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ABSTRACT

The chrysanthemum DgLsL gene, homologous with tomato Ls, is one of the earliest
expressed genes controlling axillary meristem initiation. In this study, the wild-
type chrysanthemum (CW) and DgLsL-overexpressed line 15 (C15) were used to
investigate the regulatory mechanism of axillary bud development in chrysanthemum.
Transcriptome sequencing was carried out to detect the differentially expressed genes
of the axillary buds 0 h, 24 h and 48 h after decapitation. The phenotypic results showed
that the number of axillary buds of C15 was significantly higher than CW. A total of
9,224 DEGs were identified in C15-0 vs. CW-0, 10,622 DEGs in C15-24 vs. CW-24,
and 8,929 DEGs in C15-48 vs. CW-48.GO and KEGG pathway enrichment analyses
showed that the genes of the flavonoid, phenylpropanoids and plant hormone pathways
appeared to be differentially expressed, indicating their important roles in axillary
bud germination. DgLsL reduces GA content in axillary buds by promoting GA2ox
expression.These results confirmed previous studies on axillary bud germination
and growth, and revealed the important roles of genes involved in plant hormone
biosynthesis and signal transduction, aiding in the study of the gene patterns involved
in axillary bud germination and growth.

Subjects Genomics, Molecular Biology, Plant Science

Keywords Chrysanthemum morifolium, Axillary bud, DgLsL, Transcriptome, Differentially
expressed genes

INTRODUCTION

Chrysanthemum (Chrysanthemum x morifolium) has a high ornamental value and is one
of the four main fresh-cut flowers types worldwide. There are only a few chrysanthemum
varieties with little to no axillary buds, and single-headed cut chrysanthemums require
a lot of labor and material resources to manually remove axillary buds. This study lays
a theoretical foundation for the molecular mechanism of lateral branch development in
chrysanthemums and strain genetic improvement, and provides an important theoretical
basis for the standardized production of chrysanthemum.

The branch development process is closely related to plant stature, yield, and quality (Du
et al., 2017; Holalu & Finlayson, 2017; Dierck et al., 2018). This process starts with axillary
meristem initiation followed by the development and formation of flowers or lateral

How to cite this article Chen 'Y, Ling Q, Li X, Ma Q, Tang SK, Yuanzhi P, Liu Q-, Jia Y, Yong X, Jiang B. 2023. Transcriptome analysis
during axillary bud growth in chrysanthemum (chrysanthemum x morifolium). Peer] 11:¢16436 http://doi.org/10.7717/peerj.16436


https://peerj.com
mailto:13786@sicau.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.16436
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj.16436

Peer

branches (Wang, Smith & Li, 2018), which consists of two key stages: axillary meristem
formation and axillary bud growth (Holalu & Finlayson, 2017). In plants, axillary buds
are dormant due to the apical buds of the stem, indicating ‘apical dominance.” Axillary
buds meristem activity is genetically controlled and regulated by plant hormones. Previous
studies revealed, and the current study verified that auxin, cytokinin (CK), gibberellins
(GAs) and strigolactone (SL) are the most important hormones regulating lateral branch
growth and development (Pellegrineschi et al., 2004; Raatz et al., 2011). Auxin inhibits the
germination and growth of axillary buds. Early studies suggested that auxin is produced
by apical buds, then transported from the top to the axillary buds via polar transport
(Thimann, Skoog & William, 1934). However, later research found that auxin does not
enter the axillary buds directly, but affects the growth of axillary buds indirectly through
other pathways (Prasad et al., 1993; Booker, Chatfield ¢ Leyser, 2003). Low expression
levels of genes related to the flavonoid biosynthetic pathway lead to a decrease in growth
hormone transporter proteins in shoots and stems, reducing the transport rates of polar
growth hormones (Lazar ¢ Goodman, 2006). Shi et al. (2021) found that in the absence of
flavonoids, which act as inhibitors of growth hormone transport, there was an increase
in growth hormone accumulation, which in turn induced growth hormone export to
promote axillary bud growth. CK is related to plant meristem development, and is capable
of promoting axillary bud growth (Morris et al., 2005; Miiller & Leyser, 2011). GAs also
regulate the growth of axillary buds, but have different effects in different species. In peas,
rice and barley, GAs inhibit axillary bud development (Scott, Case ¢ Jacobs, 1967; Lo et al.,
2008; Jia et al., 2011; Qi et al., 20115 Luisi, Lorenzi ¢ Sorce, 2011), and in citrus, goldenrod,
sweet cherry and moonflower, GAs promotes the growth of axillary buds (Elfving, Visser ¢
Henry, 2011; Choubane et al., 2012).

Genetic studies and genomic analyses have begun to reveal the gene regulatory network
(GRN) of axillary meristem (AM) initiation. For example, CUC regulates LAS expression
(Hibara et al., 20065 Raman et al., 2008), and CUC proteins bind directly to the LAS
promoter to activate LAS expression (Tian et al., 2014). Cell-specific expression analyses as
well as genomic yeast monohybrid experiments have shown that CUC2 and LAS function
as two centers of GRN and their promoter regions are linked to many transcription factors
(Tian et al., 2014). For example, RAX1 and RAX3 directly activate CUC2, then CUC2
directly activates the miRNA gene miR164, which degrades CUCI and CUC2 transcripts,
forming a feedback loop (Mallory et al., 2004; Laufs et al., 2004; Larue, Wen & Walker,
2009). LS in tomato is a direct homolog of LAS in Arabidopsis. In tomato mutant Is plants,
although axillary bud formation is normal after flowering, the recessive Is mutation prevents
axillary meristem formation during nutritional growth, exhibiting a deficiency of axillary
meristem tissue (Groot et al., 1994).Chrysanthemum DgLsL is homologous to the LS and
LAS genes and encodes a protein that belongs to the same GRAS protein family (Yang et al.,
2005). Huh et al. (2013) suggested that the Ls gene has a conserved role in chrysanthemum
axillary meristem initiation and may interact with other temperature-dependent genes.
Jiang et al. (2010) transferred the DgLsL sense and antisense genes into the chrysanthemum
variety ‘Jinghai,” and showed that the introduction of the sense transformants significantly
promoted meristem initiation, and the number of lateral branches was positively correlated
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with the expression level of the DgLsL gene. LAS contributes to the specific expression
pattern of the GA inactivating enzyme GA20x4, which forms a low GA cellular ecotone in
regions of axillary bud formation. However, increasing GA levels in leaf axils by ectopic
expression of the GA biosynthetic enzyme GA200x2 significantly impairs axillary meristem
initiation (Zhang et al., 2020).There are more studies on the effects of transcription factors
of the GRAS family such as Is, las and moc1 on lateral branch development, but there are
no studies on the upstream and downstream genes of the DgLSL gene in chrysanthemum.
Identifying genes in the pathway where DgLsL is located will help elucidate the mechanism
DgLsL uses to regulate axillary bud development.

In this study, the wild-type chrysanthemum (CW) and DgLsL overexpressed line 15
(C15) were used to investigate the regulatory mechanism of axillary bud development in
chrysanthemum. Compared with CW, C15 has more axillary buds, and C15 and CW have
the same genetic background and little environmental interference, which makes them
ideal for studying the development of the axillary buds of chrysanthemum. Transcriptome
sequencing was carried out to detect the differentially expressed genes (DEGs) of the
axillary buds at 0 h, 24 h and 48 h after decapitation, in order to study the regulation mode
of axillary bud development in the early stage.

METHODS

Plant materials

Wild-type Chrysanthemum x morifolium ‘Jinba’ (CW) and DgLsL overexpressed line 15
(C15) with height of 8-10 cm were used for this study. The study plants were preserved by
the School of Landscape Architecture of Sichuan Agricultural University, and the seedlings
were grown in a medium supplemented with 30 g/L sucrose, 7.0 g/L agar and 4.4 g/L
MS (Murashige ¢ Skoog, 1962). They were placed in a room with a temperature of 23 °C,
a photoperiod of 16 h light/8 h dark, relative humidity of 65% and a light intensity of
100-120 wmol/(m? s). The chrysanthemum was decapitated, and the first axillary bud after
decapitation was used as bud 1 and the second axillary bud as bud 2. Bud1 and bud2 (one
cm stem segments with buds,) were collected 0 h, 24 h and 48 h after decapitation, and 0 h
samples were taken prior to decapitation. The statistical power of this experimental design,
calculated in RNASeqPower (v1.38.0) was 0.83. All samples were collected and stored at
— 80 °C for RNA-Seq and qRT-PCR sequencing. Resampling to measure the length of
lateral budl and bud2 0 h, 24 h and 48 h after decapitation for phenotypic recording. Two
technical and three biological replicates were performed.

RNA extraction and sequencing

Total RNA were extracted following the manufacturer of the RNA Prep Pure Plant Kit
(Tiangen, Beijing, China). Total amounts and integrity of RNA were assessed using the RNA
Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent Technologies, Santa Clara,
CA, USA). The test method is the same as previously described in Li et al. (2021). mRNA
was purified using poly-T and oligo-attached magnetic beads. First strand and second
strand cDNA was synthesized using random hexamer primer and M-MuLV Reverse
Transcriptase (RNase H™), and DNA Polymerase I and dNTP, respectively. The cDNA
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fragments of 370~420 bp in length were selected and purified with AMPure XP system
(Beckman Coulter, Brea, CA, USA). PCR amplification was then performed; the PCR
product was purified by AMPure XP beads, and the library was finally obtained. The insert
size of the library was detected using the Agilent 2100 bioanalyzer. The library preparations
were sequenced on an Illumina NovaSeq 6000 platformand and 150 bp pairing is generated.

Analysis of data

Clean data (clean reads) were obtained by removing reads containing adapters or N base
and low-quality reads from raw data. Q20, Q30 and GC content were calculated from
the clean date. The Trinity software (v2.6.6) with min_kmer_cov:3 and other parameters
being default accordingly was used to assemble the clean reads for the reference sequence
(Grabherr et al., 2011). Hierarchical clustering used Corset (version 4.6) with default
parameters, hierarchical clustering of transcripts based on their reads and expression
patterns. BUSCO (based on eudicots_odb10.2020-09-10.tar.gz database) software was
used to evaluate the splicing quality of Trinity, unigene and cluster, and the accuracy
and completeness of the splicing results were evaluated according to the proportion and
completeness of the comparison.

Gene function was annotated based on Nr (NCBI non-redundant), Nt (NCBI non-
redundant nucleotide sequences), Pfam (Protein family), COG (Cluster of orthologous
groups), KOG (euKaryotic Orthologous Groups), Swiss-prot (a manually annotated
and reviewed protein sequence database), KEGG (Kyoto Encyclopedia of Genes and
Genomes) and GO(Gene Ontology) databases. Differential expression analyses of two
conditions/groups (two biological replicates per condition) were performed using the
DESeq2 R package (1.20.0); padj < 0.05 and |log2(foldchange)| > 1 were set as the
significance threshold for differential expression. GOseq (1.10.0) and KOBAS (v2.0.12)
software were used for GO function enrichment analyses and KEGG pathway enrichment
analyses of differential gene sets.

Validation of RNA-Seq by qRT-PCR

To verify the validity of the transcriptome data, nine genes were chosen for qRT-PCR. The
extraction and quality detection of total RNA were the same as RNA-seq. Total RNA was
converted into cDNA using the TransScript® IT All-in-One First-Strand cDNA Synthesis
SuperMix for gPCR (One-Step gDNA Removal; TransGen Biotech, Beijing, China),
according to the manufacturer’s protocol. Relative expression levels were calculated by the
2~ AACt hethod, and the Actin gene (Forward primer: ACAACTGCTGAACGGGAAAT,
Reverse primer: AATCATAGACGGCTGGAAAAG) was used as a reference for quantitative
expression analysis. The primers used in qQRT-PCR are listed in Table S1. The the reagents
and reaction conditions of the reverse transcription PCR (RT-PCR) and qRT-PCR can be
found in the supplementary tables (Tables 52-54).

RESULTS
The phenotype of CW and C15

The number of axillary buds and plant nodes in chrysanthemums were counted as shown
in Fig. 1. The average number of axillary buds was 0.67 for CW and 4.33 for C15. The
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Figure 1 The phenotype analysis of CW and C15. (A) The phenotypes at the same stage. Bar = 1 cm. (B)
The number of axillary buds. (C) The number of nodes.
Full-size Gl DOI: 10.7717/peerj.16436/fig-1

number of axillary buds was significantly higher for C15 compared to than CW, and the
axillary buds were mostly concentrated in the lower part of the plant (Figs. IA-1B). C15
had a significant lower average number of plant nodes than CW (11.33 vs 14; Fig. 1C). The
lengths of budl and bud2 were measured at 0, 24 and 48 h after decapitation and then
the lengths were averaged. C15 axillary buds were longer than CW’s after decapitation
(Fig. 1D). CW and C15 lengths were not significantly different at 0 h; C15 axillary bud
lengths were significantly different from CW at 24 h and reached a highly significant
difference at 48 h (Fig. 1E). The results were described using standard errors. Statistics and
analyses of data were performed using SPSS software (v25.0; SPSS Inc., Chicago, IL, USA).

RNA sequencing and transcriptome analysis

In total, 413,884,995 raw reads (three replicates per sample) were generated from the CW-0,
CW-24, CW-438, C15-0, C15-24 and C15-48 libraries. The percentage of nucleotides with
quality scores higher than 20 (Q20) were all above 97%, and the Q30 content ranged from
92% to 94% (Table S5). After filtering the reads, removing quality scores lower than Q20,
more than 97.60% of the reads were identified as clean reads. Clean reads were assembled
using Trinity (Grabherr et al., 2011), and a total of 149,496 unigenes were obtained. Most
of the unigenes were 300-500 bp in length, and the smallest number of unigenes were
longer than 2,000 bp (Table S6). The functional annotation of unigenes was performed
using the Nr, Nt, Pfam, KOG/COG, Swiss-prot, KEGG, and GO databases (Table 57).
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Figure2 Volcano map and Venn diagrams of DEGs of different stages and strains. (A) DEGs of CW
0 h, 24 h, and 48 h after decapitation. (B) DEGs of C15 vs. CW 0 h, 24 h, and 48 h after decapitation. (Red
dots indicate up-regulated DEGs, green dots indicate down-regulated DEGs, and blue dots indicate genes
that were not differential expressed.).
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Identification and analysis of DEGs

FPKM values were used to indicate the abundance of each gene. DEGs were defined as
having |log2(FoldChange)| > 1 and padj < 0.05. The results showed that many genes were
differentially expressed after decapitation. A total of 19,968 DEGs were identified in CW-24
vs. CW-0, 10,450 DEGs were identified in CW-48 vs. CW-0, and there were 19,587 DEGs in
CW-48 vs. CW-24. There were 336 DEGs identified between all three comparison groups
(Fig. 2A). Meanwhile, there was a total of 9,224 DEGs identified in C15-0 vs. CW-0, 10,622
DEGs in C15-24 vs. CW-24, and 8,929 DEGs in C15-48 vs. CW-48, and these groups had
301 shared DEGs (Fig. 2B).

Functional classification and pathway analysis of DEGs

To further analyze the differential genes, GO functional classification and an enrichment
analysis were performed (Fig. S1). The results showed that in the molecular MF) category,
the DEGs were mainly involved in ion binding, ATPase activity and kinase activity.
The DEGs annotated in the cellular component (CC) category were mainly related to
chromosomes, the cell wall and external encapsulating structure. In the biological processes
(BP) category, the DEGs were mainly involved in the cellular protein modification process,
ribosome biogenesis, and the cellular protein modification process.

A total of 149,496 unigenes were assigned to 295 pathways based on KEGG annotation.
Among these unigenes, 3,152 unigenes were involved in signal transduction, 2,574 genes
were involved in translation, and 2,137 unigenes were related to carbohydrate metabolism
(Fig. S2). The most significantly enriched pathways in the DEGs of the different comparison
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groups (padj < 0.05) are shown in Table 1, including phenylpropanoid biosynthesis,
flavonoid biosynthesis, photosynthesis and other pathways involved in plant growth and
development and plant axillary bud growth.

qRT-PCR validation

Eight DEGs belonging to the plant hormone signal transduction pathway were randomly
selected for qRT-PCR validation (Fig. 3). The qRT-PCR results of these DEGs were mostly
in agreement with the RNA-seq results, which indicated that the RNA-seq results were
reliable.

Analysis of DEGs in the flavonoid biosynthesis and phenylpropanoid
biosynthesis pathways

Flavonoids and phenylpropanoids play an important role in plant growth and development.
As shown in Fig. 4A and Table S8, 28 DEGs in the flavonoid biosynthetic pathway were
downregulated between CW-0 vs. CW-24, and this low level of expression persisted up to
48 h. Most of the DEGs which belong to caffeoyl-CoA O-methyltransferase downregulated
after decapitation. There were 12 upregulated DEGs at 24 h after decapitation, which then
decreased by 48 h. The DEGs of chalcone synthase upregulated after decapitation. Four
DEGs were not upregulated until 48 h. In the phenylpropanoid biosynthesis pathway,
there were 100 downregulated DEGs, 93 of which were downregulated at 24 h and seven
were downregulated at 48 h. A total of 26 DEGs were significantly upregulated until 48
h. A large number of peroxidases were first downregulated and then upregulated after
decapitation. Caffeoyl-CoA O-methyltransferase and caffeic acid 3-O-methyltransferase
were expressed in large quantities before decapitation and downregulated rapidly after
decapitation (Fig. 4B, Table S9).

Analysis of DEGs in the plant hormone signal transduction pathway
Plant hormones, including auxin, cytokinin, gibberellin, abscisic acid and brassinosteroid
are involved in the germination and growth of axillary buds. In this study, the DEGs of these
plant hormones in the signal transduction pathways were selected for analysis. In the auxin
transduction pathway, most DEGs had similar expression patterns, with low expression
0 h and a significant increase 24 h after decapitation, then decreasing by varying degrees
by 48 h. There were 10 AUX/IAA DEGs that were expressed at high levels when they were
not decapitated but dropped to low levels of expression after decapitation (Fig. 5A). In
the cytokinin transduction pathway, all six CRE1 DEGs were downregulated substantially
followed by an increase 24 h after decapitation. The expression patterns of AHP and A-ARR
DEGs were different from AUX/IAA and CRE1 DEGs the above; they were upregulated,
then down-regulated after decapitation (Fig. 5B). In the GA transduction pathway, all five
DELLA proteins were downregulated after decapitation(Fig. 5C). In the ABA pathway,
PYR/PYL, PP2C, and SnRK2 all had a large number of DEGs. Most of the PP2C DEGs
downregulated after decapitation (Fig. 5D). In the brassinosteroid pathway, the DEGs for
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Table 1 Pathways of DEGs annotated in KEGG.

NO. Pathway annotated in KEGG Count Up Down Pathway ID
CW-24 ys. CW-0

1 Ribosome 282 250 32 ko03010
2 Photosynthesis 33 32 1 ko00195
3 Flavonoid biosynthesis 32 12 20 ko00941
4 Photosynthesis - antenna proteins 25 25 0 ko00196
5 Stilbenoid, diarylheptanoid and gingerol biosynthesis 23 4 19 ko00945
CW-48 vs. CW-0

1 Plant hormone signal transduction 99 19 80 ko04075
2 Phenylpropanoid biosynthesis 90 12 78 ko00940
3 Phenylalanine metabolism 40 4 36 ko00360
4 Flavonoid biosynthesis 28 3 25 ko00941
5 Stilbenoid, diarylheptanoid and gingerol biosynthesis 25 2 23 ko00945
CW-48 vs. CW-24

1 Spliceosome 181 87 94 ko03040
2 Cell cycle 102 76 26 ko04110
3 RNA degradation 95 65 30 ko03018
4 Ribosome biogenesis in eukaryotes 67 49 18 ko03008
5 Photosynthesis - antenna proteins 30 5 25 ko00196
C15-0 vs. CW-0

1 Phenylpropanoid biosynthesis 86 15 71 ko00940
2 Drug metabolism - cytochrome P450 32 4 28 ko00982
3 Phenylalanine metabolism 32 5 27 ko00360
4 Metabolism of xenobiotics by cytochrome P450 30 2 28 ko00980
5 Flavonoid biosynthesis 26 3 23 ko00941
C15-24 vs. CW-24

1 Proteasome 63 5 58 ko03050
2 Terpenoid backbone biosynthesis 53 4 49 Ko00900
3 Photosynthesis - antenna proteins 39 0 39 ko00196
4 Photosynthesis 36 1 35 ko00195
5 Flavonoid biosynthesis 29 11 18 ko00941
C15-48 vs. CW-48

1 Photosynthesis 47 46 1 ko00195
2 Photosynthesis - antenna proteins 46 46 0 ko00196
3 Glyoxylate and dicarboxylate metabolism 41 37 4 ko00630
4 Porphyrin and chlorophyll metabolism 29 25 4 ko00860
5 Flavonoid biosynthesis 17 10 7 ko00941

both BAK1 and BSK were downregulated 24 h after decapitation, whereas two DEGs for

CYCD3 were upregulated after decapitation (Fig. 5E).

Previous research has shown that DgLsL may regulate the content of IAA and GAs, thus

affecting the growth of plant axillary buds. For the auxin transduction pathway (Fig. 6A),
C15 had more than 10 DEGs in both AUX/IAA and SAUR compared to CW, but the
DEGs in AUX/IAA were upregulated and the DEGs in SAUR were more downregulated
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at 0 h. The DEGs in ARF and GH3 showed differential expression 24 h after decapitation,
then returned to the 0 h state at 48 h. These results suggest that DgLsL responded rapidly
after decapitation and affected the expression of genes in the auxin transduction pathway.
In the GA transduction pathway, 12 DEGs were differentially expressed for GID1, GID2

and DELLA (Fig. 6B). Of these, compared to CW, nine DEGs were downregulated at 0 h
and 24 h and 11 DEGs were upregulated at 48 h. There were 11 DEGs in the diterpenoid
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biosynthesis pathway (Fig. 6C). One CPS DEG was upregulated at 0, 24 and 48 h. DEGs
expressions for GA2 was lower at 0 h, one DEG was upregulated 24 h after decapitation,
and differential ploidy appeared to rise at 48 h. Compared with CW, most DEGs in C15
had lower expression in the GA pathway before decapitation. The expression of DgLsL was
upregulated after decapitation, which may promote gene expression in the GA pathway
affecting GA synthesis and transduction.

DISCUSSION

Effect of plant hormones on axillary bud development

In recent years, the control of axillary buds by plant hormones has been intensively
studied. Mutants of genes associated with meristem development have been analyzed in a
range of plants including Pisum sativum, Petunia x atkinsiana, Oryza sativa L., Nicotiana
tabacum L., and Arabidopsis thaliana, providing further evidence that shoot activation
can be controlled by the auxin transporter-based system (Booker, Chatfield & Leyser, 2003;
Sorefan et al., 2003; Snowden et al., 2005; Arite et al., 2007; Leyser, 2009). Plant hormones
regulate the growth and development of plants universally, and the most important of
these hormones is auxin, which was one of the first plant hormones to be discovered
(Chatfield et al., 2000; Souza et al., 2003; Shi et al., 2019; Zhang et al., 2022). GAs belong to
the diterpene family and are essential for the growth and development of plants. Previous
studies have shown that a range of changes in endogenous auxin and GA levels are the key
factors in regulating axillary bud development (Doebley, Stec ¢ Hubbard, 1997; Chatfield et
al., 20005 Nordstrom et al., 2004; Miiller ¢ Leyser, 2011). In this study, the KEGG pathway
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of the DEGs in the axillary buds of CW and C15 were analyzed 0 h, 24 h, and 48 h after
decapitation. The results showed that several of the most enriched pathways in the different
comparison groups included hormone signal transduction, phenylpropanoid biosynthesis,
flavonoid biosynthesis, photosynthesis, and other pathways related to plant axillary bud
growth.

In chrysanthemum with different branching types, auxin content plays an important
role in apical dominance. The higher the auxin content in terminal buds, the stronger the
inhibitory effect on the growth of axillary buds; the level of auxin in axillary buds also
increase during activation (Hillman, Math ¢ Medlow, 1977; Jiang et al., 2010). In Phaseolus
multiflorus and Ananas comosus, the IAA content in the axillary buds increased significantly
after decapitation. This increase in IAA content occurred before the increase in fresh weight
of the lateral buds, suggesting that IAA may be related to axillary buds growths, and the
increased of IAA content of axillary buds after decapitation may indicate the formation of
new apical dominance (Gocal et al., 1991; Souza et al., 2003). These studies all showed that
IAA content in axillary buds increased after decapitation. In the current study, most of
the DEGs in the auxin transduction pathway had similar expression patterns; these genes
had low expression levels before decapitation, significantly increase at 24 h, but decreased
by varying degrees at 48 h. In CW, the sprouting of axillary buds after decapitation was
inhibited by apical dominance, and the auxin pathway genes showed low expression
levels. And the expression of the auxin pathway genes were up-regulated after the apical
dominance of CW was removed, indicating that the axillary buds were gradually forming
a new apical dominance. Similarly, in pea, the growth of axillary buds was induced 4-6 h
after decapitation at all stem nodes (Morris et al., 2005). In chrysanthemum, 4-6 h after
decapitation, only the auxin content in the stem close to the decapitated parts decreased,
while the auxin content in the basal stems stayed similar to the non-decapitated plants.
Axillary bud initiation precedes changes in auxin content and auxin transport, and this
initiation is not inhibited by apically applied exogenous auxin, suggesting that decapitation
triggers the early growth of axillary buds through mechanism not dependent on auxin. It is
assumed that auxin acts after the axillary bud initiation stage to regulate apical dominance.
GAs are the key hormones that regulate a range of activities during plant growth and
development (Shi ef al., 2019). At the leaf axils, axillary bud initiation requires low levels
of GAs concentration (Zhang, 2018). In Arabidopsis, the gibberellin receptor mutant
has a weak apical dominance and thus exhibits a multibranched phenotype (Koorneef
et al., 1985). Many previous studies have shown that GAs inhibit axillary bud growth in
Arabidopsis, Oryza sativa L., Solanum lycopersicum and Liriodendron tulipifera (Agharkar et
al., 2007; Mauriat, Sandberg ¢ Moritz, 2011). In this study, the average number of axillary
buds in C15 was significantly higher than WT, and the gene expression of the GA pathway
before decapitation was lower in C15 compared with CW, indicating that a low level of
GAs in chrysanthemum could promote axillary bud sprouting, which is consistent with
the results of previous studies.
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DgLsL promotes GA20ox synthesis

It is unclear whether different species use the same signaling network to determine

the location of axillary meristem formation, or whether alternate pathways have been
developed. Gibberellins may regulate axillary meristem formation through a complex
network of regulation. The DELLA protein is a major blocker of the GA signaling pathway
and is involved in a variety of physiological processes by interacting with many different
transcription factors (Lee et al., 2002). It has been shown that DELLAs maintain GA
homeostasis through feedback regulation of upstream positive regulators of the GA
pathway (Sun, 2011) . Results here show that six pathways of the DELLA protein were
upregulated in C15 in the 48 h after decapitation; three pathways were downregulated
at 24 h and then upregulated at 48 h (Fig. 6B). It is hypothesized that in the ‘Jinba’
chrysanthemum, the DELLA protein inhibits GA expression and thus reduces GA content
in axillary buds. A previous study transferred DgLsL sense and antisense genes into the
‘Jinba’ chrysanthemum variety, and the results showed that the introduction of the sense
transformants significantly promoted branching, while the introduction of the antisense
transformants significantly inhibited branching; GA3 content was lower in the terminal
buds of plants that had the DgLsL sense gene introduced, and lower in the terminal buds of
plants that had the antisense gene introduced. The GA3 content was lower in the terminal
buds of the DgLsL plants and higher in the antisense DgLsL plants (Jiang et al., 2010). Later,
the Jinba’ chrysanthemum was treated with GA, 6-BA, TAA, ABA, and distilled water after
decapitation. The expression of the DgLsL gene in the lateral buds responded differently to
different hormone treatments after decapitation, with a more intense response to GA, and
the expression of DgLsL in the lateral buds of ’Jinba’ reached about 4.5-fold at 24 h. GAs also
have an inducing effect on the expression of the DgLsL gene (Luo et al., 2021). In the present
study, the average number of sprouting axillary buds in C15 was 6.5-fold higher than in
WT. Analysis of differential genes in the GA transduction pathway between wild-type plants
and DgLsL overexpressing plants 0, 24 and 48 h after decapitation (Figs. 6B—6C) revealed
that all four GA2-oxidase (GA20x) pathways had significantly up-regulated expression.
GA2ox is one of the key enzymes that affects gibberellin synthesis and metabolism. GA20x
expression was significantly up-regulated in C15, and GA20x was able to break down GAs
to reduce GA content in plants, and the number of axillary buds was higher in C15 than in
WT. Previous studies have shown that overexpression of the GA catabolic gene GA20x leads
to an increase in the number of tillers or branches in rice, tomato, turfgrass and poplar
(Agharkar et al., 2007; Lo et al., 2008; Mauriat, Sandberg ¢ Moritz, 2011; Martinez-Bello,
Moritz & Lopez-Diaz, 2015). Therefore, it is hypothesized that low concentrations of GAs
in chrysanthemum promote axillary bud germination. The DgLsL gene is a homolog of
the LAS gene cloned in chrysanthemums, and may promote lateral bud germination by
promoting GA2o0x expression, reducing GA content n chrysanthemums (Fig. 7).

Flavonoids involved in axillary bud development

Flavonoid metabolism is an important branch of phenylpropanoid metabolism (Hichri

etal., 2011; Tohge et al., 2013), and flavonoids affect the development of lateral branches
(Peer et al., 2004; Tan et al., 2019; Li et al., 2020; Shi et al., 2021). The overexpression of

Chen et al. (2023), PeerJ, DOI 10.7717/peerj.16436 13/21


https://peerj.com
http://dx.doi.org/10.7717/peerj.16436

Peer

DgLsL 5 Axillary .bud
formation
ELLA GA20x
\ L

Figure 7 Hypothetical interaction network model of axillary bud emergence and development in
chrysanthemum.
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flavonoid biosynthesis pathway-related genes inhibits axillary bud growth in A. thaliana,
whereas deletion of flavonoid biosynthesis pathway-related genes inhibits axillary bud
growth (Borevitz et al., 20005 Brown et al., 2001). Low expression levels of genes related
to the flavonoid biosynthetic pathway lead to a decrease in growth hormone transporter
proteins in shoots and stems, reducing the transport rates of polar growth hormones (Lazar
& Goodman, 2006). Flavonoids interact with regulatory proteins, promoting pin-formed
(PIN) auxin efflux, and then flavonoid content increases at the sites of growth hormone
accumulation (Peer ef al., 2004). In this study, 28 DEGs in the flavonoid biosynthetic
pathway were down-regulated in CW-0 vs. CW-24, and this low level of expression persisted
up to 48 h. In the phenylpropanoid biosynthesis pathway, there were 100 downregulated
DEGs down-regulated at different times. Most of the DEGs in the flavonoid biosynthesis
and phenylpropanoid biosynthesis pathways were down-regulated at 24 h and 48 h, likely
due to changes in auxin levels in the axillary buds after decapitation.

CONCLUSION

This study performed a transcriptomic analysis of the axillary buds of CW and C15 of ‘Jinba’
chrysanthemum 0 h, 24 h and 48 h after decapitation. The analysis showed that the genes of
the flavonoid, phenylpropanoids and plant hormone pathways appeared to be differentially
expressed, indicating their important roles in axillary bud germination. The results also
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showed that auxin acts after the axillary bud initiation stage to regulate apical dominance,
affecting axillary buds growth. In contrast, gibberellin and auxin have an antagonistic
relationship and jointly regulate the germination of axillary buds. A comparison of C15
with CW showed that DgLsL overexpression resulted in more axillary buds and fewer nodes
in chrysanthemum, indicating that there are many expression changes of genes related to
axillary bud development that would weaken the effect of DgLsL after decapitation. GA
inhibits DELLA protein expression and DELLA negatively regulates GA. DgLsL promotes
GA2o0x expression and GA2ox breaks down GA, thus reducing the GA content in axillary
buds. It is hypothesized that low concentrations of GA in chrysanthemums promote
axillary bud germination. The results of this confirmed the results of previous studies
on axillary bud germination and growth and revealed important roles of genes involved
in plant hormone biosynthesis and signal transduction, which help illuminate the gene
patterns involved in axillary bud germination and growth.
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