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ABSTRACT
The destructive and empirical methods commonly used to estimate carbon pools in
forests managed timber are time-consuming, expensive and unfeasible at a large scale;
satellite images allow evaluations at different scales, reducing time and costs. The
objective of this study was to evaluate the tree biomass (TB) and carbon content (CC)
through satellite images derived from Sentinel 2 in underutilized stands in southern
Mexico. In 2022, 12 circular sites of 400m2 with four silvicultural treatments (STs) were
established in a targeted manner: 1st thinning (T1), free thinning (FT), regeneration
cut (RC) and unmanaged area (UA). A tree inventory was carried out, and samples
were obtained to determine their TB based on specific gravity and CC through the
Walkey and Black method. The satellite image of the study area was downloaded from
Sentinel 2 to fit a simple linear model as a function of the Normalized Difference
Vegetation Index (10 m pixel−1) showing significance (p≤ 0.01) and a adjusted R2

=

0.92. Subsequently, the TB and CC (t ha−1) were estimated for each ST and managed
area. The total managed area (3,201 ha−1) had 126 t TB ha−1 and 57 t C ha−1. Of
the areas with STs, the area with FT showed the highest accumulation of TB (140 t
ha−1) and C (63 t ha−1) without showing differences (p> 0.05) with respect to those
of the UA, which presented 129 t TB ha−1 and 58 t C ha−1. The satellite images from
Sentinel 2 provide reliable estimates of the amounts of TB and CC in the managed
stands. Therefore, it can be concluded that an adequate application of STs maintains a
balance in the accumulation of tree C.

Subjects Agricultural Science, Natural Resource Management, Forestry, Spatial and Geographic
Information Science
Keywords Carbon content, Normalized difference vegetation index, San Juan Lachao, Sentinel
Satellite, Silvicultural treatment

INTRODUCTION
In Mexico and globally, the carbon sequestration (C) provided by forests has become
increasing relevant due to the high emissions of CO2, which cause a climate imbalance
and negative effects on society (Yu et al., 2022). At present, the destructive and empirical
methods commonly used to estimate forest C are time-consuming, expensive and not
feasible at a large scale (Amiri & Pourghasemi, 2022; d’Oliveira et al., 2020; Muhe & Argaw,
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2022). For this reason, the use of satellite images obtained through remote sensing helps
evaluate C reserves at different spatial and temporal scales, providing accurate data for
strategic forest management plans (Dou & Yang, 2018; Vashum & Jayakumar, 2012) and
serving as a key factor for the successful implementation of C market mechanisms (Herold
et al., 2011).

Remote sensors allow to get information of the vegetation state, through vegetation
indices (VI) that are generated with the combination of spectral bands; these VI are
correlated with several variables, such as biomass, density, volume and C (Isbaex & Coelho,
2021). These variables are estimated by adjusting allometric models with data collected
in the field based on the vegetation indices (Chen et al., 2018; Pandit, Tsuyuki & Dube,
2018; Pertille et al., 2019). These multiscale estimation models are commonly used in forest
vegetation studies, although they are also applied in various nutrient monitoring studies
to other types of vegetation (Chen et al., 2018; Dou & Yang, 2018).

The European Space Agency launched the Sentinel 2 platform to provide services based
on observations of high-resolution multispectral information of the Earth surface (Drusch
et al., 2012). With this information, it is possible to monitor changes in forests and land
cover and therefore manage natural disasters (Wong, Fung & Yeung, 2019). Sentinel 2 is an
optical satellite with 13 spectral bands that was launched in 2014. The spatial resolution
of the bands varies between 10 and 60 m. In addition, it has a coverage area of 290 km
and revisits the same area over a short time period (ESA, 2021). The freely available
high-resolution Sentinel 2 satellite datasets have created new possibilities for mapping
and monitoring different ecosystems and vegetation types (Hudait & Patel, 2022; Puletti,
Chianucci & Castaldi, 2018).

The normalized difference vegetation index (NDVI) is the most widely used method
to increase the differentiation in vegetation in remote sensing data (Chu et al., 2019).
It is obtained by calculating the red and near infrared bands together and increases
precision when used in the classification of green areas (Pettorelli, 2013). The NDVI is
one of the indicators commonly used to detect and indicate the status and dynamics of
vegetation cover (Wong, Fung & Yeung, 2019; Xing et al., 2020). Some vegetation index
(VI) to evaluate biomass and C, similar to the NDVI and that use the red and NIR bands
are: the Soil Adjusted Vegetation Index (SAVI), which uses an adjustment factor to the
bottom of the canopy, explaining the difference between red and near infrared, this is
mostly used in areas with low vegetation (Karnieli et al., 2001; Sonnenschein et al., 2011);
and the Advanced Vegetation Index (AVI), which uses an adjustment factor to observe the
variations of the forest over time (USGS, 2019). There are others VI to evaluate vegetation
cover, among them is the Green Normalized Difference Vegetation Index (GNDVI), which
uses the green band and NIR, it is used to make estimates of photosynthetic activity, but
it is mostly applied to estimations of water and nitrogen consumption of the vegetal cover
(Ihuoma & Madramootoo, 2020); and the Enhanced Vegetation Index (EVI), which helps to
estimate biomass and C, it uses the NIR, red and blue bands, correcting some atmospheric
saturations, being sensitive in areas with dense vegetation (Choubin et al., 2019; Jensen,
2015).
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Aboveground biomass plays an important role in the C cycle at local and regional
levels, which is why quantifying and monitoring it through satellite images are important
(Main-Knorn et al., 2013; Puliti et al., 2021). Quantifying the TB and C contents (CC)
of forests under timber management is important for understanding their dynamics,
evaluating the effect of applied silvicultural treatments (STs) and making decisions about
the sale of C credits by the community (Cutini, Chianucci & Manetti, 2013; d’Oliveira et
al., 2020; Joshi & Dhyani, 2019; Rodríguez-Ortiz et al., 2019).

San Juan Lachao started its first timbermanagement program in 2010, with an authorized
area of 2,359.6 ha. In 2022, it expanded to 3,201 ha that have been part of the voluntary
carbon credit market. Thus, it is important to estimate the effect of timber management
and its STs in relation to C capture through satellite images since this approach provides
viable information at a large scale and is an important data validation tool. In addition, in
southernMexico, there are no studies of this type. The objective was to evaluate the TB and
CC of San Juan Lachao, Oaxaca, Mexico, through vegetation indices derived from satellite
images. Given the hypothesis, there are no significant differences (p> 0.05) between the
amounts of C estimated with spectral data and those estimated in the field.

MATERIALS & METHODS
Study area
The research was carried out in a forest under the management of San Juan Lachao, Pueblo
Nuevo, Juquila, Oaxaca, Mexico, with coordinates of 16◦09′30.26′′N and 97◦07′28.04′′W
and an average altitude of 1,900 m (Fig. 1). The predominant climate is warm subhumid
(Cw), with an average annual temperature of 22 ◦C and an average rainfall of 2500 mm.
The community of San Juan Lachao has a pine-oak forest of 3,201 ha, of which 573 ha are
under forest management through the silvicultural development method (SDM) and 1,787
ha are under the Mexican Management Method for Uneven-aged Forests (MMOBI). This
area contains species of timber importance, such as Pinus douglasiana Mtz., P. maximinoi
HE Moore, P. devoniana Lindl., Quercus rugosa Née, Q. crassifolia Humb. & amp. Bonpl.,
and other broadleaved trees (Servicios Técnicos Forestales STF, 2011).

Tree inventory and laboratory analysis
In 2022, 12 circular sites of 400 m2 with slope compensations were established in a
targeted manner in stands harvested during 2013–2014 under the methodology used by
Chávez-Pascual et al. (2017) and Miguel-Martínez et al. (2016). The sites were established
with four silvicultural treatments: free thinning (FT), first thinning (T1), regeneration cut
(RC) under the parent tree method and unmanaged area (UA), with three repetitions of
each ST. The sites were geopositioned with a global positioning system (GPS) (Garmin
eTrex 30, USA®) MAPS 6 within each stand. Descriptive variables of the site were taken:
altitude (m); average slope of the site (%), with a clinometer (Haglöf®, EC II D-HS115,
Spain); and exposure.

At the sites, a tree inventory was carried out, recording the variables: diameter at breast
heigt (DAH, cm) with a diametric tape (Hartmann®, 283D); total height (TH, m) with a
clinometer (Haglöf®, EC II D-HS115); and crown area (CA, m) with a tape measure. Trees

Ambrosio-Lazo et al. (2023), PeerJ, DOI 10.7717/peerj.16431 3/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.16431


Figure 1 Forest management area with sampling sites. Map credit:OpenStreetMap Contributors, 2023.
Licensed under CC BY-SA 2.0.

Full-size DOI: 10.7717/peerj.16431/fig-1

were selected in proportion to the relative frequency of each species to obtain a sample
(chip or slice); for Pinus spp., a Pressler drill (Haglöf®, Sweden) was used to obtain a chip
at a height of 1.30 m; in some species such as Quercus spp., Arbutus xalapensis Kunth, and
Alnus acuminata Kunth, at least one tree of each species was cut per site to obtain a five cm
thick slice (Rodríguez-Ortiz et al., 2019).

The samples were analyzed in the Agroecosystems Laboratory of the Technological
Institute of the Valley of Oaxaca. Core increment and slices of all species were weighed on
an analytical scale (Shimadzu®, ATY224,±1 mg) to determine their green weight (GW g).
The green volume (GV, cm3) was determined with a digital Vernier caliper and by applying
Newton’s formula (Romahn de la Vega & Ramírez, 2010). Subsequently, the samples were
placed into a drying oven (Memmert®, 100-800) at 102 ◦C until constant weight and dry
weight (DW, g) were obtained. The specific gravity (SG, kg m−3) by species was obtained:
SG = (DW/GV) × 100 (Bhardwaj et al., 2016). Subsequently, the samples were ground to
determine their C content through the content of organic matter under the Walkey and
Black method (SEMARNAT, 2000); 58% of the determined organic matter was C (Fig. 2).

The total tree volume with bark (TTVbark, m3) of all tree species found was determined
with the forest biometric system (Vargas-Larreta et al., 2017); the product volume and SG
(kgm−3) provided the TB content (kg tree−1) (Rodríguez-Ortíz et al., 2011).
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Figure 2 Organic matter and carbon content (%) of tree species in sites under silvicultural treatments.
RC= regeneration cut, T1= first thinning, FT= free thinning, UA= unmanaged area.

Full-size DOI: 10.7717/peerj.16431/fig-2

Table 1 Spectral band characteristics.

Number of band Band name Wavelenght (nm) Resolution (m)

1 Coastal aerosol 443.9 60
2 Blue 496.6 10
3 Green 560 10
4 Red 664.5 10
5 Vegetation Red Edge 703.9 20
6 Vegetation Red Edge 740.2 20
7 Vegetation Red Edge 782.5 20
8 NIR 835.1 10
8A Narrow NIR 864.8 20
9 Water vapour 945 60
10 SWIR –Cirrus 1373.5 60
11 SWIR 1613.7 20
12 SWIR 2202.4 20

Sentinel 2 spectral data
The spectral image of the study area was downloaded, divided into 13 bands, on the
Sentinels Scientific Data Hub platform (https://scihub.copernicus.eu/). The discharge was
at level 2A, which involves preprocessing at the atmospheric correction level, (Table 1).

The image was processed with QGIS 2.16.16® software, where atmospheric correction
was first applied to each band. To visualize the image in true color, a set of bands 2, 3 and 4
was constructed, and all three had a 10 m resolution per pixel. Subsequently, a set of bands
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Figure 3 NDVI expansion, true color and near-infrared vegetation visualization of the managed area.
Map credit: Images were processed from Sentinel-2 data, OpenStreetMap Contributors, 2023, Licensed un-
der CC BY-SA 2.0.

Full-size DOI: 10.7717/peerj.16431/fig-3

3, 4 and 8 (10 m pixel−1) was constructed to visualize the vegetation in infrared bands
(Fig. 3).

Bands 4 (red) and 8 (near infrared (NIR)) were used to calculate the NDVI per pixel.
The following formula was applied: NDVI = (NIR –red)/(NIR + red), where red and NIR
are the spectral reflectance measurements acquired in the red (visible) and near infrared
regions, respectively. These spectral reflectances are proportions of the radiation reflected
on each individual spectral band. The NDVI, real visualization and infrared vegetation
layers were cut from the area under use and from the 4 stands where the sampling sites
were located (Fig. 4).

Other vegetation indices were also tested in this study:
GNDVI = (NIR−Green)/(NIR+Green), where: GNDVI = Green Normalized

Difference Vegetation Index, NIR =near infrared band, Green =green band.
EVI = 2.5× ((NIR−Red)/((NIR)+(C1×Red)−(C2×Blue)+L)), where: EVI =

Enhanced Vegetation Index, NIR=near infrared band, Red= red band, Blue= blue band,
C1 and C2= Atmospheric correction coefficients (6 and 7.5), L= soil influence correction
factor.

SAVI = ((NIR−Red)/(NIR+Red+L))× (1+L), where: SAVI = Soil Adjusted
Vegetation Index, NIR= near infrared band, Red= red band L= soil luminosity correction
factor (0.428).

AVI = [NIR×(1−Red)×(NIR−Red)]1/3 , where: AVI =Advanced Vegetation Index,
NIR =near infrared band, Red =red band.
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Figure 4 NDVI expansion, true color and near-infrared vegetation visualization of managed stands.
Map credit: Images were processed from Sentinel-2 data, OpenStreetMap Contributors, 2023, Licensed un-
der CC BY-SA 2.0.

Full-size DOI: 10.7717/peerj.16431/fig-4

Data analysis
For the TB and C variables, the assumptions of normality and homogeneity of variances
were verified (Shapiro–Wilk and Bartlett test, respectively,α= 0.05). Once theNDVI values
per pixel (10 m resolution) were obtained, the average value of the NDVI per sampling site
was determined using a 3× 3 pixel window surrounding the central point. For this part of
the process, a validation was carried out through ‘‘raster statistics for points’’. Allometric
models were adjusted to estimate C and TB (t pixel−1 and t ha−1) based on the NDVI
(Table 2). Subsequently, with the models, the increase in TB and carbon was determined
by site, stand and management area through the NDVI value of each pixel.

The STs were differentiated using a generalized linear model (PROC GLM) and the
Tukey means test (α= 0.05). All analyses were performed in the Statistical Analysis System
(SAS) program (SAS Institute, Inc., 2017).

RESULTS
Model adjustment to estimate biomass and carbon
The linear models without an intercept (β0) were those that best adjusted for the estimation
of TB and C as a function of the NDVI, being highly significant (p≤ 0.01). The NDVI
explained 92.2% and 91.9% of the existing variation in TB and C, respectively. The
coefficients of variation (CVs) ≤ 32.2% were moderate-high due to the variation in tree
density and coverage between the applied STs. The standard deviation of the models was
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Table 2 Model fitting with different vegetation indices for biomass (B) and carbon (C) estimation. (t
pixel−1).

Model Parameter (β1) R2
√
MSE CV (%)

B=β1×NDVI 3.05115971** 0.92 0.42** 30.2
C =β1×NDVI 1.36719158** 0.92 0.19** 30.9
B=β1×GNDVI 3.3303334** 0.92 0.42** 30.2
C =β1×GNDVI 1.4923619** 0.92 0.19** 30.9
B=β1×EVI 3.0480304** 0.91 0.44** 31.7
C =β1×EVI 1.3648815** 0.91 0.20** 32.5
B=β1×SAVI 4.0386605** 0.92 0.44** 31.4
C =β1×SAVI 1.8087569** 0.91 0.20** 32.2
B=β1×AVI 3.4448735** 0.92 0.42** 30.2
C =β1×AVI 1.5436013** 0.92 0.19** 30.9

Notes.
Pixel, 100 m2; R2, coefficient of fit; MSE, Mean Square of Error; CV, coefficient of variation; NDVI, Normalized Difference
Vegetation Index; GNDVI, Green Normalized Difference Vegetation Index; EVI, Enhanced Vegetation Index; SAVI, Soil
Adjusted Vegetation Index; AVI, advanced vegetation Index.

**Highly significant (t ≤ 0.001).

Figure 5 Biomass (A) and carbon (B) per stand, estimated with field data vs. spectral data. RC= re-
generation cut, T1= first thinning, FT= free thinning, UA= unmanaged area.

Full-size DOI: 10.7717/peerj.16431/fig-5

low, which indicates that the estimated TB and C values were slightly removed from the
trend of the mean (Table 2).

The model was validated through a Student’s t test (α= 0.05) comparing TB and C per
stand (t), estimated with field data vs. estimated with spectral data. No differences were
found between both types of data (p> 0.05) (Figs. 5A and 5B). Therefore, the models were
efficient at predicting TB and C through the NDVI since they generated reliable results
when estimating at a large scale (estimation).

Biomass and carbon estimations
For both variables, TB and CC, the stands under FT (21.4 ha) and T1 (26.4 ha) presented
similar average estimated values of 140 t TB ha−1 and 63 t C ha−1 and 137 t TB ha−1 and 61
t C ha−1, respectively, such that the total amounts per the FT and T1 stands were 1,343 t C
and 1,620 t C, respectively. The minimum and maximum values between the areas under
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Figure 6 Estimations of tree biomass and carbon in stands under treatments.Map credit: Images were
processed from Sentinel-2 data.

Full-size DOI: 10.7717/peerj.16431/fig-6

the two types of STs were similar because their function was to decrease tree density when
they are in the pole stage (Fig. 6).

The stand with RC (14.4 ha) presented values of 139 t TB ha−1 and 62 t C ha −1,
with minimum and maximum values for C between 41 and 81 t ha−1, showing a good
accumulation of C in response to the regeneration of the parent tree treatment. The UA
(17 ha) presented average values of 129 t TB ha−1 and 58 t C ha−1, with a range of variation
between the minimum and maximum values of 37 to 79 t C ha−1. The stands subjected to
the STs (FT, T1, and RC) presented the same maximum value of carbon accumulation (81
t ha−1), which was 2% higher than that in the UA (Fig. 6).

The FT stand presented 8.6% more carbon (t ha−1) than the UA stand, the FT and UA
stands had tree densities of 1166 trees ha−1 and 825 trees ha−1, respectively. This small
difference in carbon values occurred because the FT stands maintained a contemporaneous
structure with similar ND, crown diameter (CD) and TH, while the UA stands were highly
heterogeneous, presenting variation in their area.

In the area managed by San Juan Lachao (3201 ha), a total of 404,048.08 t TB and
181,049.56 t C were estimated. An average accumulation of 126 t TB h−1 and 57 t C ha−1

was estimated, with minimum and maximum values of 27 to 209 t TB ha−1 and 12 to 94 t
C ha−1, respectively. The areas with high accumulations of TB and C were observed in an
intense red color, unlike the green areas, which showed the least accumulation (Fig. 7).
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Figure 7 Estimations of aboveground biomass and carbon in the managed area of San Juan Lachao.
Map credit: Images were processed from Sentinel-2 data, OpenStreetMap Contributors, 2023, Licensed un-
der CC BY-SA 2.0.

Full-size DOI: 10.7717/peerj.16431/fig-7

Table 3 Comparison of biomass and carbon estimated in the field vs. estimated with Sentinel 2.

Variable Silvicultural treatments

(t ha−1) Free thinning First thinning RC UA

B_Pinus spp 65.9± 13.9a 98.0± 7.4a 112.8± 29a 98.6± 32.0a

B_Quercus spp 70.9± 19.0a 28.2± 10.6a 24.8± 5.8a 57.7± 22.5a

B_tree 136.8± 25.4a 126.2± 16.5a 137.5± 28.6a 156.3± 28.4a

B_tree Sentinel 2 * 138.4± 4.2ab 135.8± 3.2ab 148.7± 3.6a 129.2± 5.7b

C_Pinus spp 32.4± 6.8a 45.5± 3.4a 50.6± 13.0a 46.2± 15.0a

C_Quercus spp 28.0± 7.5a 12.1± 4.5a 9.9± 2.3a 25.2± 9.8a

C_tree 60.4± 11.0a 57.6± 7.3a 60.4± 12.8a 71.4± 13.2a

C_total Sentinel 2 * 62.0± 1.9ab 60.9± 1.4ab 66.6± 1.6a 57.9± 2.5b

Notes.
RC, regeneration cut (seed trees); UA, unmanaged area (conservation).
*Values from Normalized Difference Vegetation Index.
Different letters in rows indicate significant differences (Tukey, 0.05). Mean± standard error.

All STs resulted in similar amounts (p> 0.05) of TB andCby genus (Pinus andQuercus),
as well as total TB amounts (inferred in field sampling). On the other hand, the tree C
estimated with the NDVI in the spectral image was higher (p≤ 0.01) in the RC (66.6 t
ha−1) than in the UA (57.9 t ha−1), which showed greater heterogeneity; the same behavior
was found for TB (Table 3).

This difference was visible because the UA had a high heterogeneity, so making an
inference with field data was not feasible, unlike the estimation with the satellite image,
which was more accurate in terms of irregular stand structure (Table 3). In addition, the
areas with STs had a more homogeneous trend with a systematically distributed canopy,
and the opposite occurred for the ASM, where heterogeneity led to an irregular structure.
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DISCUSSION
Model adjustment
The stands with STs (FT, T1, and RC) showed similar TB and C values but varied from
those of the UA due to the age of the stand, the crown area, the size of the trees, edaphic
factors and altitude (Rajput, Bhardwaj & Pala, 2017; Ruiz-Díaz et al., 2014). The areas with
T1 and FT thinnings presented an average of 138.5 t TB ha−1 and 62 t ha−1 of carbon.
The area with RC presented 139 t TB ha−1 and 62 t C ha−1 (Fig. 6). Regarding the above
information, Aguirre-Salado et al. (2009) reported in contemporary stands of P. patula
Schl. et Cham. under harvested conditions, an estimate determined by remote sensing was
55 t C ha−1.

The best fitted models in this work were ’’simple linear’’ as a function of the NDVI
(10 m pixel−1), showing significance (p≤ 0.01) and adjusted R2

= 0.92, with which the
total managed area (3201 ha) having 126 t TB ha−1 (values from 27 to 209 t TB ha−1)
and 57 t C ha−1 (values from 12 to 94 t C ha−1), which shows potential values of TB and
C (Fig. 7). Thurner et al. (2014) adjusted simple linear models to estimate carbon (R2

=

0.70–0.90) in mixed forests of North America, Europe and Asia, where they found an
average of 58 ± 22.1 t C ha−1. Reyes-Cárdenas et al. (2019) estimated the forest TB in
northern Mexico, adjusting an exponential model based on the NDVI, and found lower
values (0.85 to 157 t ha−1) than those in this study.

Choosing the best model depends on the type of vegetation that is being evaluated and
the type of optical satellite that is being used; thus, the evaluator is responsible for choosing
the best model; for example, Aguirre-Salado et al. (2009) adjusted a multiple regression
model using the NDVI and the water stress index as independent variables (R2

= 0.70).
D’Oliveira et al. (2020) estimated the biomass of 10 forest plots in the southwestern
Brazilian Amazon, adjusting multiple linear models based on LiDAR variables, (R2

= 0.90,
RMSE= 13.23 t ha−1), presenting values from 11.1 to 273 t ha−1. On the other hand, Rex et
al. (2020) estimated biomass with LiDAR images (229.10 t ha−1) in tropical forests with low
intensity logging in Pará, Brazil, although in this case using ordinary least squares (OLS)
regression and a selection of variables through principal component analysis (R2

= 0.35 -
R2
= 0.53), and the model had less significance than that of other.
The model was validated through Student’s t test (α= 0.05) comparing TB and C per

stand (t), and the values were estimated with field data vs. estimated with spectral data,
showing no significant differences (p> 0.05); correlating field values with spectral data
provides effective and accurate information (Vaghela et al., 2021). Reyes-Cárdenas et al.
(2017) correlated field data with spectral data and obtained similar values. Aguirre-Salado
et al. (2012) adjusted a linear model to estimate aerial biomass based on the NDVI and
continuous vegetation fields (CVFs) (adjusted R2

= 0.77 CME = 26.00 t ha−1), showing
high validation correlation coefficients (r = 0.87**); Verly et al. (2023) estimated the C of
the Atlantic Forest with Sentinel 2 images, showing a high correlation coefficient between
the estimated and observed carbon averages (r = 0.84).
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Biomass and carbon estimation
The UA presented TB and C values of 129 and 58 t ha−1 (Fig. 6), respectively, which
indicated that it is necessary to use satellite images for estimations since they provide
values that can be extrapolated to the area of study. Perea-Ardila, Andrade-Castañeda &
Segura-Madrigal (2021) found similar TB and tree C values as a function of the NDVI
in a high Andean forest of Boyacá, Colombia, determining 168.0 ± 11.2 t TB ha−1 and
84.0± 5.61 t C ha−1. Similarly, Clerici et al. (2016) reported 180.7± 23.8 t ha−1 of biomass
in 400 m2 plots in Andean forests in Cundinamarca, and Yepes-Quintero et al. (2011)
reported TB and CC of 102.38 ± 25.22 t ha−1 and 51.19 ± 12.61 t ha−1, respectively,
in highland forests of Antioquia. On the other hand, Bhardwaj et al. (2016) reported an
estimated biomass with the NDVI of 169.05 to 265.83 t ha−1 in subtropical forests of the
northwestern Himalayas. Therefore, satellite images are a potential tool for differentiating
managed and unmanaged areas (Avogadro & Padró, 2019).

After testing various vegetation indices in this work, the NDVI was best adjusted
(Table 2) to estimate TB and CC (0.09–0.69), providing positive values and indicating
areas with healthy and vigorous vegetation (Fig. 3); however, although in some areas the
NDVI values were low, the values of TB and CC were positive. This result was in contrast
to those of Aguirre-Salado et al. (2012), where the estimates tended to be negative when
the pixels had low NDVI values. The NDVI is an excellent indicator because it had three
visible red bands that increased accuracy and had the near infrared band (Wang et al.,
2018). Similarly, their the estimates of C for areas under timber management were highly
accurate given the methodology that was selected was correctly followed (Yan et al., 2016).

The NDVI to estimate TB and C in this work was crucial, since the NIR spectrum
contains information about the chemical composition (infrared light energy) through the
photosynthetic pigment ‘‘chlorophyll’’; chemical bond information such as C-H,N-H, S-H,
C = O and O-H (Guerrero-Maestre et al., 2008). For this reason, the NDVI was adapted to
the type of vegetation evaluated, where it has a high reflectance in the near infrared and
low in the red band (Jensen, 2015).

Although there are other methods to evaluate the vegetation, such as the use of LiDAR
(Light Detection and Ranging) images, in this study the most feasible was the use of satellite
images, due to the scale to be evaluated; and it is suitably viable since it provides us with
information on areas with and without timber forest management. Using Sentinel 2 satellite
images in vegetated areas significantly increases estimate accuracy (Polat, Akcay & Balik
Sanli, 2022).

Through remote sensing, it is possible to extract information about the vegetation in
pine-oak forests that are unmanaged and classify the vegetation more easily that through
observation methods (Ancira-Sánchez & Treviño Garza, 2015; Polat, Akcay & Balik Sanli,
2022). However, factors such as topography, altitude, slope, precipitation, and temperature
must always be considered, as indicated in Olthoff, Martinez-Ruiz & Alday (2016). By
determining the TB and CC of a large UA, this area can be classified into smaller areas,
and suitable silvicultural management methods and treatments can be determined through
a management plan (Agus et al., 2004; Puletti, Chianucci & Castaldi, 2018), in addition to
promoting C cycle mechanisms (Herold et al., 2011).
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CONCLUSIONS
In comparison to estimating TB and CC with field data, estimating them with spectral data
in a forest area that is unmanaged resulted in a greater degree of precision because the
estimates were based on information from theNDVI of the entire surface of the stand, while
those based on field data, where only inferences are made, were less precise. Therefore,
using satellite images to classify new areas of forest use is feasible, and these images can
be used for monitoring before and after a cutting cycle and collaborating on carbon credit
mechanisms, which benefit society and support future generations.
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