bodies and Huntington’s disease
with aggregate-prone huntingtin protein accumulation (Frisoni et al., 2022; Liu et al., 2015;
Shao, Cao & Liu, 2018; Zhang et al., 2019). Several factors are considered as possible factors
for the pathogenesis of neurodegenerative diseases, including aging, heredity, geography,
overwhelming inflammatory and immune reaction and so on (Bloem, Okun & Klein, 2021;
Jessen et al., 2020; Leng et al., 2019; Scheltens et al., 2021).

The role of NETs in Alzheimer’s disease has been drawn increasing attention in the
last decade. As previously stated, β-amyloid aggregation in neurons led to increasing
production and activation of complement system components including C1q, CR1 and
C5a, which subsequently assembled neutrophils to the brain and induced NET extrusion
(Kretzschmar et al., 2021). The process of NETs deposition further triggered complement
system activation through the alternative pathway and properdin binding (Kretzschmar
et al., 2021; Yuen et al., 2016). The inability of complement system for NETs degradation
led to the accumulation of NETs and overactivation of complement system, thus resulting
in the cascade inflammatory and immune responses and damage to neurons (de Bont,
Boelens & Pruijn, 2019; Kretzschmar et al., 2021). In addition, DNase, a commonly used
NETs inhibitor, has been successfully applied in the treatment of Alzheimer’s disease,
and genetic variants in DNase genes including DNASE1, DNASE2 and DNASE1L3 can
result in the downregulation of DNase expression in Alzheimer’s disease (Kretzschmar et
al., 2021; Tetz & Tetz, 2016). Another study showed that NET formation contributed to
Alzheimer’s disease-like pathogenesis and cognitive impairment via themediation of LFA-1
integrin (Zenaro et al., 2015). These studies indicate that NETs play an important role in
the pathogenesis and progression of Alzheimer’s disease. Although so far, little evidence
was available for the connection between NETs and Parkinson’s disease and Huntington’s
disease, we believe that regulating NETs might serve as a breakthrough in the treatment of
those two diseases, and might be an attractive research direction for future studies.
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NETs in multiple sclerosis
Multiple sclerosis is a commonly diagnosed autoimmune disease, characterized as
inflammatory demyelination of the white matter of CNS (Carotenuto et al., 2022; Correale,
Hohlfeld & Baranzini, 2022; Pitt et al., 2022). Its prevalence is estimated at approximately
2.5 million people worldwide, with 70% patients between 20–50 years (De Bondt et al.,
2020; Thompson et al., 2018). Although the specific pathogenesis of multiple sclerosis has
not been clarified, several factors are recognized as the possible causes, including genetic
variants, environmental factors, gender, age, smoking, infection especially in the CNS,
vitamin D deficiency and so on (Cortese et al., 2020; Leray et al., 2016; Oturai et al., 2021).

Among all factors for the pathogenesis of multiple sclerosis, the state of inflammatory
and immune dysregulation is considered as a vital factor (Perez-Jeldres, Alvarez-Lobos
& Rivera-Nieves, 2021; Rodriguez Murua, Farez & Quintana, 2022). In this process, the
activation of neutrophils and the subsequent release of NETs are one of the important
components for such dysregulation state (Costanza et al., 2019; De Bondt et al., 2020;
Maatta et al., 1998; Naegele et al., 2012; Paryzhak et al., 2018). It has been reported that
the number of neutrophils is increased in both the periphery and CNS before and during
the occurrence of multiple sclerosis (Maatta et al., 1998). NETs produced and released by
activated neutrophils has been revealed to be enhanced in the serum of multiple sclerosis
patients compared with healthy people (Naegele et al., 2012). Additionally, NET-related
proteases were shown to alter the glycan composition on circulating IgG molecules and
IgG-IgM immune complexes in multiple sclerosis, potentially influencing the severity
of multiple sclerosis (Paryzhak et al., 2018). The DNA extrusions were demonstrated to
convey autocrine costimulatory signals to CD4+ T cells and lymph nodes during the
priming phase of multiple sclerosis in mice models (Costanza et al., 2019). These results
indicate the effect of NETs on multiple sclerosis. However, so far, seldom therapies are
available for the successful application in the treatment of multiple sclerosis in clinical
practice. We believe that with the increasing study on this issue, therapeutic strategy
regulating NETs will be developed in the future.

NETs in ALS
ALS, also known as motor neuron disorder, is a fatal CNS neurodegenerative disease
characterized by the degeneration of both upper and lower motor neurons (Feldman
et al., 2022; Hardiman et al., 2017). The etiology of ALS remains unclarified. Genetic
mutations and hereditary factors are recognized to be highly related to the pathogenesis
and progression of ALS (Johnson et al., 2021). Besides, environmental factors such as heavy
metal pollution may also serve as risk factors (Li et al., 2021a).

Despite the complication of mechanisms for ALS, several pathological events for the
onset and development of ALS have been reported, including excessive glutamate levels,
overactivation of inflammatory and immune responses, protein misfolding, blood–brain
barrier damage, oxidation reaction product accumulation, and reduced energy metabolism
(Cao & Fan, 2023). Those pathological factors may contribute to the neurodegenerative
process of ALS (Cao & Fan, 2023). As previous reported, neutrophils are closely associated
with ALS (Murdock et al., 2021). As an important component of neutrophil-mediated

Shao et al. (2024), PeerJ, DOI 10.7717/peerj.16465 8/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.16465


inflammatory reaction, the role of NETs in ALS is increasingly studied by researchers. It
was previously reported that NET release could lead to the process of peripheral motor
pathway damage in an SOD1G93A rat ALSmodel (Trias et al., 2018). The administration of
the tyrosine kinase inhibitor drug masitinib to suppress neutrophil and mast cell activation
and infiltration significantly alleviated the severity of ALS. The study on the effects of NETs
on ALS may provide a potential pathway for the exploration of mechanisms for ALS and
development of novel therapeutic strategies for the treatment of ALS.

NETs in neurological cancers
Neurological cancers are a group of primary or metastatic cancer of the CNS (Balachandran
et al., 2020; Shao et al., 2021a). According to a report from the World Health Organization
(WHO) in 2016, neurological cancers include diffuse astrocytic and oligodendroglial
tumors, other astrocytic tumors, ependymal tumors, other gliomas, lymphomas of the CNS,
and metastatic cancers (Louis et al., 2016; Shao et al., 2021a). It is widely acknowledged that
the tumor-related inflammatory and immune microenvironment plays a significant role
in the pathogenesis and progression of various malignant tumors. This suggests that the
regulating local and overall inflammatory and immune responses could be an effective
and promising strategy for cancer treatment(Barkley et al., 2022; Hiam-Galvez, Allen &
Spitzer, 2021; Peng et al., 2022). It was previously reviewed by us that NETs played an
important role in several kinds of cancers, including breast, lung, colorectal, pancreatic,
blood, neurological and cutaneous cancers, mainly through the regulation of inflammatory
and immune state and related signals and mechanisms (Shao et al., 2021a).

In neurological cancers, it has beenreported that NETs generate by tumor-infiltrating
neutrophils (TINs) regulated the connection between glioma and tumormicroenvironment
in patients with malignant glioma via the mediation of HMGB1/RAGE/IL-8 axis (Zha et
al., 2020). Moreover, NET formation has been shown to increase the hypercoagulability
in glioma patients, suggesting that targeting NETs might be an effective approach for
preventing thrombotic complication in glioma patients (Zhang et al., 2021). In addition,
NETs were reported to damage the brain-blood barrier or brain-tumor barrier, which
facilitated the development and metastases of glioma (Lin et al., 2021). However, to take
advantage of NETs regulation in the treatment of neurological cancers, further studies are
demanded.

Therapeutic applications of NETs in the treatment of CNS diseases
As described and discussed above, NETs play a significant role in alleviatingCNS diseases
including cerebral stroke, Alzheimer’s disease, multiple sclerosis, ALS, and neurological
cancers. So far, an increasing number of studies have reported several therapeutic strategies
against those diseases targeting NETs.

In cerebral stroke, several therapies taking advantage of NET suppression have been
widely reported. As revealed by Dhanesha et al. (2022), nuclear pyruvate kinase muscle
2 (PKM2), a modulator of systemic inflammation, was shown to enhance neutrophil
activation on the occurrence of ischemic stroke. The administration of PKM2 nuclear
translocation inhibitors could significantly alleviate neutrophil hyperactivation and
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neutrophil-mediatedNET release, thus improving the short-term and long-term functional
outcomes after stroke. Another previous study demonstrated that Edaravone Dexborneol,
which was comprised of two active ingredients including Edaravone and (+)-Borneol,
exerted an alleviative effect on acute ischemic stroke (Huang et al., 2022a). Such effect was
mediated by the amelioration of NET-induced blood–brain barrier damage. In addition,
the intravenous application of RNase A (the bovine equivalent to human RNase 1) was
reported to alleviate subarachnoid hemorrhage through the abrogation of NET burden in
the brain parenchyma (Fruh et al., 2021). Such findings indicated the potential therapeutic
value of NET inhibition in cerebral stroke.

In Alzheimer’s disease, Serebrovska et al. (2019) showed that intermittent hypoxia-
hyperoxia training could improve the cognitive functions in pre-Alzheimer’s disease
patients and slow down the development of Alzheimer’s disease through the suppression
of NET-mediated blood–brain barrier damage and brain parenchyma destroy. In addition,
it was revealed that dimethylfumarate, a commonly used food additive, could alleviate
neutrophil-mediated chronic inflammatory diseases including multiple sclerosis through
the inhibition of neutrophil activation and suppression of NET formation (Muller et al.,
2016). Those studies exerted that NETs might serve as potential targets in the treatment of
such CNS diseases.

CONCLUSIONS
Taken together, in our current study, we introduced the biological characteristics of
NETs and crosstalk between other inflammation- and immune-related mechanisms. In
addition, we described and discussed the roles and potential mechanisms of NETs in serval
well-studied CNS diseases including cerebral stroke, Alzheimer’s disease, multiple sclerosis,
ALS, and neurological cancers, through a review of previous related studies. We believe
that our study will provide novel insight into the exploration of CNS diseases in terms of
pathogenesis and progression and treatment.
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