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Abstract

Background: As a three-dimensional network involving glycosaminoglycans (GAGs),
proteoglycans (PGs) and other glycoproteins, the role of extracellular matrix (ECM) in
tumorigenesis is well revealed. Abnormal glycosylation in liver cancer is correlated with
tumorigenesis and chemoresistance. However, the role of galactosyltransferase in IHCCI is
largely unknown.

Methods: Here, the oncogenic functions of B4GALT7 were identified in HCC by a panel of in
vitro experiments, including MTT, colony formation, transwell and flow cytometry assay. The
expression of B4GALT7 in HCC cell lines and tissues were examined by qPCR and western
blot assay. The binding between B4GALT7 and miR-338-3p was examined by dual-luciferase
reporter assay.

Results: BAGALT7 encodes galactosyltransferase I and it is highly expressed in HCC cells and
+0-human HCC tissues compared with para-tumor specimens. MiR-338-3p was identified to
bind the 3° UTR of B4GALT7. Highly expressed miR-338-3p suppressed HCC cell invasive
abilities and rescued the tumor-promoting effect of B4GALT7 in HCC. ShRNA mediated
B4GALT7 suppression reduced HCC cell invasive abilities, and inhibited the expression of
MMP-2 and Erk signaling. \These findings identified BAGALT7 as a potential prognostic
biomarker and therapeutic target for HCC. |

Introduction

Hepatocellular carcinoma (HCC) is the second most common cause of cancer deaths
worldwide (Llovet JM et al., 2022; Shi et al., 2021; Sas et al., 2022). The liver tumor
micro-environment (TME) is more complex than other types of cancer, as HCC mainly
develops because of chronic inflammation and fibrotic tissue background (Feng et al.,
2022). The TME consists of tumor cells, stromal cells and proteins within the
extracellular matrix (ECM) (Feng et al.,, 2022). The ECM compositions can change
based on the needs of tumor microenvironment (Kang et al., 2022). Considering lthe
low five-year survival rateL and high rates of recurrence and metastasis for HCC,
identifying the molecular function and-mechanisms-of ECM proteins is urgently needed
for understanding tumorigenesis.

Liver damage is the cause for 90% of HCC patients and deterioration of liver function
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leads to elevated proteoglycan (Dituri et al, 2022; Lujambio et al, 2021).
Proteoglycans (PGs) are cell surface molecules that consist of the protein core and
glycosaminoglycan (GAG) chains. PGs are also a significant component of the ECM
and regulate cell-cell and cell-matrix interactions (Dituri et al., 2022). GAG chains are
attached to the serine residue of the protein core via a tetrasaccharide linkage region
(GlcAB-1,3-Gal-B1,3-Gal-B1,4-Xyl-p1,3-) (Mosher et al., 2019). BAGALT7 (beta-1,4-
galactosyltransferase;—polypeptide——galactosyltransferase 7) encodes
galactosyltransferase +—I (or UDP-Galactose: O-Xylosylprotein 3 1.4-D-

galactosyltransferase) that is involved in the attachment of two galactose residues to

xylose in the biosynthesis of the linkage region (Arunrut et al., 2016; Mosher et al.
2019; Salter et al.,2016; Sandler-Wilson et al., 2019). Therefore, mutations in

B4GALT7 lead to deficient production of proteoglycans_(Guo et al., 2013; Mosher et
al., 2019; Salter et al.,2016; Sandler-Wilson et al., 2019). Mutations in BAGALT7 cause

skeletal dysplasia, Ehlers-Danlos syndrome and Larson of Reunion Island syndrome
(LRS), since BAGALT?7 is correlated with the initiation of glycosaminoglycan side
chain synthesis of PGs (Mosher et al., 2019; Arunrut et al., 2016; Sandler-Wilson et al.,
2019; Delbaere et al., 2020; Caraffi et al., 2019). The differential expression and
prognostic value of the-B4AGALT7 have been observed in glioblastoma and myeloma
cells (Zhang et al., 2021; Bret et al., 2009). However, the specific regulatory mechanism
for BAGALT?7 is largely unknown. Meanwhile, two members of the B4GALT gene
family, B4GALT1 and B4GALTS, have been reported to be involved in the
development of MDR (multidrug resistance) of human leukemia cells by regulating the
Hh (hedgehog) signaling and the expression of P-gp (p-glycoprotein) and MRP1
(MDR-associated protein 1) (Zhou et al., 2013). BAGALT4 has been reported to
promote microtubule spindle assembly in HCC by inducing the expression of PLK1
and RHAMM (Dai et al., 2022).

Here, we found that BAGALT7 was expressed at high levels in HCC tissues and cells,
which correlates to poorer survival of HCC patients. BAGALT7 suppression reduced

HCC cell proliferation, migration, and invasion in vitro. BAGALT7 suppression induced

DNA damage, evidenced by the elevated phosphorylation levels of ATM and H2A.X.

DNA damage response involves cell cycle arrest to allow repair (Smith et al., 2020).
Chk2 was phosphorylated by ATM (Cao et al., 2021). [Cth phosphorylates and
inactivates Cdc25C, and the inactivated Cdc25C is unable to dephosphorylate Cdc2
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(CDK1) (Cao et al., 2021). Therefore, DNA damage suppressed the dephosphorylation
of Cdc2. Cdc2 was active only at the G2/M border and bound to cyclin B1 (Yuan et al.,

2021). The Cdc2/cyclin B1 complex is suppressed by Weel (Shin et al., 2019).

Consistently, the phosphorylation levels of Chk2, Cdc2 and Weel were elevated after
shRNA mediated B4GALT7 suppression in SNU-423 and SK-Hep-1 cells, indicating
that the ATM-Chk2-Cdc2/cyclin B1 pathway was involved in the G2/M cell cycle arrest
caused by BAGALT7 suppression.

]MiR-338-3p was found to bind to the 3° UTR of B4AGALT7 by online software
prediction and dual-luciferase reporter assay. Both BAGALT7 suppression-suppression
and miR-338-3p mimics downregulated MMP-2-2, mesenchymal markers N-cadherin
and vimentin, upregulated the expression of epithelial marker E-cadherin, and inhibited

Erk signaling, thereby reducing HCC cell migration and invasion. CesnseguertlyMMPs

are involved in the rearrangement of ECM during tumorigenesis (Zhao et al., evr-work

suggested-2022). MMP2, a member of the MMP protein family, is highly expressed in

HCC and the overexpression correlates with invasion and metastasis behaviors (Fan et

al., 2021; Shi et al., 2021; Ye et al., 2021; Han et al., 2016). Previous studies

demonstrated that MMP2 was regulated by the PI3K/Akt and the MAP kinase pathways
(Yeetal., 2021; Han et al., 2016). We found that both BAGALT7 dreve-suppression and

miR-338-3p mimics reduced MMP2 expression and the MAP kinase pathway, which
may lead to attenuated HCC progression-through-elevatingcell metastasis and invasion.

Consequently, these results demonstrated that BAGALT7 suppression may inhibit HCC

cell migration and invasion through downregulating MMP-2 expressienexpression and

the MAP kinase pathway. \
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Materials and methods

Cell lines and tumor tissues

Human HCC cell lines Huh-7, HepG2, SMMC-7721 and SK-Hep-1 were purchased
from Cell Bank of Chinese Academy of Sciences (Shanghai, China). Human hepatocyte
cell line HL-7702 and human HCC cell line SNU-423 were purchased from American
Type Culture Collection (ATCC, USA). They were maintained in DMEM (Huh-7,
HepG2 and SK-Hep-1) or RPMI-1640 (SMMC-7721, SNU-423 and HL-7702) medium

with 10% fetal bovine serum. All cell lines used in the study were tested and
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authenticated using short tandem repeat (STR) matching analysis. 10 pairs of HCC
tissues and corresponding para-tumor specimens were collected from the Affiliated
Tumor Hospital of Shanxi Medical University (Shanxi, China). Written informed
consents were obtained from all participants before surgery. Collections and use of
tissue samples were approved by the ethics committee of the Affiliated Tumor Hospital
of Shanxi Medical University (approval number: KY2023017) and were in accordance

with the Declaration of Helsinki.
Transfection

The short hairpin RNA (shRNA)-B4GALT7 and an empty vector were designed by
GenePharma (Shanghai, China). The lentiviral vector plasmid used was LV3
(H1/GFP&Puro). Puromycin (4 pg/ml) was applied to select stable cell lines using
shRNA vector to mediate BAGALT7 suppression. The three shRNA sequences targeting
B4GALT?7 were as follows:

shRNA- BAGALT7-1: 5>-GCAACAGCACGGACTACATTG-3’;

SshRNA- BAGALT7-2: 5’-GCCTGAACACTGTGAAGTACC-3’;

shRNA- BAGALT7-3: 5’-GCACTGTCCTCAACATCATGT-3".

LV3 NC: 5’-TTCTCCGAACGTGTCACGT-3". (NC: negative control)

The miR-338-3p inhibitor and mimics were purchased from GenePharma, and were
transfected into SNU-423 and SK-Hep-1 cells using siRNA-mate (GenePharma). The
sequence information is shown in Table 1. Plasmid DNA (pEX-3/B4GALT7) with the
restriction enzyme cutting site Xhol/EcoRI was obtained from GenePharma.

Transfection was conducted according to the manufacturer’s instructions.

Cell proliferation, colony formation, migration, and invasion

assays

MTT (Solarbio, Beijing, China) was conducted to assay cell proliferation. Absorbance
at 492 nm was examined on consecutive four days using a BioTek microplate reader
(Winooski, VT, USA). For the colony formation assay, the colonies were stained with
0.5% crystal violet and photographed. Absorbance at 595 nm (ODsys) was determined
with a BioTek microplate reader. Each experiment was carried out three times. For the
wound healing assay, a scratch was made to the monolayer formed by indicated cells in

6-well plates. Cells were further maintained without FBS for 48 h. The wound was
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photographed using light microscope and the wound healing area was calculated by
Image J software. For the migration and invasion assay, the upper chambers were coated
with or without 100 pL of Matrigel (1:8 mixed with FBS-free medium; Corning, New
York, USA). 5-8x10* indicated HCC cells were seeded in the upper chamber of
transwell plates (8 um pore size; Corning) without serum. Medium with 10% FBS was
filled into the lower chamber. Cells on the bottom chamber were fixed, stained, and

counted in five randomly selected fields using light microscope after 48 h.
Dual-luciferase reporter assay

The GP-miRGLO-B4GALT7 WT (wild-type) plasmids and its corresponding mutant-
type (mut) plasmids were designed by GenePharma. The above luciferase vectors, miR-
338-3p mimics or miR-338-3p NC was co-transfected into HEK-293T or SNU-423
cells using Lipofectamine 2000 (Invitrogen). The dual luciferase reporter gene assay
kit (GenePharma) was conducted to detect the renilla and firefly luciferase activities

after incubation for 48 h.
RNA extraction and real-time PCR

TRIzol reagent (Takara, Beijing, China) or miRNA Isolation Kit (Omega Bio-Tek,
Guangzhou, China) was performed to extract total RNA. PrimeScript " RT reagent Kit
with gDNA Eraser (Takara) or Mir-X miRNA First-Strand Synthesis Kit (Takara) was
performed to reversely transcribe cDNA from mRNA and miRNA. qRT-PCR was

224Ct method using TB Green® Premix

performed to calculate the mRNA levels by the
Ex Taq™ II (Takara). mRNA and miRNA expression levels were normalized to S-actin
and small nucleolar RNA U6, respectively. The qRT-PCR primer sequences are shown

in Table 2.
Flow cytometry analysis of cell apoptosis and cell cycle

For analysis of cell apoptosis, the indicated HCC cells (1x10° cells/mL) were incubated
with 10 pL 7-AAD, 500 pL binding buffer and 5 pL. Annexin V-APC for 15 min at 37 °C
in the dark. For analysis of cell cycle, the indicated HCC cells were harvested, fixed in
70% ethanol, and incubated with RNase A and propidium iodide (PI) for 1 h at room
temperature. The apoptosis rate and cell cycle were examined with an Agilent

NovoCyte flow cytometer (Agilent, Santa Clara, USA). Each experiment was carried
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out three times.
Western blot analysis

Total proteins were extracted from the indicated HCC cells in RIPA buffer (Beyotime,
Shanghai, China) and quantified using the BCA protein quantitation kit (Boster
Biotechnology, Wuhan, China). Proteins in 60 g samples were separated by 10% SDS-
PAGE and transferred onto polyvinylidene fluoride (PVDF) membranes (Millipore,
Billerica, MA, USA). The primary antibodies included B4GALT7 (1:500; NBP1-88652)
from Novus Biologicals (Shanghai, China), MMP-2 (1:1000; ab92536) from abcam
(Cambridge, the United Kingdom), and p44/42 MAPK (Erk1/2) (137F5) (1:1000;
#4695), Phospho-p44/42 MAPK (Erkl1/2) (Thr202/Tyr204) (D13.14.4E) (1:1000;
#4370), Akt (pan) (C67E7) (1:1000; #4691), Phospho-Akt (Ser473) (D9E) (1:1000;
#4060), E-Cadherin (24E10) (1:1000; #3195), N-Cadherin (D4R 1H) (1:1000; #13116),
Vimentin (D21H3) (1:1000; #5741), Phospho-Chk2 (Thr68) (1:1000; #2661), Phospho-
Weel (Ser642) (D47G5) (1:1000; #4910), Phospho-cdc2 (Tyrl5) (10A11) (1:1000;
#4539), Cyclin B1 (D5C10) (1:1000; #12231), phosphor-ATM (Ser1981) (D6H9)
(1:1000; #5883), Phospho-Histone H2A.X (Ser139) (20E3) (1:1000; #9718) from Cell
Signaling Technology (Danvers, MA), and B-actin (1:2500; TA-09) from ZSGB-
Biotechnology (Beijing, China). The membranes were visualized using an enhanced
chemiluminescent (ECL) blot detection system (Transgene, Beijing, China) after the

primary antibodies were incubated by anti-mouse or anti-rabbit secondary antibodies.
Statistical Analysis

Statistical analyses were performed using Student’s #-test or one-way ANOVA by SPSS

19.0 statistical software. P < 0.05 was set as statistically significant. *, P <0.05; **, P

<0.01.
Results

Clinical relevance of B4GALT7 expression in HCC cancer

patients

B4GALT7 was upregulated in HCC tissues compared to para-tumor specimens in
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three GEO datasets (GSE14520, GSE25097, GSE84402) (Figure 1A, P<0.001) and the
TCGA database using the UALCAN portal (P<0.001, Figure 1B) (Chandrashekar et
al., 2017). Consistently, upregulated B4GALT7 expression (n=90) correlated with
shorter survival probability in HCC patients (P=0.0032, Figure 1C). We further
validated B4AGALT7 expression levels in 10 paired human HCC tissues by western
blotting (Figure 1D) and qPCR (Figure 1E). BAGALT7 was overexpressed in seven
(70 %) HCC tissues compared with paired para-tumor specimens (Figure 1D, 1E).
B4GALT7 was mainly located in the cytoplasm and HCC tissues demonstrated stronger
B4GALT7 staining than the paired para-tumor specimens (Figure 1F), as revealed in
the Human Protein Atlas database (https://www.proteinatlas.org/). We further applied
the TIMER2.0 database (http://timer.comp-genomics.org/) to identify the expression
landscape of B4AGALT7. B4AGALT7 was highly expressed in a large number of cancer

tissues compared to para-tumor specimens (Figure 1G).
B4GALT7 suppression reduces HCC cell proliferation in vitro

We then examined the endogenous expression levels of B4AGALT7 in five HCC cell
lines by qPCR (Figure 2A) and western blotting (Figure 2B). BAGALT7 was highly
expressed in SNU-423, SMMC-7721, SK-Hep-1, HepG2 and Huh-7 cells compared
with normal liver cell HL-7702 (Figure 2A, 2B). SNU-423 and SK-Hep-1, with the
highest BAGALT7 expression levels, were chosen for further investigation. To examine
the molecular mechanism by which BAGALT?7 is associated with HCC, the SNU-423
and SK-Hep-1 cells were transfected with shRNA vectors to mediate B4AGALT7
suppression. The green fluorescence intensity in both SNU-423 and SK-Hep-1 cells
was above 80 % (Figure 2C). BAGALT?7 was significantly downregulated in the above
two cell lines by gPCR (Figure 2D) and western blotting (Figure 2E). ShRNA mediated
B4GALT?7 suppression in SNU-423 and SK-Hep-1 cells reduced cell proliferation rates
(Figure 2F-2G). However, no significant cell apoptosis was observed (Figure 2H).
Collectively, down-regulation of BAGALT7 reduces HCC cell proliferative abilities,

but does not promote significant apoptosis in vitro.

Down-regulation of B4GALT7 arrests the cell cycle at the G2/M

phase

Then, we examined whether DNA was damaged after siRNA mediated BAGALT7
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suppression by measuring the expressions of DNA damage markers, including ataxia-
telangiectasia mutated (ATM) and H2AX (Li et al., 2021; Sharma et al., 2021). The
phosphorylation of ATM and H2A.X was increased after siRNA mediated B4AGALT7
suppression (Figure 3A) and was reduced after plasmid pEX-3/B4LGAT7 mediated
B4GALT?7 overexpression (Figure 3B). BAGALT7 expression was further rescued
using plasmid pEX-3/B4GALT7 in SNU-423 transfected with shB4GALT7 (Figure 3B).
More cells stayed in the G2 phase for both cell lines after shRNA mediated BAGALT7
suppression, suggesting that BAGALT7 regulated the progression from G2 to M phase
(Figure 3C). Chk2 was—phosphorylated—by—ATM—(Cao—er—al—2021)—Chk2
dephosphoryate Cde2(CDK B {(Cao-etat2021-Chk2-phosphorylation at Thr68 was
significantly elevated after shRNA mediated BAGALT7 suppression (Figure 3D)-DNA

border—and-bound—to—eyelin B1-(Yoan—et-al-—2024)—. ShRNA mediated BAGALT7
suppression markedly promoted phosphorylation of Cdc2 at Tyrl5 and induced the

levels of cyclin B1 (Figure 3D), which was assumed to extend the time for cells to fix
DNA damages-—The-Cde2reyetinBlecomplexissuppressed-by-WeeH-Shinet-al 2049,
ShRNA mediated BAGALT7 suppression in SNU-423 and SK-Hep-1 cells markedly
promoted the phosphorylation of Weel at Ser642 (Figure 3D). B4GALT7
overexpression reseres-rescued the cell cycle arrest caused by BAGALT7 suppression
(Figure 3E). Collectively, these results indicated that the ATM-Chk2-Cdc2/cyclin B1
pathway was involved in the G2/M cell cycle arrest caused by BAGALT7 suppression.

B4GALT7 interacts with miR-338-3p in HCC cells

To examine the mechanism of B4AGALT7 in modulating cell proliferative and

invasive abilities, the online software TargetScan (http://www.targetscan.org/vert 72/)

and miRPathDB v2.0 (https://mpd.bioinf.uni-sb.de/) were applied to screen for

candidate miRNAs that might regulate BAGALT7. There is a potential 8mer binding
site in the 3’UTR of BAGALT?7 for miR-338-3p (Figure 4A). Low expression of miR-
338-3p in SK-Hep-1 and SNU-423 cells was validated by qPCR analysis (Figure 4B).
MiR-338-3p suppressed the luciferase activity of the BAGALT7-WT vector in the
HEK-293T and SNU-423 cells, but not the BAGALT7-MUT vector, confirming that
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miR-338-3p targeted the 3’UTR of BAGALT7 (Figure 4C). B4AGALT7 overexpression
reduced miR-338-3p level (Figure 4D) and shRNA mediated B4AGALT7 suppression
elevated miR-338-3p level in HCC cells (Figure 4E). Overexpression of miR-338-3p
(Figure 4F) suppressed both mRNA (Figure 4G) and protein expression levels (Figure
4H) of BAGALT7, and miR-338-3p inhibition elevated both mRNA (Figure 4G) and
protein expression levels (Figure 4H) of B4GALT7, implying that miR-338-3p
degrades BAGALT7 mRNA by targeting its 3’UTR.

Previous reports have shown that miR-338-3p is involved in the EMT (epithelial-
mesenchymal transition) in HCC and other malignant tumors (Li et al., 2021; Lu et al.,
2019; Song et al., 2020; Li et al., 2019). We found that miR-338-3p mimics reduced
HCC cell invasive abilities (Figure 5A); and suppressed the phosphorylation of Erk
(Figure 5B), MMP2 and the expression of mesenchymal markers (N-cadherin and
vimentin), whereas elevated the expression of epithelial marker E-cadherin (Figure 5B).
However, the phosphorylation of Akt was not affected with miR-338-3p overexpression

in the above two cell lines (Figure 5B).

B4GALT7 suppression reduces HCC cell migration and

invasion in vitro

mediated B4GALT7 suppression reduced the phosphorylation of Erk, MMP2 and the

expression of mesenchymal markers (N-cadherin and vimentin), whereas elevated the
expression of epithelial marker E-cadherin (Figure 6). However, the phosphorylation
of Akt was not affected after ssRNA mediated BAGALT7 suppression in the above two
cell lines (Figure 6). Then, SK-Hep-1 and SNU-423 cells were transfected with
different shRNAs/miR-338-3p inhibitors as demonstrated in Figure 7A. We found that
shRNA mediated B4GALT7 suppression suppressed the migrative and invasive
abilities of HCC cells, whereas miR-338-3p inhibitor significantly reseues—rescued
these phenotypes (Figure 7A-7B). The expression levels of MMP2, N-cadherin,
vimentin and E-cadherin were rescued after miR-338-3p inhibitor was co-transfected

(Figure 7C). In contrast, BAGALT7 overexpression induced HCC cell invasive abilities
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(Figure 8A); and elevated the expression of MMP2 and the mesenchymal markers (N-
cadherin and vimentin), whereas reduced epithelial marker E-cadherin (Figure 8B). The
invasion stimulative phenotypes were rescued after miR-338-3p mimics were co-
transfected (Figure 8A), and the expression levels of MMP2, N-cadherin, vimentin and
E-cadherin were reversed (Figure 8B). The expression levels of MMP2 and EMT
marker proteins were reversed after transfection with plasmid pEX-3/B4LGAT7 in
SNU-423 with shRNA mediated B4GALT7 suppression (Figure 8C). Collectively,
these results suggested that miR-338-3p rescued the tumor-promoting effect of

B4GALT7 in HCC.
Discussion

TME consists of immune cells, stromal cells, endothelial cells, cancer-associated
fibroblasts, ECM, vasculature and chemokines (Yang et al., 2020). ECM is a three-
dimensional architectural network involving GAGs, PGs and other glycoproteins
(Karamanos et al., 2021). Among them, PGs are elevated when the liver is exposed to
stressful injuries (Vancza et al., 2022). PGs are involved in cell-cell and cell-matrix
interactions consisting of one or more GAG chains attached to core proteins (Li et al.,
2022). Five glycosyltransferases, encoded by genes XYLT1, XYLT2, B4GALT7,
B3GALT6, B3GATS3 catalyze the synthesis of the tetrasaccharide linker region between
the core protein and the GAG chain— (Li et al., 2022). Among them, BAGALT7 is
localized in chromosome 5q35.3 with 78 exons and 984 nucleotides in length.
B4GALTs (beta 1,4-galactosyltransferases) are a family of glycosyltransferases with
seven members that are involved in tumorigenesis (Dai et al., 2022; Shirane et al., 2014;
Wang et al., 2021), embryonic development (Kremer et al., 2020), immune and
inflammatory responses (Chatterjee et al., 2021; Liu et al., 2018). However, the
function of most B4GALTs has not been investigated individually.

Abnormal protein glycosylation is correlated with cancer malignant phenotypes due
to changed protein function and cell-cell communication (Dusoswa et al., 2020).
B4GALT?7 encodes beta-1,4-galactosyltransferase 7, a transmembrane enzyme with
327 amino acids that catalyzes the attachment of galactose to xylose in the synthesis of
tetrasaccharide linkage region of PGs. This enzyme is involved in the O-linked
glycosylation-mediated biosynthesis of PGs, a significant component of ECM

(Sandler-Wilson et al., 2019). In this study, we revealed‘ an oncogenic role for



343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

B4GALT7 in HCC development (Figure 9). The TCGA data indicates that BAGALT7

is expressed at high levels during HCC tumorigenesis, which is correlated with poor
prognosis for HCC patients I(F igure l)‘. Consistently, B4GALT7 was upregulated in
HCC cell lines and tissues compared with corresponding para-tumor specimens (Figure
1, Figure 2A, Figure 2B). Using gain-of and loss-of function assays, we revealed that
shRNA mediated BAGALT7 suppression reduced HCC cell proliferative (Figure 2F-
2G), migrative and invasive abilities (Figure 6, Figure 7) in vitro, but did not affect cell
apoptosis obviously (Figure 2H). ShRNA mediated B4GALT7 suppression promoted
DNA damage and cell cycle arrest at the G2/M phase (Figure 3). We further examined
the effect of BAGALT7 suppression on HCC cell growth, migration and invasion in
vivo. However, both SNU-423 and SK-Hep-1 cells were not suitable for establishing
xenograft models. We further discovered that the HCC-promoting effect of BAGALT7
is most likely attributed to B4AGALT7-mediated activation of MMP2 (Figure 6, Figure
8). Collectively, the above experiments demonstrated that ShRNA mediated B4GALT7
suppression reduced cell proliferative, migrative and invasive abilities in vitro, and
B4GALT?7 acted as an oncogene in HCC.

The data indicated that BAGALT7 suppression induced DNA damage and cell cycle
arrest at the G2/M phase (Figure 3). ATM is the crucial regulator in mediating cellular
response to DNA double-strand breaks and phosphorylates Chk2 and H2AX to regulate
cell cycle arrest and apoptosis (Smith et al., 2020). Activated Chk2 further
phosphorylates and degrades Cdc25C, which suppresses phosphorylation of CDKs
through phosphorylation of Weel (Smith et al, 2020). Cdc2 (CDK1) is
dephosphorylated and activated by Cdc25 and phosphorylated and inactivated by Weel
(Matthews et al., 2022; Elbaek et al., 2020). Therefore, ATM can regulate G2/M cell
cycle arrest via Chk2. Consistently, our results indicated that BAGALT7 suppression
markedly elevated phosphorylation of ATM at Ser1981, H2AX at Ser139, Chk2 at
Thr68, Weel at Ser642, Cdc2 at Tyrl5, and promoted the level of cyclin B1 (Figure
3A-3B, 3D-3E). The ATM-Chk2-Cdc2/cyclinB1 signaling in HCC cells was elevated
after shB4GALT?7 transfection, and the cell cycle arrest was rescued after plasmid pEX-
3/B4LGAT7 transfection. Previous studies suggested that eyelinBtcyclin BI/CDKI is
indispensable for reduction of apoptosis in twmers—tumors (Allan et al, 2007

O'Connor et al., 2000). Consistently, no significant cell apoptosis in HCC cells was
observed after shB4GALT7 transfection (Figure 2H).
MicroRNAs (miRNAs) are closely correlated with tumorigenesis (Di Martino et al.,
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2022). Previous studies have revealed that miR-338-3p was involved in the progression
and EMT of human cancers (Li et al., 2021; Zhang et al., 2021), which was consistent
with our data (Figure 5). The dual luciferase reporter assay revealed that miR-338-3p
was able to bind the 3’ UTR of B4GALT7 (Figure 4C) and the reciprocal suppressive
effect of BAGALT7 and miR-338-3p was revealed by RT-qPCR (Figure 4D-4G) and
western blotting (Figure 4H). Since B4AGALT7 and miR-338-3p negatively modulated
each other in HCC, we investigated whether B4AGALT7 plays a role in the migration
and invasion of HCC cells. We discovered that BAGALT7 is associated with the
migratory and invasive capabilities of HCC cells. BAGALT7 suppression in indicated
HCC cells reduced cell migration and invasion (Figure 6, Figure 7A-7B). The
suppressive effect of BAGALT7 on HCC cell proliferative and invasive abilities was
further reversed by miR-338-3p inhibitor (Figure 7A-7B). Consistently, the expression
levels of EMT marker proteins and MMP-2, and the phosphorylation levels of signaling
proteins were all recovered after co-transfection with shB4GALT7 and the miR-338-3p
inhibitor (Figure 7C) or after transfection with plasmid pEX-3/B4AGALT7 in HCC cells
(Figure 8). Consequently, these results demonstrated that highly expressed miR-338-3p
rescued the tumor-promoting effect of BAGALT7 in HCC.

Reduced B4GALT7 expression downregulated the expressions of MMP-2,
mesenchymal markers N-cadherin and vimentin, and upregulated the expression of
epithelial marker E-cadherin, which can be further recovered after co-transfection with
shB4GALT?7 and the miR-338-3p inhibitor. MMPs, particularly MMP2, correlate with
EMT during tumorigenesis (Fan et al., 2021; Shi et al., 2021; Wang et al., 2018). Here,
we found a positive correlation between BAGALT7 and MMP2 expression in HCC
(Figure 7C, Figure 8C). We further found that MMP2 expression in indicated HCC cells
was significantly reduced upon miR-338-3p mimics transfection, which could be

reversed upon miR-338-3p inhibitors transfection (Figure 5B)—Previeus—studies
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In conclusion, our study reveals that BAGALT?7 is expressed at high levels in HCC

and upregulated BAGALT?7 expression correlated with HCC invasive abilities. ’Our data
also demonstrate that B4GALT7 suppression reduces HCC cell invasion by
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downregulating MMP2 and the MAP kinase pathway. Moreover, the role of B4AGALT7

plays in HCC awaits further validation and exploration.

Data availability statement
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Figure and table legends

Table 1 Sequence information

Table 2 Primers and sequences

Figure 1 B4GALT?7 is highly expressed in HCC tissues. (A) BAGALT7 expression
levels in three GEO datasets, GSE14520, GSE25097 and GSE84402. (B) BAGALT7
levels in the TCGA database. (C) Survival probability of HCC patients with different
expression of B4AGALT7. The expression of BAGALT7 was analyzed by (D) Western
blotting and (E) Real-time PCR in 10 pairs HCC samples and para-tumor specimens.
(F) Representative immunohistochemical staining results of BAGALT7 based on the

HPA database. (G) The expression landscape of B4GALT7 in the TIMER2.0 database.

Figure 2 Down-regulation of BAGALT?7 inhibits HCC cell proliferative abilities in
vitro. (A) qPCR and (B) Western blotting analysis of the expression of BAGALT7 in
HCC cells (SNU-423, SMMC-7721, SK-Hep-1, HepG2, Huh-7) and normal liver cell
HL-7702. (C) Representative pictures of the green fluorescence intensity of HCC cells
after transfected with shRNA vectors to mediate B4GALT?7 inhibition. (D) gPCR and
(E) Western blotting analysis of BAGALT7 expression in HCC cells after transfected as
in C. Down-regulation of B4GALT?7 inhibits the proliferative abilities of HCC cells
(SNU-423, SK-Hep-1) determined by (F) MTT assay and (G) Colony formation assay.
(H) Representative pictures of flow cytometry analysis of apoptosis stained with
Annexin V-APC and 7-AAD in HCC cells transfected as in C. Scale bar: 100 um. Mean

+ SD for three independent experiments are demonstrated. *, P < 0.05; **, P < 0.01.
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Figure 3 Down-regulation of B4GALT?7 results in DNA damage and arrests the cell
cycle at the G2/M phase. (A-B) p-ATM and p-H2A.X protein levels in SNU-423 and
SK-Hep-1 cells transfected with shB4GALT7 or shNC, and further transfected with
pEX-3/B4GALT7 or pEX-3/vector. (C) Cell cycle analysis in SNU-423 and SK-Hep-1
cells after siRNA mediated BAGALT7 inhibition. Mean + SD for three independent
experiments are demonstrated. (D-E) p-Chk2, p-Weel, p-cdc2 and cyclin B1 protein
levels in B4GALT7-downregulation SNU-423 and SK-Hep-1 cells, and further
transfected with pEX-3/B4GALT7 or pEX-3/vector. *, P <0.05; **, P <0.01.

Figure 4 The reciprocal suppression effects of BAGALT7 and miR-338-3p. (A) The
potential interaction between BAGALT7 and miR-338-3p predicted by TargetScan. (B)
Expression levels of miR-338-3p in HCC cells (SNU-423, SK-Hep-1) and normal liver
cell HL-7702. (C) Dual luciferase reporter assay demonstrated the luciferase activities
in HEK-293T and SNU-423 cells following the indicated transfection. (D-E)
Expression levels of miR-338-3p in SNU-423 and SK-Hep-1 cells with B4GALT7
overexpression and after shRNA mediated B4GALT7 inhibition. (F-G) qPCR and (H)
Western blotting analysis of BAGALT7 expression in SNU-423 and SK-Hep-1 cells
after transfected with miR-338-3p mimics and inhibitor. *, P < 0.05; **, P <0.01.

Figure 5 MiR-338-3p overexpression in HCC cells reduces cell migration and
invasion. (A) Matrigel-free and matrigel-based transwell assays revealed the effect of
miR-338-3p on invasive abilities of SNU-423 and SK-Hep-1 cells. (B) Western blotting
assay revealed the EMT marker protein expression and the phosphorylation status of
signaling proteins in HCC cells transfected with miR-338-3p mimics and inhibitor. f3-
actin was used as the internal control. Scale bar: 100 pm. Data were shown as the mean

+ SD. *, P <0.05; **, P <0.01.

Figure 6 Western blotting analysis of the phosphorylation status of signaling



808
809
810
811
812
813
814
815
816
817
818
819

820
821
822
823
824
825
826
827
828
829

830
831
832
833

proteins and EMT marker proteins in B4GALT7-downregulation HCC cells. p-

actin was used as the internal control for total proteins.

Figure 7 The effects of BAGALT7 and miR-338-3p on HCC cell invasion and
migration. (A-B) Wound healing assay, matrigel-free and matrigel-based transwell
assays were performed in SNU-423 and SK-Hep-1 cells transfected with shNC,
shB4GALT7, and co-transfected with sh-B4AGALT7 and the miR-338-3p inhibitor.
Migration of the cells to the wound was photographed at 0 h and 48 h. Scale bar: 100
um. (C) Western blotting assay revealed the expression levels of EMT marker proteins
and the phosphorylation status of signaling proteins can be rescued when co-transfected

with sh-B4GALT7 and the miR-338-3p inhibitor. *, P < 0.05; **, P <0.01.

Figure 8 The effects of B4GALT7 and miR-338-3p on HCC cell invasion. (A)
Matrigel-based transwell assay was conducted in HCC cells transfected with pEX-
3/vector, pEX-3/B4GALT7, and co-transfected with pEX-3/B4GALT7 and miR-338-
3p mimics. (B) Western blotting assay revealed the expression levels of EMT marker
proteins can be reversed when co-transfected with pEX-3/B4GALT7 and miR-338-3p
mimics. (C) Representative western blots of EMT marker protein levels in SNU-423
cells transfected with shB4AGALT7 or shNC, and further transfected with pEX-
3/B4GALT?7 or pEX-3/vector. *, P <0.05; ** P <0.01.

Figure 9 Schematic representation of B4GALT7 in HCC.




