- 1 Targeting B4GALT7 suppresses the proliferation,
- 2 migration and invasion of hepatocellular
- 3 carcinoma through the Cdc2/CyclinB1 and miR-
- **4 338-3p/MMP2 pathway**

5

- 6 Chang Liu^{1,2,#}, Yuqi Jia^{2,#}, Xinan Zhao², Zifeng Wang², Xiaoxia Zhu², Chan Zhang²,
- 7 Xiaoning Li², Xuhua Zhao², Tao Gong², Hong Zhao², Dong Zhang², Yuhu Niu²,
- 8 Xiushan Dong³, Gaopeng Li³, Feng Li⁴, Hongwei Zhang⁵, Li Zhang⁶, Jun Xu^{6,*},
- 9 Baofeng Yu^{2,*}

10

- 11 Department of Biochemistry and Molecular Biology, Changzhi Medical College,
- 12 Changzhi 046000, Shanxi, China;
- 13 ² Department of Biochemistry and Molecular Biology, Shanxi Medical University,
- 14 Taiyuan 030001, Shanxi, China;
- 15 ³ Department of General Surgery, Shanxi Bethune Hospital, the Third Hospital of
- 16 Shanxi Medical University, Taiyuan, 030032, China;
- 17 ⁴ Central Laboratory, Shanxi Cancer Hospital; Shanxi Hospital Affiliated to Cancer
- 18 Hospital, Chinese Academy of Medical Sciences; Cancer Hospital Affiliated to Shanxi
- 19 Medical University, Taiyuan 030013, China;
- 20 ⁵ Department of Hematology, Shanxi Cancer Hospital; Shanxi Hospital Affiliated to
- 21 Cancer Hospital, Chinese Academy of Medical Sciences; Cancer Hospital Affiliated to
- 22 Shanxi Medical University, Taiyuan 030013, China;
- 23 ⁶ Department of General Surgery, The First Hospital of Shanxi Medical University,
- 24 Taiyuan 030001, China.
- 25 #These authors contributed equally to this work.

26

- 27 *Correspondence address. Tel/Fax: +86-351-4639114; E-mail: junxuty@163.com (J.X.)
- 28 / Tel/Fax: +86-351-4135670; E-mail: shanxiyangcheng@126.com (B.Y.)

32

Abstract

33 Background: As a three-dimensional network involving glycosaminoglycans (GAGs),

- proteoglycans (PGs) and other glycoproteins, the role of extracellular matrix (ECM) in 34
- 35 tumorigenesis is well revealed. Abnormal glycosylation in liver cancer is correlated with
- tumorigenesis and chemoresistance. However, the role of galactosyltransferase in HCC is 36
- 37 largely unknown.
- 38 Methods: Here, the oncogenic functions of B4GALT7 were identified in HCC by a panel of in
- vitro experiments, including MTT, colony formation, transwell and flow cytometry assay. The 39
- expression of B4GALT7 in HCC cell lines and tissues were examined by qPCR and western 40
- blot assay. The binding between B4GALT7 and miR-338-3p was examined by dual-luciferase 41
- 42 reporter assay.
- 43 Results: B4GALT7 encodes galactosyltransferase I and it is highly expressed in HCC cells and
- 44 10-human HCC tissues compared with para-tumor specimens. MiR-338-3p was identified to
- bind the 3' UTR of B4GALT7. Highly expressed miR-338-3p suppressed HCC cell invasive 45
- abilities and rescued the tumor-promoting effect of B4GALT7 in HCC. ShRNA mediated 46
- 47 B4GALT7 suppression reduced HCC cell invasive abilities, and inhibited the expression of
- MMP-2 and Erk signaling. These findings identified B4GALT7 as a potential prognostic 48
- 49 biomarker and therapeutic target for HCC.
- Keywords B4GALT7; SNU-423; SK-Hep-1; MMP-2. 50

Introduction

51

53

54

58 59

61

62

Hepatocellular carcinoma (HCC) is the second most common cause of cancer deaths 52

worldwide (Llovet JM et al., 2022; Shi et al., 2021; Sas et al., 2022). The liver tumor

micro-environment (TME) is more complex than other types of cancer, as HCC mainly

develops because of chronic inflammation and fibrotic tissue background (Feng et al., 55

2022). The TME consists of tumor cells, stromal cells and proteins within the 56

extracellular matrix (ECM) (Feng et al., 2022). The ECM compositions can change 57

based on the needs of tumor microenvironment (Kang et al., 2022). Considering the

low five-year survival rate, and high rates of recurrence and metastasis for HCC,

identifying the molecular function and mechanisms of ECM proteins is urgently needed 60

for understanding tumorigenesis.

Liver damage is the cause for 90% of HCC patients and deterioration of liver function

Commentato [A1]: Please make all the abbreviations clear the first time you mention them

Commentato [A2]: Please add a "Conclusion" paragraph

Commentato [A3]: Unclear: do you mean that the survival rate is low, and on average is five-years?

Commentato [A4]: Not clear to me: liver damage is the cause of 90% of HCC in patients?

leads to elevated proteoglycan (Dituri et al., 2022; Lujambio et al., 2021). 63 Proteoglycans (PGs) are cell surface molecules that consist of the protein core and 64 glycosaminoglycan (GAG) chains. PGs are also a significant component of the ECM 65 and regulate cell-cell and cell-matrix interactions (Dituri et al., 2022). GAG chains are 66 attached to the serine residue of the protein core via a tetrasaccharide linkage region 67 (GlcAβ-1,3-Gal-β1,3-Gal-β1,4-Xyl-β1,3-) (Mosher et al., 2019). B4GALT7 (beta-1,4-68 69 galactosyltransferase, polypeptide galactosyltransferase 7) encodes 70 galactosyltransferase I—I (or UDP-Galactose: O-Xylosylprotein 71 galactosyltransferase) that is involved in the attachment of two galactose residues to xylose in the biosynthesis of the linkage region (Arunrut et al., 2016; Mosher et al., 72 2019; Salter et al., 2016; Sandler-Wilson et al., 2019). Therefore, mutations in 73 B4GALT7 lead to deficient production of proteoglycans (Guo et al., 2013; Mosher et 74 75 al., 2019; Salter et al., 2016; Sandler-Wilson et al., 2019). Mutations in B4GALT7 cause 76 skeletal dysplasia, Ehlers-Danlos syndrome and Larson of Reunion Island syndrome 77 (LRS), since B4GALT7 is correlated with the initiation of glycosaminoglycan side chain synthesis of PGs (Mosher et al., 2019; Arunrut et al., 2016; Sandler-Wilson et al., 78 79 2019; Delbaere et al., 2020; Caraffi et al., 2019). The differential expression and 80 prognostic value of the B4GALT7 have been observed in glioblastoma and myeloma cells (Zhang et al., 2021; Bret et al., 2009). However, the specific regulatory mechanism 81 for B4GALT7 is largely unknown. Meanwhile, two members of the B4GALT gene 82 83 family, B4GALT1 and B4GALT5, have been reported to be involved in the 84 development of MDR (multidrug resistance) of human leukemia cells by regulating the Hh (hedgehog) signaling and the expression of P-gp (p-glycoprotein) and MRP1 85 (MDR-associated protein 1) (Zhou et al., 2013). B4GALT4 has been reported to 86 promote microtubule spindle assembly in HCC by inducing the expression of PLK1 87 and RHAMM (Dai et al., 2022). 88 Here, we found that B4GALT7 was expressed at high levels in HCC tissues and cells, 89 90 which correlates to poorer survival of HCC patients. B4GALT7 suppression reduced HCC cell proliferation, migration, and invasion in vitro. B4GALT7 suppression induced 91 DNA damage, evidenced by the elevated phosphorylation levels of ATM and H2A.X. 92 DNA damage response involves cell cycle arrest to allow repair (Smith et al., 2020). 93 Chk2 was phosphorylated by ATM (Cao et al., 2021). Chk2 phosphorylates and 94 inactivates Cdc25C, and the inactivated Cdc25C is unable to dephosphorylate Cdc2 95

Commentato [A5]: Non only. There are indeed circulating PGs. I would stick to their structure

96 (CDK1) (*Cao et al.*, 2021). Therefore, DNA damage suppressed the dephosphorylation of Cdc2. Cdc2 was active only at the G2/M border and bound to cyclin B1 (*Yuan et al.*, 98 2021). The Cdc2/cyclin B1 complex is suppressed by Weel (*Shin et al.*, 2019). 99 Consistently, the phosphorylation levels of Chk2, Cdc2 and Weel were elevated after shRNA mediated B4GALT7 suppression in SNU-423 and SK-Hep-1 cells, indicating that the ATM-Chk2-Cdc2/cyclin B1 pathway was involved in the G2/M cell cycle arrest caused by B4GALT7 suppression.

MiR-338-3p was found to bind to the 3' UTR of B4GALT7 by online software prediction and dual-luciferase reporter assay. Both B4GALT7 suppression suppression and miR-338-3p mimics downregulated MMP-2-2, mesenchymal markers N-cadherin and vimentin, upregulated the expression of epithelial marker E-cadherin, and inhibited Erk signaling, thereby reducing HCC cell migration and invasion. ConsequentlyMMPs are involved in the rearrangement of ECM during tumorigenesis (Zhao et al., our work suggested-2022). MMP2, a member of the MMP protein family, is highly expressed in HCC and the overexpression correlates with invasion and metastasis behaviors (Fan et al., 2021; Shi et al., 2021; Ye et al., 2021; Han et al., 2016). Previous studies demonstrated that MMP2 was regulated by the PI3K/Akt and the MAP kinase pathways (Ye et al., 2021; Han et al., 2016). We found that both B4GALT7 drove suppression and miR-338-3p mimics reduced MMP2 expression and the MAP kinase pathway, which may lead to attenuated HCC progression through elevating cell metastasis and invasion. Consequently, these results demonstrated that B4GALT7 suppression may inhibit HCC cell migration and invasion through downregulating MMP-2 expression expression and

Commentato [A6]: I agreed with the reviewer's suggestion of elaboration of the explored molecular pathway, but this description is far too much detailed and anticipates results and discussion. I would suggest to state here only the pathways that will be investigated in the study and the rationale for doing so.

Commentato [A7]: The readers do not expect to read the whole story here. Just to state which pathways/player your planned to investigate and the evidence that brought you to do so

Materials and methods

the MAP kinase pathway.

103

104

105

106

107

108 109

110 111

112

113 114

115

116 117

118

119

120

Cell lines and tumor tissues

- Human HCC cell lines Huh-7, HepG2, SMMC-7721 and SK-Hep-1 were purchased
- 122 from Cell Bank of Chinese Academy of Sciences (Shanghai, China). Human hepatocyte
- cell line HL-7702 and human HCC cell line SNU-423 were purchased from American
- 124 Type Culture Collection (ATCC, USA). They were maintained in DMEM (Huh-7,
- 125 HepG2 and SK-Hep-1) or RPMI-1640 (SMMC-7721, SNU-423 and HL-7702) medium
- 126 with 10% fetal bovine serum. All cell lines used in the study were tested and

- authenticated using short tandem repeat (STR) matching analysis. 10 pairs of HCC
- 128 tissues and corresponding para-tumor specimens were collected from the Affiliated
- 129 Tumor Hospital of Shanxi Medical University (Shanxi, China). Written informed
- 130 consents were obtained from all participants before surgery. Collections and use of
- tissue samples were approved by the ethics committee of the Affiliated Tumor Hospital
- of Shanxi Medical University (approval number: KY2023017) and were in accordance
- with the Declaration of Helsinki.

Transfection

134

- 135 The short hairpin RNA (shRNA)-B4GALT7 and an empty vector were designed by
- 136 GenePharma (Shanghai, China). The lentiviral vector plasmid used was LV3
- 137 (H1/GFP&Puro). Puromycin (4 µg/ml) was applied to select stable cell lines using
- shRNA vector to mediate B4GALT7 suppression. The three shRNA sequences targeting
- 139 B4GALT7 were as follows:
- shRNA- B4GALT7-1: 5'-GCAACAGCACGGACTACATTG-3';
- shRNA- B4GALT7-2: 5'-GCCTGAACACTGTGAAGTACC-3';
- shRNA- B4GALT7-3: 5'-GCACTGTCCTCAACATCATGT-3'.
- LV3 NC: 5'-TTCTCCGAACGTGTCACGT-3'. (NC: negative control)
- 144 The miR-338-3p inhibitor and mimics were purchased from GenePharma, and were
- transfected into SNU-423 and SK-Hep-1 cells using siRNA-mate (GenePharma). The
- sequence information is shown in Table 1. Plasmid DNA (pEX-3/B4GALT7) with the
- 147 restriction enzyme cutting site XhoI/EcoRI was obtained from GenePharma.
- 148 Transfection was conducted according to the manufacturer's instructions.

Cell proliferation, colony formation, migration, and invasion

150 assays

- 151 MTT (Solarbio, Beijing, China) was conducted to assay cell proliferation. Absorbance
- at 492 nm was examined on consecutive four days using a BioTek microplate reader
- 153 (Winooski, VT, USA). For the colony formation assay, the colonies were stained with
- 154 0.5% crystal violet and photographed. Absorbance at 595 nm (OD₅₉₅) was determined
- with a BioTek microplate reader. Each experiment was carried out three times. For the
- wound healing assay, a scratch was made to the monolayer formed by indicated cells in
- 6-well plates. Cells were further maintained without FBS for 48 h. The wound was

- photographed using light microscope and the wound healing area was calculated by
- 159 Image J software. For the migration and invasion assay, the upper chambers were coated
- with or without 100 μL of Matrigel (1:8 mixed with FBS-free medium; Corning, New
- 161 York, USA). 5-8×10⁴ indicated HCC cells were seeded in the upper chamber of
- transwell plates (8 µm pore size; Corning) without serum. Medium with 10% FBS was
- 163 filled into the lower chamber. Cells on the bottom chamber were fixed, stained, and
- counted in five randomly selected fields using light microscope after 48 h.

Dual-luciferase reporter assay

- The GP-miRGLO-B4GALT7 WT (wild-type) plasmids and its corresponding mutant-
- type (mut) plasmids were designed by GenePharma. The above luciferase vectors, miR-
- 338-3p mimics or miR-338-3p NC was co-transfected into HEK-293T or SNU-423
- cells using Lipofectamine 2000 (Invitrogen). The dual luciferase reporter gene assay
- 170 kit (GenePharma) was conducted to detect the renilla and firefly luciferase activities
- after incubation for 48 h.

165

172

RNA extraction and real-time PCR

- 173 TRIzol reagent (Takara, Beijing, China) or miRNA Isolation Kit (Omega Bio-Tek,
- 174 Guangzhou, China) was performed to extract total RNA. PrimeScript[™] RT reagent Kit
- with gDNA Eraser (Takara) or Mir-X miRNA First-Strand Synthesis Kit (Takara) was
- performed to reversely transcribe cDNA from mRNA and miRNA. qRT-PCR was
- 177 performed to calculate the mRNA levels by the 2^{-ΔΔCt} method using TB Green[®] Premix
- 178 Ex TaqTM II (Takara). mRNA and miRNA expression levels were normalized to β -actin
- and small nucleolar RNA U6, respectively. The qRT-PCR primer sequences are shown
- in Table 2.

181

Flow cytometry analysis of cell apoptosis and cell cycle

- For analysis of cell apoptosis, the indicated HCC cells $(1\times10^6 \text{ cells/mL})$ were incubated
- with 10 μL 7-AAD, 500 μL binding buffer and 5 μL Annexin V-APC for 15 min at 37 °C
- in the dark. For analysis of cell cycle, the indicated HCC cells were harvested, fixed in
- 185 70% ethanol, and incubated with RNase A and propidium iodide (PI) for 1 h at room
- temperature. The apoptosis rate and cell cycle were examined with an Agilent
- NovoCyte flow cytometer (Agilent, Santa Clara, USA). Each experiment was carried

out three times.

188

189

Western blot analysis

- 190 Total proteins were extracted from the indicated HCC cells in RIPA buffer (Beyotime,
- 191 Shanghai, China) and quantified using the BCA protein quantitation kit (Boster
- 192 Biotechnology, Wuhan, China). Proteins in 60 μg samples were separated by 10% SDS-
- 193 PAGE and transferred onto polyvinylidene fluoride (PVDF) membranes (Millipore,
- 194 Billerica, MA, USA). The primary antibodies included B4GALT7 (1:500; NBP1-88652)
- 195 from Novus Biologicals (Shanghai, China), MMP-2 (1:1000; ab92536) from abcam
- 196 (Cambridge, the United Kingdom), and p44/42 MAPK (Erk1/2) (137F5) (1:1000;
- 197 #4695), Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E) (1:1000;
- 198 #4370), Akt (pan) (C67E7) (1:1000; #4691), Phospho-Akt (Ser473) (D9E) (1:1000;
- 199 #4060), E-Cadherin (24E10) (1:1000; #3195), N-Cadherin (D4R1H) (1:1000; #13116),
- 200 Vimentin (D21H3) (1:1000; #5741), Phospho-Chk2 (Thr68) (1:1000; #2661), Phospho-
- 201 Wee1 (Ser642) (D47G5) (1:1000; #4910), Phospho-cdc2 (Tyr15) (10A11) (1:1000;
- 202 #4539), Cyclin B1 (D5C10) (1:1000; #12231), phosphor-ATM (Ser1981) (D6H9)
- 203 (1:1000; #5883), Phospho-Histone H2A.X (Ser139) (20E3) (1:1000; #9718) from Cell
- 204 Signaling Technology (Danvers, MA), and β -actin (1:2500; TA-09) from ZSGB-
- 205 Biotechnology (Beijing, China). The membranes were visualized using an enhanced
- 206 chemiluminescent (ECL) blot detection system (Transgene, Beijing, China) after the
- 207 primary antibodies were incubated by anti-mouse or anti-rabbit secondary antibodies.

Statistical Analysis

- 209 Statistical analyses were performed using Student's t-test or one-way ANOVA by SPSS
- 210 19.0 statistical software. P < 0.05 was set as statistically significant. *, P < 0.05; **, P
- 211 < 0.01.

208

212

215

Results

- 213 Clinical relevance of B4GALT7 expression in HCC cancer
- 214 patients
 - B4GALT7 was upregulated in HCC tissues compared to para-tumor specimens in

three GEO datasets (GSE14520, GSE25097, GSE84402) (Figure 1A, P<0.001) and the TCGA database using the UALCAN portal (P<0.001, Figure 1B) (Chandrashekar et al., 2017). Consistently, upregulated B4GALT7 expression (n=90) correlated with shorter survival probability in HCC patients (P=0.0032, Figure 1C). We further validated B4GALT7 expression levels in 10 paired human HCC tissues by western blotting (Figure 1D) and qPCR (Figure 1E). B4GALT7 was overexpressed in seven (70 %) HCC tissues compared with paired para-tumor specimens (Figure 1D, 1E). B4GALT7 was mainly located in the cytoplasm and HCC tissues demonstrated stronger B4GALT7 staining than the paired para-tumor specimens (Figure 1F), as revealed in the Human Protein Atlas database (https://www.proteinatlas.org/). We further applied the TIMER2.0 database (http://timer.comp-genomics.org/) to identify the expression landscape of B4GALT7. B4GALT7 was highly expressed in a large number of cancer tissues compared to para-tumor specimens (Figure 1G).

B4GALT7 suppression reduces HCC cell proliferation in vitro

We then examined the endogenous expression levels of B4GALT7 in five HCC cell lines by qPCR (Figure 2A) and western blotting (Figure 2B). B4GALT7 was highly expressed in SNU-423, SMMC-7721, SK-Hep-1, HepG2 and Huh-7 cells compared with normal liver cell HL-7702 (Figure 2A, 2B). SNU-423 and SK-Hep-1, with the highest B4GALT7 expression levels, were chosen for further investigation. To examine the molecular mechanism by which B4GALT7 is associated with HCC, the SNU-423 and SK-Hep-1 cells were transfected with shRNA vectors to mediate B4GALT7 suppression. The green fluorescence intensity in both SNU-423 and SK-Hep-1 cells was above 80 % (Figure 2C). B4GALT7 was significantly downregulated in the above two cell lines by qPCR (Figure 2D) and western blotting (Figure 2E). ShRNA mediated B4GALT7 suppression in SNU-423 and SK-Hep-1 cells reduced cell proliferation rates (Figure 2F-2G). However, no significant cell apoptosis was observed (Figure 2H). Collectively, down-regulation of B4GALT7 reduces HCC cell proliferative abilities, but does not promote significant apoptosis *in vitro*.

Down-regulation of B4GALT7 arrests the cell cycle at the G2/M phase

Then, we examined whether DNA was damaged after shRNA mediated B4GALT7

247 suppression by measuring the expressions of DNA damage markers, including ataxiatelangiectasia mutated (ATM) and H2AX (Li et al., 2021; Sharma et al., 2021). The 248 phosphorylation of ATM and H2A.X was increased after shRNA mediated B4GALT7 249 suppression (Figure 3A) and was reduced after plasmid pEX-3/B4LGAT7 mediated 250 B4GALT7 overexpression (Figure 3B). B4GALT7 expression was further rescued 251 252 using plasmid pEX-3/B4GALT7 in SNU-423 transfected with shB4GALT7 (Figure 3B). DNA damage response involves cell cycle arrest to allow repair (Smith et al., 2020). 253 254 More cells stayed in the G2 phase for both cell lines after shRNA mediated B4GALT7 suppression, suggesting that B4GALT7 regulated the progression from G2 to M phase 255 256 (Figure 3C). Chk2 was phosphorylated by ATM (Cao et al., 2021). Chk2 257 phosphorylates and inactivates Cdc25C, and the inactivated Cdc25C is unable to 258 dephosphorylate Cdc2 (CDK1) (Cao et al., 2021). Chk2-phosphorylation at Thr68 was 259 significantly elevated after shRNA mediated B4GALT7 suppression (Figure 3D). DNA 260 damage suppressed the dephosphorylation of Cdc2. Cdc2 was active only at the G2/M 261 border and bound to cyclin B1 (Yuan et al., 2021). ._ShRNA mediated B4GALT7 suppression markedly promoted phosphorylation of Cdc2 at Tyr15 and induced the 262 levels of cyclin B1 (Figure 3D), which was assumed to extend the time for cells to fix 263 DNA damages. The Cdc2/cyclin B1 complex is suppressed by Wee1 (Shin et al., 2019). 264 ShRNA mediated B4GALT7 suppression in SNU-423 and SK-Hep-1 cells markedly 265 266 promoted the phosphorylation of Weel at Ser642 (Figure 3D). B4GALT7 267 overexpression rescues rescued the cell cycle arrest caused by B4GALT7 suppression (Figure 3E). Collectively, these results indicated that the ATM-Chk2-Cdc2/cyclin B1 268 pathway was involved in the G2/M cell cycle arrest caused by B4GALT7 suppression. 269

B4GALT7 interacts with miR-338-3p in HCC cells

270

271

272

273

274275

276

277

278

To examine the mechanism of B4GALT7 in modulating cell proliferative and invasive abilities, the online software TargetScan (http://www.targetscan.org/vert_72/) and miRPathDB v2.0 (https://mpd.bioinf.uni-sb.de/) were applied to screen for candidate miRNAs that might regulate B4GALT7. There is a potential 8mer binding site in the 3'UTR of B4GALT7 for miR-338-3p (Figure 4A). Low expression of miR-338-3p in SK-Hep-1 and SNU-423 cells was validated by qPCR analysis (Figure 4B). MiR-338-3p suppressed the luciferase activity of the B4GALT7-WT vector in the HEK-293T and SNU-423 cells, but not the B4GALT7-MUT vector, confirming that

miR-338-3p targeted the 3'UTR of B4GALT7 (Figure 4C). B4GALT7 overexpression reduced miR-338-3p level (Figure 4D) and shRNA mediated B4GALT7 suppression elevated miR-338-3p level in HCC cells (Figure 4E). Overexpression of miR-338-3p (Figure 4F) suppressed both mRNA (Figure 4G) and protein expression levels (Figure 4H) of B4GALT7, and miR-338-3p inhibition elevated both mRNA (Figure 4G) and protein expression levels (Figure 4H) of B4GALT7, implying that miR-338-3p degrades B4GALT7 mRNA by targeting its 3'UTR.

Previous reports have shown that miR-338-3p is involved in the EMT (epithelial-mesenchymal transition) in HCC and other malignant tumors (*Li et al., 2021; Lu et al., 2019; Song et al., 2020; Li et al., 2019*). We found that miR-338-3p mimics reduced HCC cell invasive abilities (Figure 5A); and suppressed the phosphorylation of Erk (Figure 5B), MMP2 and the expression of mesenchymal markers (N-cadherin and vimentin), whereas elevated the expression of epithelial marker E-cadherin (Figure 5B). However, the phosphorylation of Akt was not affected with miR-338-3p overexpression in the above two cell lines (Figure 5B).

B4GALT7 suppression reduces HCC cell migration and invasion in vitro

MMPs are involved in the rearrangement of ECM during tumorigenesis (*Zhao et al.*, 2021). MMP2, a member of the MMP protein family, is highly expressed in HCC and the overexpression correlates with invasion and metastasis behaviors (*Fan et al.*, 2021; *Shi et al.*, 2021; *Ye et al.*, 2021; *Han et al.*, 2016). Accordingly, shRNA—ShRNA mediated B4GALT7 suppression reduced the phosphorylation of Erk, MMP2 and the expression of mesenchymal markers (N-cadherin and vimentin), whereas elevated the expression of epithelial marker E-cadherin (Figure 6). However, the phosphorylation of Akt was not affected after shRNA mediated B4GALT7 suppression in the above two cell lines (Figure 6). Then, SK-Hep-1 and SNU-423 cells were transfected with different shRNAs/miR-338-3p inhibitors as demonstrated in Figure 7A. We found that shRNA mediated B4GALT7 suppression suppressed the migrative and invasive abilities of HCC cells, whereas miR-338-3p inhibitor significantly rescues rescued these phenotypes (Figure 7A-7B). The expression levels of MMP2, N-cadherin, vimentin and E-cadherin were rescued after miR-338-3p inhibitor was co-transfected (Figure 7C). In contrast, B4GALT7 overexpression induced HCC cell invasive abilities

(Figure 8A); and elevated the expression of MMP2 and the mesenchymal markers (N-cadherin and vimentin), whereas reduced epithelial marker E-cadherin (Figure 8B). The invasion stimulative phenotypes were rescued after miR-338-3p mimics were cotransfected (Figure 8A), and the expression levels of MMP2, N-cadherin, vimentin and E-cadherin were reversed (Figure 8B). The expression levels of MMP2 and EMT marker proteins were reversed after transfection with plasmid pEX-3/B4LGAT7 in SNU-423 with shRNA mediated B4GALT7 suppression (Figure 8C). Collectively, these results suggested that miR-338-3p rescued the tumor-promoting effect of B4GALT7 in HCC.

Discussion

311

312313

314315

316

317 318

319

320

TME consists of immune cells, stromal cells, endothelial cells, cancer-associated 321 fibroblasts, ECM, vasculature and chemokines (Yang et al., 2020). ECM is a three-322 323 dimensional architectural network involving GAGs, PGs and other glycoproteins (Karamanos et al., 2021). Among them, PGs are elevated when the liver is exposed to 324 stressful injuries (Váncza et al., 2022). PGs are involved in cell-cell and cell-matrix 325 interactions consisting of one or more GAG chains attached to core proteins (Li et al., 326 327 2022). Five glycosyltransferases, encoded by genes XYLT1, XYLT2, B4GALT7, B3GALT6, B3GAT3 catalyze the synthesis of the tetrasaccharide linker region between 328 329 the core protein and the GAG chain- (Li et al., 2022). Among them, B4GALT7 is localized in chromosome 5q35.3 with 7-8 exons and 984 nucleotides in length. 330 331 B4GALTs (beta 1,4-galactosyltransferases) are a family of glycosyltransferases with seven members that are involved in tumorigenesis (Dai et al., 2022; Shirane et al., 2014; 332 333 Wang et al., 2021), embryonic development (Kremer et al., 2020), immune and inflammatory responses (Chatterjee et al., 2021; Liu et al., 2018). However, the 334 335 function of most B4GALTs has not been investigated individually. Abnormal protein glycosylation is correlated with cancer malignant phenotypes due 336

Abnormal protein glycosylation is correlated with cancer malignant phenotypes due to changed protein function and cell-cell communication (*Dusoswa et al., 2020*). B4GALT7 encodes beta-1,4-galactosyltransferase 7, a transmembrane enzyme with 327 amino acids that catalyzes the attachment of galactose to xylose in the synthesis of tetrasaccharide linkage region of PGs. This enzyme is involved in the O-linked glycosylation-mediated biosynthesis of PGs, a significant component of ECM (*Sandler-Wilson et al., 2019*). In this study, we revealed an oncogenic role for 343 B4GALT7 in HCC development (Figure 9). The TCGA data indicates that B4GALT7 is expressed at high levels during HCC tumorigenesis, which is correlated with poor 344 prognosis for HCC patients (Figure 1). Consistently, B4GALT7 was upregulated in 345 HCC cell lines and tissues compared with corresponding para-tumor specimens (Figure 346 1, Figure 2A, Figure 2B). Using gain-of and loss-of function assays, we revealed that 347 shRNA mediated B4GALT7 suppression reduced HCC cell proliferative (Figure 2F-348 2G), migrative and invasive abilities (Figure 6, Figure 7) in vitro, but did not affect cell 349 apoptosis obviously (Figure 2H). ShRNA mediated B4GALT7 suppression promoted 350 DNA damage and cell cycle arrest at the G2/M phase (Figure 3). We further examined 351 the effect of B4GALT7 suppression on HCC cell growth, migration and invasion in 352 vivo. However, both SNU-423 and SK-Hep-1 cells were not suitable for establishing 353 354 xenograft models. We further discovered that the HCC-promoting effect of B4GALT7 is most likely attributed to B4GALT7-mediated activation of MMP2 (Figure 6, Figure 355 356 8). Collectively, the above experiments demonstrated that shRNA mediated B4GALT7 suppression reduced cell proliferative, migrative and invasive abilities in vitro, and 357 B4GALT7 acted as an oncogene in HCC. 358

359

360

361 362

363

364

365

366

367

368 369

370

371

372 373

374

375376

The data indicated that B4GALT7 suppression induced DNA damage and cell cycle arrest at the G2/M phase (Figure 3). ATM is the crucial regulator in mediating cellular response to DNA double-strand breaks and phosphorylates Chk2 and H2AX to regulate cell cycle arrest and apoptosis (Smith et al., 2020). Activated Chk2 further phosphorylates and degrades Cdc25C, which suppresses phosphorylation of CDKs through phosphorylation of Weel (Smith et al., 2020). Cdc2 (CDK1) is dephosphorylated and activated by Cdc25 and phosphorylated and inactivated by Wee1 (Matthews et al., 2022; Elbaek et al., 2020). Therefore, ATM can regulate G2/M cell cycle arrest via Chk2. Consistently, our results indicated that B4GALT7 suppression markedly elevated phosphorylation of ATM at Ser1981, H2AX at Ser139, Chk2 at Thr68, Wee1 at Ser642, Cdc2 at Tyr15, and promoted the level of cyclin B1 (Figure 3A-3B, 3D-3E). The ATM-Chk2-Cdc2/cyclinB1 signaling in HCC cells was elevated after shB4GALT7 transfection, and the cell cycle arrest was rescued after plasmid pEX-3/B4LGAT7 transfection. Previous studies suggested that eyelinB1/CDK1 is indispensable for reduction of apoptosis in tumors tumors (Allan et al., 2007; O'Connor et al., 2000). Consistently, no significant cell apoptosis in HCC cells was observed after shB4GALT7 transfection (Figure 2H).

MicroRNAs (miRNAs) are closely correlated with tumorigenesis (Di Martino et al.,

Commentato [A8]: And also a possible modulation by miR-338-3p?

Commentato [A9]: Can you please add a description/legend of figure 9?

Commentato [A10]: I suggest to reduce the reference to figures within the discussion paragraph. You already explained and referred to figures in the Results, here it would be important to focus on the explanations of such findings and connection with the known and unknown data

2022). Previous studies have revealed that miR-338-3p was involved in the progression and EMT of human cancers (Li et al., 2021; Zhang et al., 2021), which was consistent with our data (Figure 5). The dual luciferase reporter assay revealed that miR-338-3p was able to bind the 3' UTR of B4GALT7 (Figure 4C) and the reciprocal suppressive effect of B4GALT7 and miR-338-3p was revealed by RT-qPCR (Figure 4D-4G) and western blotting (Figure 4H). Since B4GALT7 and miR-338-3p negatively modulated each other in HCC, we investigated whether B4GALT7 plays a role in the migration and invasion of HCC cells. We discovered that B4GALT7 is associated with the migratory and invasive capabilities of HCC cells. B4GALT7 suppression in indicated HCC cells reduced cell migration and invasion (Figure 6, Figure 7A-7B). The suppressive effect of B4GALT7 on HCC cell proliferative and invasive abilities was further reversed by miR-338-3p inhibitor (Figure 7A-7B). Consistently, the expression levels of EMT marker proteins and MMP-2, and the phosphorylation levels of signaling proteins were all recovered after co-transfection with shB4GALT7 and the miR-338-3p inhibitor (Figure 7C) or after transfection with plasmid pEX-3/B4GALT7 in HCC cells (Figure 8). Consequently, these results demonstrated that highly expressed miR-338-3p rescued the tumor-promoting effect of B4GALT7 in HCC.

Reduced B4GALT7 expression downregulated the expressions of MMP-2, mesenchymal markers N-cadherin and vimentin, and upregulated the expression of epithelial marker E-cadherin, which can be further recovered after co-transfection with shB4GALT7 and the miR-338-3p inhibitor. MMPs, particularly MMP2, correlate with EMT during tumorigenesis (*Fan et al., 2021*; *Shi et al., 2021*; *Wang et al., 2018*). Here, we found a positive correlation between B4GALT7 and MMP2 expression in HCC (Figure 7C, Figure 8C). We further found that MMP2 expression in indicated HCC cells was significantly reduced upon miR-338-3p mimics transfection, which could be reversed upon miR-338-3p inhibitors transfection (Figure 5B). Previous studies demonstrated that MMP2 was regulated by the PI3K/Akt and the MAP kinase pathways (*Ye et al., 2021*; *Han et al., 2016*). We found that B4GALT7 suppression reduced MMP2 expression and the MAP kinase pathway, which may lead to attenuated HCC cell metastasis and invasion. Collectively, these results demonstrated that B4GALT7 may contribute to HCC cell migration and invasion through the MAP kinase pathway.

In conclusion, our study reveals that B4GALT7 is expressed at high levels in HCC and upregulated B4GALT7 expression correlated with HCC invasive abilities. Our data also demonstrate that B4GALT7 suppression reduces HCC cell invasion by

Commentato [A11]: Although the data are clear I would suggest to underline these are in vitro results and would be cautious in declaring the pathway investigated are the ones and only involved.

412 plays in HCC awaits further validation and exploration. Funding-413 This work was supported by the grants from the National Natural Science Foundation 414 415 of China (Nos. 30901821, 81172136, and 82072737), Natural Science Basic Project of 416 Province, China (Nos. 20210302124183, 202103021224238, 417 202103021224240, 201701D121165, 201801D221069, and 201901D1111190), 418 Scientific and Technological Innovation Programs of Higher Education Institutions in 419 Shanxi (No. 2021L339), Scientific Research Starting Foundation for Doctor of 420 Changzhi Medical College (No. BS202007), Research Project Supported by Shanxi Scholarship Council of China (Nos. 2020-194, and 2021-165), Open Fund from Key 421 422 Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, 423 China (No. KLMEC/SXMU-202011), Shanxi '1331 Project' Key Subjects 424 Construction, China (No. 1331KSC), Outstanding Youth Foundation of Shanxi 425 Province, China (No. 201901D211547), Scientific research project of Shanxi Provincial Health Commission, China (No. 2019059), "136" College-level open fund, 426 China (No. 2021YZ03). 427 428 **Author contributions** 429 Conceived and designed the experiments: CL, JX, BY. Performed the experiments: CL, 430 YJ, XZ, ZW, XZ, CZ. Analyzed the data: CL, YJ, BY. Contributed 431 reagents/materials/analytical tools: CL, XL, XZ, TG, HZ, DZ, YN, XD, GL, FL, HZ, 432 LZ. Wrote the paper: CL, BY. 433 Data availability statement 434 The datasets generated during and/or analyzed during the current study are available 435 from the corresponding author on reasonable request. Conflict of interest 436

downregulating MMP2 and the MAP kinase pathway. Moreover, the role of B4GALT7

References

437

438

The authors declare that they have no conflict of interest.

439	Llovet JM, Castet F, Heikenwalder M, Maini MK, Mazzaferro V, Pinato DJAllan LA,
140	Pikarsky E, et al Clarke PR. Immunotherapies for hepatocellular carcinoma.
141	Nat Rev Clin Oncol 2022, 19(3): 151-172.
142	Shi JF, Cao MM, Wang YT, Bai FZ, Lei L, Peng J, Feletto E, et al 2007. Is it possible to
143	halve the incidence Phosphorylation of liver cancer in China-caspase-9 by 2050?
144	Int J Cancer 2021, 148(5): 1051-1065.
145	Sas Z, Cendrowicz E, Weinhäuser I, Rygiel TP. Tumor microenvironment of
146	hepatocellular carcinoma: challenges and opportunities for new treatment
147	optionsCDK1/cyclin B1 protects mitotic cells against apoptosis. Int J-Mol Sci
148	2022, 23(7 <i>Cell</i> 26(2) : 3778.
149	Feng H, Zhuo YH, Zhang XM, Li YY, Li Y, Duan XJ, Shi J, et al. Tumor
450	microenvironment in hepatocellular carcinoma: key players for immunotherapy.
451	J Hepatocell Carcinoma 2022, 9: 1109-1125.
452	Kang JN, Manna FL, Bonollo F, Sampson N, Alberts LL, Mingels C, Afshar-Oromieh
453	A, et al. Tumor microenvironment mechanisms and bone metastatic disease
454	progression of prostate cancer. Cancer Lett 2022, 530: 156-169.
455	Dituri F, Gigante G, Scialpi R, Mancarella S, Fabregat I, Giannelli G. Proteoglycans in
456	cancer: friends or enemies? A special focus on hepatocellular carcinoma.
457	Cancers (Basel) 2022, 14(8): 1902.
458	Lujambio A, Maina F. Turning up our understanding of liver cancer by a notch. J
459	Hepatol 2021, 74(3): 502-504.
460	Mosher TM, Zygmunt DA, Koboldt DC, Kelly BJ, Johnson LR, McKenna DS, Hood
461	BC, et al. Expansion of B4GALT7 linkeropathy phenotype to include perinatal
462	lethal skeletal dysplasia. Eur J Hum Genet 2019, 27(10): 1569-1577301-310
463	DOI 10.1016/j.molcel.2007.03.019.
464	Arunrut T, Sabbadini M, Jain M, Machol K, Scaglia F, Slavotinek A 2016.
465	Corneal clouding, cataract, and colobomas with a novel missense mutation in
466	B4GALT7-a review of eye anomalies in the linkeropathy syndromes. Am J Med
467	Genet A 2016, 170(10): 2711-2718- DOI 10.1002/ajmg.a.37809.
468	Sandler Wilson Bret C, Wambach JAHose D, Marshall BAReme T, Wegner
469	DJSprynski AC, MeAlister WMahtouk K, Schved JF, Quittet P, Cole
470	FSRossi JF, Goldschmidt H, Shinawi MKlein B. 2009. Phenotype Expression
471	of genes encoding for proteins involved in heparan sulphate and response to
472	growth hormone therapy chondroitin sulphate chain synthesis and modification

```
473
             in siblings with B4GALT7 deficiency normal and malignant plasma cells. Bone
474
             2019, 124Br J Haematol 145(3): 14-21-350-368 DOI 10.1111/j.1365-
475
             2141.2009.07633.x.
      Delbaere SCao Y, Damme TVGao A, Syx DLi X, Symoens SMin H, Coucke PHe C,
476
             Willaert ASun X, Malfait FDing WQ, Zhou J. 2021. Hypomorphic zebrafish
477
             models mimic Elevated TAB182 enhances the musculoskeletal phenotype
478
479
             radioresistance of \(\textit{\beta4GalT7-deficient}\) Ehlers-Danlos syndromeesophageal
480
             squamous cell carcinoma through G2-M checkpoint modulation. Matrix Biol
             2020, 89 Cancer Med 10(9): 59-75.3101-3112 DOI 10.1002/cam4.3879.
481
482
      Caraffi SG, Maini I, Ivanovski I, Pollazzon M, Giangiobbe S, Valli M, Rossi A, et
483
             alSassi S, Faccioli S, Rocco MD, Magnani C, Campos-Xavier B, Unger S,
             Superti-Furga A, Garavelli L. 2019. Severe peripheral joint laxity is a
484
             distinctive clinical feature of Spondylodysplastic-Ehlers-Danlos Syndrome
485
486
             (EDS)-B4GALT7 and Spondylodysplastic-EDS-B3GALT6. Genes (Basel)
             2019, 10(10): 799, DOI 10.3390/genes10100799.
487
      Zhang CCChandrashekar DS, Wang MJ, Ji FH, Peng YZ, Wang Bashel B, Zhao
488
             JNBalasubramanya SAH, Wu JDCreighton CJ, et al. A novel glucose
489
490
             metabolism related gene signature for overall survival prediction in patients
             with glioblastoma. Biomed Res Int 2021, 2021: 8872977.
491
492
      Bret CPonce-Rodriguez I, Hose DChakravarthi BVSK, Reme T, Sprynski AC,
493
             Mahtouk K, Schved JF, Quittet P, et al Varambally S. 2017. Expression of genes
494
             encoding UALCAN: a portal for proteins involved in heparan sulphate and
495
             chondroitin sulphate chain synthesis and modification in normal-facilitating
496
             tumor subgroup gene expression and malignant plasma cells survival analyses.
             Br J Haematol 2009, 145(3Neoplasia 19(8): 350-368649-658 DOI
497
498
             10.1016/j.neo.2017.05.002.
499
      Zhou HChatterjee S, Ma HBalram A, Wei W, Ji DLi W. 2021. Convergence:
             lactosylceramide-centric signaling pathways induce inflammation, Song
500
             Xoxidative stress, Sun J, Zhang J, et al. B4GALT family mediates the multidrug
501
502
             resistance of human leukemia cells by regulating the hedgehog pathway and the
503
             expression of p-glycoprotein and multidrug resistance-associated protein lother
504
             phenotypic outcomes. Cell Death Dis 2013, 4(6Int J Mol Sci 22(4): e654.1816
505
             DOI 10.3390/ijms22041816.
506
      Dai Z, Wang K, Gao Y.—. 2022. The critical role of B4GALT4 in promoting
```

ha formattato: Italiano (Italia)

507 microtubule spindle assembly in HCC through the regulation of PLK1 and RHAMM expression. J Cell Physiol 2022, 237(1): 617-636. DOI 508 10.1002/jcp.30531. 509 510 Chandrashekar DSDelbaere S, Bashel BDamme TV, Balasubramanya SAHSyx D, Creighton CJSymoens S, Ponce-Rodriguez JCoucke P, Chakravarthi 511 512 BVSK Willaert A, et al Malfait F. 2020. Hypomorphic zebrafish models mimic 513 the musculoskeletal phenotype of β4GalT7-deficient Ehlers-Danlos syndrome. 514 UALCAN Matrix Biol 89: a portal for facilitating tumor subgroup gene ha formattato: Italiano (Italia) 515 expression and survival analyses. Neoplasia 2017, 19(8): 649-65859-75 DOI 516 10.1016/j.matbio.2019.12.002. 517 Li ZKDi Martino MT, Wang-Heaton HArbitrio M, Cartwright BM, Makinwa Y, Hilton BA, Musich PR, Shkriabai NCaracciolo D, et al. ATR prevents Ca24 518 519 overload induced necrotic cell death through phosphorylation-mediated 520 inactivation of PARP1 without DNA damage signaling. FASEB J 2021, 35(5): 521 e21373. 522 Sharma-Cordua A, Almasan A. Autophagy and PTEN in DNA damage induced 523 senescence. Adv Cancer Res 2021 Cuomo O, 150: 249-284. 524 Smith HL Grillone K, Southgate HRiillo C, Tweddle DA Caridà G, Curtin NJ. DNA 525 damage checkpoint kinases in cancer. Expert Rev Mol Med 2020 Scionti F, 22: 526 527 Cao YDLabanca C, Gao ADRomeo C, Li XQSiciliano MA, Min HD'Apolito M, He Napoli C, Sun XC Montesano M, Ding WQ Farenza V, et al. Elevated TAB182 528 529 enhances the radioresistance of esophageal squamous cell carcinoma through 530 G2-M checkpoint modulation. Cancer Med 2021 Uppolo V, 10(9): 3101-3112. 531 Yuan JH Tafuni M, Li XM Falcone F, Zhang GY D'Aquino G, Cheng 532 WPCalandruccio ND, Wang WWLuciano F, Lei YBPensabene L, Ma 533 QJTagliaferri P, et al Tassone P. USP39 mediates p21-dependent proliferation 534 2022. miR-221/222 as biomarkers and neoplasia of colon targets for therapeutic 535 intervention on cancer cells by regulating the p53/p21/CDC2/cyclin B1 axisand 536 other diseases: A systematic review. Mol Carcinog 2021, 60(4)Ther Nucleic ha formattato: Italiano (Italia) 537 Acids 27: 265-278.1191-1224 DOI 10.1016/j.omtn.2022.02.005. 538 Shin SS, Hwang BDituri F, Muhammad KGigante G, Gho YScialpi R, Song 539 JHMancarella S, Kim WJFabregat I, Kim G, et al. Nimbolide represses the

540	proliferation, migration, and invasion of bladder carcinoma cells via Chk2-
541	mediated G2/M phase cell cycle arrest, altered signaling pathways, and reduced
542	transcription factors associated MMP-9 expression. Evid Based Complement
543	Alternat Med 2019, 2019 Giannelli G. 2022. Proteoglycans in cancer: 3753587.
544	Li WZ, Xue H, Li YC, Li PJ, Ma FQ, Liu MY, Kong SZ, et al. HIPK3 circular RNA
545	promotes metastases of HCC through sponging miR 338-3p to induce ZEB2
546	expression friends or enemies? A special focus on hepatocellular carcinoma. Dig
547	Dis Sci 2021, 66(10Cancers (Basel) 14(8): 3439-34471902 DOI
548	10.3390/cancers14081902.
549	<u>Lu ML</u> <u>Dusoswa SA</u> , <u>Huang H Verhoeff J</u> , <u>Yang JH Abels E</u> , <u>Li J Méndez-Huergo SP</u> ,
550	Zhao GFCroci DO, Li WHKuijper LH, Li XHde Miguel E, et al. miR-338-
551	3p regulates the proliferation Wouters VMCJ, apoptosis and migration of
552	SW480 cells by targeting MACC1. Exp Ther Med 2019Best MG, 17(4): 2807-
553	2814.
554	Song WRodriguez E, Wang KJCornelissen LAM, Yang XZvan Vliet SJ, Dai
555	WJWesseling P, Fan ZN. Long non-coding RNA BANCR mediates esophageal
556	squamous cell carcinoma progression by regulating the IGF1R/Raf/MEK/ERK
557	pathway via miR-338 3p. Int J Mol Med 2020Breakefield XO, 46(4): 1377-
558	1388.
559	Li QNoske DP, Pan XXW ü rdinger T, Zhu DMBroekman MLD, Deng
560	ZMRabinovich GA, Jiang RQvan Kooyk Y, Wang XHGarcia-Vallejo JJ.
561	2020. Circular RNA MAT2B promotes glycolysis Glioblastomas exploit
562	truncated O-linked glycans for local and malignancy of hepatocellular
563	eareinoma through distant immune modulation via the miR-338-3p/PKM2 axis
564	under hypoxic stressmacrophage galactose-type lectin. Hepatology 2019,
565	70(4Proc Natl Acad Sci U S A 117(7): 1298-1316.3693-3703 DOI
566	10.1073/pnas.1907921117.
567	Zhao XY, Chen JY, Sun HXElbaek CR, Zhang YPetrosius V, Zou DWSørensen CS.
568	New insights into fibrosis from the ECM degradation perspective: the
569	macrophage MMP-ECM interaction. Cell Biosci 2022, 12(1)2020. WEE1
570	kinase limits CDK activities to safeguard DNA replication and mitotic entry.
571	Mutat Res 819-820: 117-111694 DOI 10.1016/j.mrfmmm.2020.111694.
572	Fan VIIV Du ZDZ Ding O Zhang I On Den Winkel M Cerbes AI, Liu M at

```
573
             alSteib CJ. 2021. SEPT6 drives hepatocellular carcinoma cell proliferation,
574
             migration and invasion via the Hippo/YAP signaling pathway. Int J Oncol 2021,
             58(6): 25 DOI 10.3892/ijo.2021.5205.
575
576
      Feng H, Zhuo Y, Zhang X, Li Y, Li Y, Duan X, Shi ¥J, <del>Yan FG</del>Xu C, <del>Wang FP</del>Gao
577
             Y, Pan LFYu Z. MiR-128-3p suppresses tumor proliferation and metastasis via
578
             targeting CDC6-2022. Tumor microenvironment in hepatocellular carcinoma
579
             cellscarcinoma: key players for immunotherapy. Tissue Cell 2021, 72J
580
             Hepatocell Carcinoma 9: 1015341109-1125 DOI 10.2147/JHC.S381764.
581
      Ye YGuo MH, Jiang SSStoler J, Du T, Ding MLui J, Hou MZNilsson O, Mi
582
             CYBianchi DW, Liang TTHirschhorn JN, et al Dauber A. Environmental
             pollutant benzo[a]pyrene upregulated long non-coding RNA HZ07 inhibits
583
             trophoblast cell migration by inactivating PI3K/AKT/MMP2 signaling pathway
584
585
             in recurrent pregnancy loss 2013. Redefining the progeroid form of Ehlers-
586
             Danlos syndrome: report of the fourth patient with B4GALT7 deficiency and
             review of the literature. Reprod Sci 2021, 28(11 Am J Med Genet A 161A(10):
587
588
             3085-3093.2519-2527 DOI 10.1002/ajmg.a.36128.
589
      Han Y, Wu Z, Wu T, Huang Y, Cheng Z, Li X, Sun T, et al Xie X, Zhou Y, Du Z.
             2016. Tumor-suppressive function of long noncoding RNA MALAT1 in glioma
590
             cells by downregulation of MMP2 and inactivation of ERK/MAPK signaling.
591
592
             Cell Death Dis 2016, 7(3): e2123— DOI 10.1038/cddis.2015.407.
593
      Yang MYKang J, La Manna F, Bonollo F, Sampson N, Alberts IL, Mingels C, Li
594
             JPAfshar-Oromieh A, Gu PThalmann GN, Fan XQKarkampouna S. 2022.
595
             The application Tumor microenvironment mechanisms and bone metastatic
596
             disease progression of nanoparticles in cancer immunotherapy: targeting tumor
597
             microenvironmentprostate cancer. Bioact Mater 2020, 6(7)Cancer Lett 530:
598
             1973-1987156-169 DOI 10.1016/j.canlet.2022.01.015.
599
      Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS,
600
             Vynios DH, et al Orian-Rousseau V, Ricard-Blum S, Schmelzer CEH, Duca
             L, Durbeej M, Afratis NA, Troeberg L, Franchi M, Masola V, Onisto M.
601
             2021. A guide to the composition and functions of the extracellular matrix.
602
603
             FEBS J 2021, 288(24): 6850-6912-DOI 10.1111/febs.15776.
604
      Váncza LKremer J, Karászi KBrendel C, Péterfia BMack EKM, Turiák LMack HID.
605
             2020. Expression of \beta-1,4-galactosyltransferases during aging in caenorhabditis
606
             elegans. Gerontology 66(6): 571-581 DOI 10.1159/000510722.
```

607 Li Q, Dezső KPan X, Zhu D, Sebestyén ADeng Z, Reszegi AJiang R, et al Wang X. 608 SPOCK1-2019. Circular RNA MAT2B promotes the development glycolysis 609 and malignancy of hepatocellular earcinomacarcinoma through the miR-338-610 3p/PKM2 axis under hypoxic stress. Front Oncol 2022 Hepatology 70(4): 1298ha formattato: Italiano (Italia) 1316 DOI 10.1002/hep.30671. 611 612 Li W, Xue H, Li Y, 12Li P, Ma F, Liu M, Kong S. 2021. HIPK3 circular RNA 613 promotes metastases of HCC through sponging miR-338-3p to induce ZEB2 expression. Dig Dis Sci 66(10): 819883.3439-3447 DOI 10.1007/s10620-020-614 615 06688-3. 616 Li Y, Zhang CWC, Zhang HYH, Feng WQW, Wang QJQ, Fan RXR. 2022. Severe 617 phenotypes of B3GAT3-related disorder caused by two heterozygous variants: 618 a case report and literature review. BMC Med Genomics 2022, 15(1): 27-Shirane K, Kuji R, Tareyanagi C, Sato T, Kobayashi Y, Furukawa S, Murata T, et al. 619 620 Gene expression levels of beta4-galactosyltransferase 5 correlate with the 621 tumorigenic potentials of B16-F10 mouse melanoma cells. Glycobiology 2014, 622 24(6): 532-541 DOI 10.1186/s12920-022-01160-9. 623 Wang XYLi Z, Shi NQWang-Heaton H, Hui MQCartwright BM, Jin HMakinwa Y, Gao SMHilton BA, Zhou QMusich PR, Zhang LShkriabai N, et al. The 624 625 impact of β-1,4 galactosyltransferase V on microglial function. Front Cell 626 Neurosci 2021Kvaratskhelia M, 15: 723308. Kremer JGuan S, Brendel CChen Q, Mack EKMYu X, Mack HIDZou Y. 2021. 627 Expression of β-1,4-galactosyltransferases during aging in caenorhabditis 628 elegans ATR prevents Ca2+ overload-induced necrotic cell death through 629 phosphorylation-mediated inactivation of PARP1 without DNA damage 630 signaling. Gerontology 2020, 66(6): 571-581. 631 632 Chatterjee S, Balram A, Li W. Convergence: lactosylceramide-centric signaling ha formattato: Italiano (Italia) 633 pathways induce inflammation, oxidative stress, and other phenotypic outcomes. 634 Int FASEB J Mol Sci 2021, 22(435(5): 1816e21373 DOI 635 10.1096/fj.202001636RRR. Liu XJX, Li AHA, Ju YYY, Liu WRW, Shi H, Hu RYR, Zhou ZJZ, et al Sun X. 2018. 636 637 β4GalT1 mediates PPARγ N-glycosylation to attenuate microglia inflammatory ha formattato: Italiano (Italia) 638 activation. Inflammation 2018, 41(4): 1424-1436 DOI 10.1007/s10753-018ha formattato: Italiano (Italia) 639 0789-4.

Dusoswa SALlovet JM, Castet F, Heikenwalder M, Maini MK, Verhoeff

642	Finn RS. 2022. Immunotherapies for hepatocellular carcinoma. Nat Rev Clin	
643	Oncol 19(3): 151-172 DOI 10.1038/s41571-021-00573-2.	
644	<u>Lu M, Croci DOHuang H, Yang J, Li J, Kuijper LHZhao G, de Miguel ELi W, Li X,</u>	
645	Liu G, Wei L, Shi B, Zhao C, et al Fu Y. Glioblastomas exploit truncated O-	
646	linked glycans for local and distant immune modulation via 2019. miR-338-3p	
647	regulates the macrophage galactose type lectin proliferation, apoptosis and	
648	migration of SW480 cells by targeting MACC1. Proc Natl Acad Sci U S A	
649	2020 Exp Ther Med 17(4): 2807-2814 DOI 10.3892/etm.2019.7260.	
650	<u>Lujambio A</u> , 417(7)Maina F. 2021. Turning up our understanding of liver cancer by a	
651	notch. J Hepatol 74(3): 3693-3703.502-504 DOI 10.1016/j.jhep.2020.10.027.	
652	Matthews HK, Bertoli C, de Bruin RAM, 2022. Cell cycle control in cancer. Nat	
653	Rev Mol Cell Biol 2022, 23(1) : 74-88-DOI 10.1038/s41580-021-00404-3.	
654	Elbaek CRMihalic Mosher T, Petrosius VZygmunt DA, Sørensen CS. WEE1 kinase	
655	limits CDK activities to safeguard DNA replication and mitotic entry. Mutat Res	
656	2020Koboldt DC, Kelly BJ, Johnson LR, McKenna DS, 819-820: 111694.	
657	Allan LA, Clarke PRHood BC, Hickey SE, White P, Wilson RK, Martin PT,	
658	McBride KL. 2019. Phosphorylation Expansion of easpase 9 by CDK1/eyelin	
659	B1 protects mitotic cells against apoptosis B4GALT7 linkeropathy phenotype to	
660	include perinatal lethal skeletal dysplasia. Mol Cell 2007, 26(2 Eur J Hum Genet	
661	27(10): 301-3101569-1577 DOI 10.1038/s41431-019-0464-8.	
662	O'Connor DS, Grossman D, Plescia J, Li F, Zhang H, Villa A, Tognin S, et	
663	Altieri DC. 2000. Regulation of apoptosis at cell division by	
664	p34cdc2 phosphorylation of survivin. Proc Natl Acad Sci U S A 2000, 97(24):	
665	13103-13107- DOI 10.1073/pnas.240390697.	
666	Di Martino MTSalter CG, Arbitrio MDavies JH, Moon RJ, Fairhurst J, Bunyan D;	
667	DDD Study; Foulds N. 2016. Further defining the phenotypic spectrum of	
668	B4GALT7 mutations. Am J Med Genet A 170(6): 1556-1563 DOI	
669	10.1002/ajmg.a.37604.	
670	Sandler-Wilson C, Wambach JA, Marshall BA, Wegner DJ, McAlister W, Cole FS,	
671	Shinawi M. 2019. Phenotype and response to growth hormone therapy in	
672	siblings with B4GALT7 deficiency. Bone 124: 14-21 DOI	ha formattato: Italiano (Italia)
673	10.1016/i.bone.2019.03.029.	

Sas Z, Caracciolo DCendrowicz E, Cordua-Weinhäuser I, Rygiel TP. 2022. Tumor

JMazzaferro V, Pinato DJ, Abels-Pikarsky E, Méndez Huergo SPZhu AX,

375	microenvironment of hepatocellular carcinoma: challenges and opportunities
676	for new treatment options. Int J Mol Sci 23(7): 3778 DOI
677	10.3390/ijms23073778.
678	Sharma A, Cuomo OAlmasan A. 2021. Autophagy and PTEN in DNA damage-
679	induced senescence. Adv Cancer Res 150: 249-284 DOI
80	10.1016/bs.acr.2021.01.006.
81	Shi JF, Cao M, Wang Y, Bai FZ, Grillone Lei L, Peng J, Feletto E, Canfell K, Riillo
82	Qu C, et al Chen W. 2021. Is it possible to halve the incidence of liver cancer
83	in China by 2050? Int J Cancer 148(5): 1051-1065 DOI 10.1002/ijc.33313.
84	Shi Y, Yan F, Wang F, Pan L. 2021. MiR-128-3p suppresses tumor proliferation and
85	metastasis via targeting CDC6 in hepatocellular carcinoma cells. Tissue Cell 72:
886	101534 DOI 10.1016/j.tice.2021.101534.
87	Shin SS, Hwang B, Muhammad K, Gho Y, Song JH, Kim WJ, Kim G, Moon SK.
888	2019. Nimbolide represses the proliferation, migration, and invasion of bladder
89	carcinoma cells via Chk2-mediated G2/M phase cell cycle arrest, altered
90	signaling pathways, and reduced transcription factors-associated MMP-9
91	expression. Evid Based Complement Alternat Med 2019: 3753587 DOI
92	10.1155/2019/3753587.
93	Shirane K, Kuji R, Tareyanagi C, Sato T, Kobayashi Y, Furukawa S, Murata T,
694	Kubota S, Ishikawa Y, Segawa K, Furukawa K. 2014. Gene expression levels
95	of beta4-galactosyltransferase 5 correlate with the tumorigenic potentials of
96	B16-F10 mouse melanoma cells. Glycobiology 24(6): 532-541 DOI
97	10.1093/glycob/cwu021.
98	Smith HL, Southgate H, Tweddle DA, Curtin NJ. 2020. DNA damage checkpoint
699	kinases in cancer. Expert Rev Mol Med 22: e2 DOI 10.1017/erm.2020.3.
700	Song W, Wang K, Yang X, Dai W, Fan Z. 2020. Long non-coding RNA BANCR
'01	mediates esophageal squamous cell carcinoma progression by regulating the
'02	IGF1R/Raf/MEK/ERK pathway via miR-221/222 as biomarkers and targets for
'03	therapeutic intervention 338-3p. Int J Mol Med 46(4): 1377-1388 DOI
'04	10.3892/ijmm.2020.4687.
'05	Váncza L, Karászi K, Péterfia B, Turiák L, Dezső K, Sebestyén A, Reszegi A, Pet
'06	ővári G, Kiss A, Schaff Z, Baghy K, Kovalszky I. 2022. SPOCK1 promotes
07	the development of hepatocellular carcinoma. Front Oncol 12: 819883 DOI

708	10.3389/fonc.2022.819883.
709	Wang X, Shi N, Hui M, Jin H, Gao S, Zhou Q, Zhang L, Yan M, Shen H. 2021. The
710	impact of β-1,4-galactosyltransferase V on microglial function. Front Cell
711	Neurosci 15: 723308 DOI 10.3389/fncel.2021.723308.
712	Wang X, Yang B, She Y, Ye Y. 2018. The lncRNA TP73-AS1 promotes ovarian cancer
713	cell proliferation and other diseases metastasis via modulation of MMP2 and
714	MMP9. J Cell Biochem 119(9): A systematic review7790-7799 DOI
715	10.1002/jcb.27158. <i>Mol Ther Nucleic Acids</i> 2022
716	Yang M, Li J, Gu P, Fan X. 2020. The application of nanoparticles in cancer
717	immunotherapy: targeting tumor microenvironment. Bioact Mater 6(7): 1973-
718	1987 DOI 10.1016/j.bioactmat.2020.12.010.
719	Ye Y, Jiang S, Du T, Ding M, Hou M, Mi C, Liang T, Zhong H, Xie J, 27Xu W,
720	Zhang H, Zhao X. 2021. Environmental pollutant benzo[a]pyrene upregulated
721	long non-coding RNA HZ07 inhibits trophoblast cell migration by inactivating
722	PI3K/AKT/MMP2 signaling pathway in recurrent pregnancy loss. Reprod Sci
723	28(11): 4191-12243085-3093 DOI 10.1007/s43032-021-00630-2.
724	Yuan J, Li X, Zhang RTG, Cheng W, Wang W, Lei Y, Ma Q, Song G. 2021. USP39
725	mediates p21-dependent proliferation and neoplasia of colon cancer cells by
726	regulating the p53/p21/CDC2/cyclin B1 axis. Mol Carcinog 60(4): 265-278
727	DOI 10.1002/mc.23290.
728	Zhang C, Wang M, Ji F, Peng Y, Wang B, Zhao J, Wu J, Zhao H. 2021. A novel
729	glucose metabolism-related gene signature for overall survival prediction in
730	patients with glioblastoma. Biomed Res Int 2021: 8872977 DOI
731	10.1155/2021/8872977.
732	Zhang R, He TTT, Shi HRH, Yuan C, Wei F, Liu ZYZ, Wang WWW. 2021.
733	Disregulations of PURPL and miR-338-3p could serve as prognosis biomarkers
734	for epithelial ovarian cancer. <i>J Cancer</i> 2021, 12(18): 5674-5680-DOI
735	10.7150/jca.61327.
736	Wang XQZhao X, Yang BChen J, She YPSun H, Ye YZhang Y, Zou D. The IncRNA
737	TP73-AS1 promotes ovarian cancer cell proliferation 2022. New insights into
738	fibrosis from the ECM degradation perspective: the macrophage-MMP-ECM
739	interaction. Cell Biosci 12(1): 117 DOI 10.1186/s13578-022-00856-w.
740	Zhou H, Ma H, Wei W, Ji D, Song X, Sun J, Zhang J, Jia L. 2013. B4GALT family
741	mediates the multidrug resistance of human leukemia cells by regulating the

742 hedgehog pathway and metastasis via modulation the expression of MMP2-p-743 glycoprotein and MMP9multidrug resistance-associated protein 1. J-Cell 744 Biochem 2018, 119(9<u>Death Dis</u> 4(6): 7790-7799.e654 DOI 745 10.1038/cddis.2013.186. 746 747 Figure and table legends 748 Table 1 Sequence information 749 750 751 Table 2 Primers and sequences 752 753 754 755 Figure 1 B4GALT7 is highly expressed in HCC tissues. (A) B4GALT7 expression levels in three GEO datasets, GSE14520, GSE25097 and GSE84402. (B) B4GALT7 756 levels in the TCGA database. (C) Survival probability of HCC patients with different 757 expression of B4GALT7. The expression of B4GALT7 was analyzed by (D) Western 758 blotting and (E) Real-time PCR in 10 pairs HCC samples and para-tumor specimens. 759 (F) Representative immunohistochemical staining results of B4GALT7 based on the 760 HPA database. (G) The expression landscape of B4GALT7 in the TIMER2.0 database. 761 762 763 Figure 2 Down-regulation of B4GALT7 inhibits HCC cell proliferative abilities in 764 vitro. (A) qPCR and (B) Western blotting analysis of the expression of B4GALT7 in 765 HCC cells (SNU-423, SMMC-7721, SK-Hep-1, HepG2, Huh-7) and normal liver cell 766 HL-7702. (C) Representative pictures of the green fluorescence intensity of HCC cells 767 after transfected with shRNA vectors to mediate B4GALT7 inhibition. (D) qPCR and 768 (E) Western blotting analysis of B4GALT7 expression in HCC cells after transfected as 769 in C. Down-regulation of B4GALT7 inhibits the proliferative abilities of HCC cells 770 (SNU-423, SK-Hep-1) determined by (F) MTT assay and (G) Colony formation assay. 771 (H) Representative pictures of flow cytometry analysis of apoptosis stained with 772 Annexin V-APC and 7-AAD in HCC cells transfected as in C. Scale bar: 100 µm. Mean 773 774 \pm SD for three independent experiments are demonstrated. *, P < 0.05; **, P < 0.01.

Figure 3 Down-regulation of B4GALT7 results in DNA damage and arrests the cell cycle at the G2/M phase. (A-B) p-ATM and p-H2A.X protein levels in SNU-423 and SK-Hep-1 cells transfected with shB4GALT7 or shNC, and further transfected with pEX-3/B4GALT7 or pEX-3/vector. (C) Cell cycle analysis in SNU-423 and SK-Hep-1 cells after shRNA mediated B4GALT7 inhibition. Mean \pm SD for three independent experiments are demonstrated. (D-E) p-Chk2, p-Wee1, p-cdc2 and cyclin B1 protein levels in B4GALT7-downregulation SNU-423 and SK-Hep-1 cells, and further transfected with pEX-3/B4GALT7 or pEX-3/vector. *, P < 0.05; ***, P < 0.01.

Figure 4 The reciprocal suppression effects of B4GALT7 and miR-338-3p. (A) The potential interaction between B4GALT7 and miR-338-3p predicted by TargetScan. (B) Expression levels of miR-338-3p in HCC cells (SNU-423, SK-Hep-1) and normal liver cell HL-7702. (C) Dual luciferase reporter assay demonstrated the luciferase activities in HEK-293T and SNU-423 cells following the indicated transfection. (D-E) Expression levels of miR-338-3p in SNU-423 and SK-Hep-1 cells with B4GALT7 overexpression and after shRNA mediated B4GALT7 inhibition. (F-G) qPCR and (H) Western blotting analysis of B4GALT7 expression in SNU-423 and SK-Hep-1 cells after transfected with miR-338-3p mimics and inhibitor. *, P < 0.05; **, P < 0.01.

Figure 5 MiR-338-3p overexpression in HCC cells reduces cell migration and invasion. (A) Matrigel-free and matrigel-based transwell assays revealed the effect of miR-338-3p on invasive abilities of SNU-423 and SK-Hep-1 cells. (B) Western blotting assay revealed the EMT marker protein expression and the phosphorylation status of signaling proteins in HCC cells transfected with miR-338-3p mimics and inhibitor. β-actin was used as the internal control. Scale bar: $100 \, \mu m$. Data were shown as the mean \pm SD. *, P < 0.05; **, P < 0.01.

Figure 6 Western blotting analysis of the phosphorylation status of signaling

actin was used as the internal control for total proteins. 809 810 811 Figure 7 The effects of B4GALT7 and miR-338-3p on HCC cell invasion and 812 migration. (A-B) Wound healing assay, matrigel-free and matrigel-based transwell 813 assays were performed in SNU-423 and SK-Hep-1 cells transfected with shNC, 814 shB4GALT7, and co-transfected with sh-B4GALT7 and the miR-338-3p inhibitor. 815 Migration of the cells to the wound was photographed at 0 h and 48 h. Scale bar: 100 816 817 μm. (C) Western blotting assay revealed the expression levels of EMT marker proteins and the phosphorylation status of signaling proteins can be rescued when co-transfected 818 with sh-B4GALT7 and the miR-338-3p inhibitor. *, P < 0.05; **, P < 0.01. 819 820 821 Figure 8 The effects of B4GALT7 and miR-338-3p on HCC cell invasion. (A) 822 Matrigel-based transwell assay was conducted in HCC cells transfected with pEX-823 824 3/vector, pEX-3/B4GALT7, and co-transfected with pEX-3/B4GALT7 and miR-338-3p mimics. (B) Western blotting assay revealed the expression levels of EMT marker 825 proteins can be reversed when co-transfected with pEX-3/B4GALT7 and miR-338-3p 826 mimics. (C) Representative western blots of EMT marker protein levels in SNU-423 827 828 cells transfected with shB4GALT7 or shNC, and further transfected with pEX-3/B4GALT7 or pEX-3/vector. *, P < 0.05; **, P < 0.01.829 830 831 832 Figure 9 Schematic representation of B4GALT7 in HCC.

proteins and EMT marker proteins in B4GALT7-downregulation HCC cells. β-

808