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Purpose: Bright light conditions are supposed to curb eye growth in animals with
experimental myopia. Here we investigated the effects of temporal bright light at very low
frequencies exposures on lens-induced myopia (LIM) progression.Methods: Myopia was
induced by application of -6.00 D lenses over the right eye of guinea pigs. They were
randomly divided into four groups based on exposure to different lighting conditions:
constant low illumination (CLI; 300 lux), constant high illumination (CHI; 8000 lux), very
low frequency light (vLFL; 300/8000 lux, 10 min/c), and low frequency light (LFL; 300/8000
lux, 20 s/c). Refraction and ocular dimensions were measured per week. Changes in ocular
dimensions and refractions were analyzed by paired t-tests, and differences among the
groups were analyzed by one-way ANOVA.Results: Significant myopic shifts in refractive
error were induced in lens-treated eyes compared with contralateral eyes in all groups
after 3 weeks (all P<0.05). Both CHI and LFL conditions exhibited a significantly less
refractive shift of LIM eyes than CLI and vLFL conditions (P<0.05). However, only LFL
conditions showed significantly less overall myopic shift and axial elongation than CLI and
vLFL conditions (both P<0.05). The decrease in refractive error of both eyes correlated
significantly with axial elongation in all groups (P<0.001), except contralateral eyes in the
CHI group (P = 0.231). LFL condition significantly slacked lens thickening in the
contralateral eyes.Conclusions: Temporal bright light at low temporal frequency (0.05 Hz)
appears to effectively inhibit LIM progression. Further research is needed to determine the
safety and the potential mechanism of temporal bright light in myopic progression.
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23 Abstract

24 Purpose: Bright light conditions are supposed to curb eye growth in animals with experimental 

25 myopia. Here we investigated the effects of temporal bright light at very low frequencies 

26 exposures on lens-induced myopia (LIM) progression.

27 Methods: Myopia was induced by application of -6.00 D lenses over the right eye of guinea pigs. 

28 They were randomly divided into four groups based on exposure to different lighting conditions: 

29 constant low illumination (CLI; 300 lux), constant high illumination (CHI; 8000 lux), very low 

30 frequency light (vLFL; 300/8000 lux, 10 min/c), and low frequency light (LFL; 300/8000 lux, 20 

31 s/c). Refraction and ocular dimensions were measured per week. Changes in ocular dimensions 

32 and refractions were analyzed by paired t-tests, and differences among the groups were analyzed 

33 by one-way ANOVA.

34 Results: Significant myopic shifts in refractive error were induced in lens-treated eyes compared 

35 with contralateral eyes in all groups after 3 weeks (all P<0.05). Both CHI and LFL conditions 
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36 exhibited a significantly less refractive shift of LIM eyes than CLI and vLFL conditions (P<0.05). 

37 However, only LFL conditions showed significantly less overall myopic shift and axial 

38 elongation than CLI and vLFL conditions (both P<0.05). The decrease in refractive error of both 

39 eyes correlated significantly with axial elongation in all groups (P<0.001), except contralateral 

40 eyes in the CHI group (P = 0.231). LFL condition significantly slacked lens thickening in the 

41 contralateral eyes.

42 Conclusions: Temporal bright light at low temporal frequency (0.05 Hz) appears to effectively 

43 inhibit LIM progression. Further research is needed to determine the safety and the potential 

44 mechanism of temporal bright light in myopic progression.

45

46

47

48

49 Introduction

50 Nowadays, it is recognized that outdoor activities can repress the incidence of myopia(He et al. 

51 2015; Wu et al. 2013; Zadnik & Mutti 2019). One factor associated with this protective outdoor 

52 effect is the difference in light intensity(French et al. 2013; Lingham et al. 2020; Rose et al. 2008; 

53 Sherwin et al. 2012). However, although bright light is reported to prevent the development of 

54 form-deprivation myopia (FDM) in all species studied so far(Ashby et al. 2009; Chen et al. 2017; 

55 Lan et al. 2014; Smith et al. 2012),  results on prevention of lens-induced myopia (LIM), which 

56 seemed to be a better model of human myopia(French et al. 2013), are more variable(Ashby & 

57 Schaeffel 2010; Smith et al. 2013). In addition, Biswas et al recently reported that in a lens 

58 induced hyperopia (LIH) chicken model, daily exposure to high-intensity light promotes axial 

59 shortening and hyperopia in a duration dependent manner, whereas optical refocus promotes 

60 emmetropization and slows the development of LIH(Biswas et al. 2021). One of the more 

61 surprising discoveries on this subject was the finding that daily exposure to intermittent bright 

62 light at very low frequencies (0.01 and 0.002 Hz in chicken and 4h/day intermittent bright light 

63 consisted 1h of high intensity LED light delivered every 2h in monkeys) fully suppressed FDM 

64 development(Lan et al. 2014; Ramachandran et al. 2022). These results indicated that bright light 

65 seems to indiscriminately suppress eye growth rather than suppress myopia per se, whereas 

66 changes in the visual environment (optical focus and temporal stimuli) have a stronger effect in 

67 slowing myopia development.

68    With respect to temporal stimuli, accumulating evidence suggests that in chicks, guinea pigs, 

69 cats and mice, stroboscopic flicker effectively induces myopia at low frequencies and prevents 

70 myopic drift at high frequencies(Cremieux et al. 1989; Di et al. 2013a; Rucker et al. 2018; Yu et 

71 al. 2011; Zhi et al. 2013). Although we still do not know what the difference between low 

72 temporal stimuli under a background with high intensity light or dim/dark light is, we do know 
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73 that the dynamic light source used in previous studies is presented as a square wave, which is 

74 unnatural and will cause dazzle reflex(Plainis et al. 2006). Another limitation of the previous 

75 experimental paradigms was that in these studies, the spectral composition of artificial light is 

76 not as well-distributed as sunlight in these studies(Li et al. 2014), which was also suggested to be 

77 an independent factor affecting myopic progression. Therefore, it is necessary to evaluate the 

78 effect of a more natural and applicable temporal bright light source in LIM for potential 

79 therapeutic application for children's myopia. 

80 In an attempt to develop such a dynamic light source that can be applied to humans, full-spectral 

81 light with gentle changes of light intensities was applied in this study. With a well-developed 

82 visual system(Buttery et al. 1991) and rapid effective response to form-deprivation and optical 

83 defocus(Howlett & McFadden 2006; Howlett & McFadden 2009), guinea pigs have been a 

84 popular alternative for studying myopia(Howlett & McFadden 2006; Howlett & McFadden 2009; 

85 Li et al. 2014; Luo et al. 2017; Yu et al. 2021). According to previous studies, guinea pigs are 

86 born hyperopic and undergo rapid emmetropization before 3 weeks of age, which was similar to 

87 the time course for emmetropization in early childhood of humans(Zhou et al. 2006). 

88 Additionally, the temporal response and its development in the guinea pig retina is identical with 

89 those of human beings(Armitage et al. 2001; Racine et al. 2005). Therefore, we consider 1-week-

90 old guinea pigs to be the ideal choice for research on temporal effects of juvenile myopia and by 

91 doing so validate the feasibility of this newly designed light source in controlling myopia in 

92 children. To avoid possible retinal damage by high level exposure to light(Hunter et al. 2012), 

93 we reduced the high light intensity to a less bright level at 8000 lux. Although the lowest 

94 temporal frequency used in previous research to explore the sensitivity of temporal modulation is 

95 0.25 Hz(Swanson et al. 1987), we choose much lower frequencies here to avoid dizziness or 

96 discomfort caused by temporal light as much as possible. Here we define the two lower 

97 frequencies as the low frequency (0.05 Hz) and very low frequency (0.0016 Hz). We believe that 

98 this study makes a novel contribution to our understanding of the influence of temporal stimuli 

99 on myopia because this study was the first, to the best of our knowledge, longitudinal evaluation 

100 of the effect of mesopic light at very low frequency on the development of LIM.

101

102 Materials and methods

103 Animals housing

104 In the present study, male and female 1-week-old guinea pigs (Cavia porcellus, English short-

105 hair stock, tricolor strain) were obtained by the Animal Experimental Centre of Zhejiang 

106 Province, China and were provided with unconstrained food and water. Two to three guinea pigs 

107 were reared in a customized cage (28.2 cm * 38.2 cm * 28.5 cm inside), which provides 

108 independent lighting conditions from the feeding room. Wiry bottom was applied to keep the 

109 hutch dry and ventilated with the room temperature controlled to 22 ± 2 ℃.  To minimize 

110 potential confounders, cages of different groups were placed next to each other and female and 

111 male animals were separated by housing. The lamps were set to be on 12:12 light/dark cycle 
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112 (turned on from 8:00 AM to 8:00 PM). This experiment was carried out in accordance with the 

113 ARVO Statement for the Use of Animals in Ophthalmic and Vision Research and was approved 

114 by the animal experimentation ethics committee of the Zhongshan Ophthalmic Center (approval 

115 number: 2020-095A). Before the experiment, the eyes would be checked under a slit-lamp 

116 microscope and the animals with abnormal eyes such as microphthalmia or corneal haze would 

117 be excluded. Necessary measures were used to minimize the animals suffering during the 

118 experiment. Additionally, when we observed guinea pigs suffering noticeable weight loss (rapid 

119 onset of more than 15% of body weight), weakness or dying, we would consider early 

120 termination.  After the experiment, all guinea pigs were euthanized by intraperitoneal injection of 

121 excessive 1% Pentobarbital sodium (300 mg/kg) followed by cervical dislocation. Before 

122 handing over the carcass to the animal center for further disposal, we would check their 

123 breathing and heartbeat to ensure that no animals survive. 

124 Experimental design

125 Myopia was induced by application of -6.00 D lenses in the right eye of each guinea pig as 

126 described by Li(Li et al. 2014). In short, a homemade Velcro mask is glued to the face of guinea 

127 pigs. The mask has appropriate holes to expose eyes, nose, mouth and ears. Another Velcro with 

128 a round plastic frame was attached around the right eye, and the frame was glued with a negative 

129 lens (-6.00 D, PMMA, diameter 18.0 mm, optical zone: 12.0 mm, base curve: 8.0 mm). Special 

130 attention was paid to ensuring that the optical center of the lens was aligned directly in front of 

131 the center of the pupil. Those lenses were checked at least once a day to ensure that they were in 

132 the correct position and clean. If the face mask or lenses were loosened or fell off, they would be 

133 reattached at once. Additionally, once the center of the lens was found to have obvious scratches, 

134 it will be replaced immediately.

135 A total of 82 1-week-old guinea pigs were used in this study, referring to previous related 

136 research(Li et al. 2014; Luo et al. 2017). They were marked with ear tags and the numbers on the 

137 ear tag were input into the excel table. Then RANDBETWEEN (1,4) functions were applied on 

138 the numbers generate the randomisation sequence. Afterwards, the numbered guinea pigs were 

139 assigned to one of the following four groups: (1) constant low illumination (CLI; n=22, 300 lux), 

140 (2) constant high illumination (CHI; n=19, 8000 lux), (3) temporal high luminance at very low 

141 frequency (vLFL, n=21, 300/8000 lux, 10 min/cycle), and (4) temporal high luminance at low 

142 frequency (LFL; n=20, 300/8000 lux, 20s/cycle). 

143 Lighting

144 Solux halogen lamps (4300k; Eiko Ltd., Shawnee, KS, USA) were used to create the dynamic 

145 simulated sunlight. The lamp was measured with a fluorospectrophotometer (HR2000; Ocean 

146 Optics, Inc., Osaka, Japan; the detection limit is 200�1100 nm) by the Department of Physics of 

147 Sun Yat-sen University in Guangzhou, China. Except for the wavelengths between 300 and 350 

148 nm, the spectrum emitted by this lamp effectively simulates the spectral composition of 

149 sunlight(Li et al. 2014). We designed the illuminance changing from low (300 lux) to high (8000 

150 lux) levels smoothly and automatically in a temporal wave function to achieve a single variable 
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151 (Figure 1A). To achieve the intensity of illumination and form full spectrum light needed in this 

152 study, 288 independently controlled point light sources were installed on the roof of the cage at a 

153 height of 28.5 cm from the bottom of each cage (Figure 1B). The illumination was manipulated 

154 by a function generator (Patent No.: US201916257198) linked to the lamp. Function generators 

155 were placed on the outside of the cages. According to previous studies, the temporal sensitivity 

156 function (TSF) in guinea pigs is band-pass at bright stimulus intensities(Armitage et al. 2001). 

157 Additionally, in guinea pigs, the lifetime of rod desensitization is of the order of 10 s and that of 

158 the bleached pigment is presumably 10 min for recovery from saturation(Demontis et al. 1993). 

159 Consequently, we chose 0.05 and 0.0016 Hz as the temporal frequencies to make the effective 

160 temporal bright light as comfortable as possible.

161 Measurement of ocular parameters 

162 Ocular parameters including refractive error and axial dimensions (anterior chamber depth 

163 (ACD), lens thickness (LT), vitreous chamber depth (VCD), and axial length (AL)) were 

164 measured before the experiment and once per week during the treatment. 

165 Refractions were measured by handheld streak retinoscopy (66 Vision-Tech Co., Ltd., Suzhou, 

166 Jiangsu Province, China) with cycloplegia. 0.5% proparacaine hydrochloride (Alcaine; Alcon, 

167 Fort Worth, TX, USA) was dropped topically into the conjunctival sac of guinea pigs at first, 

168 followed by drops of 0.5% tropicamide and 0.5% phenylephrine (Mydrin-P; Santen, Osaka, 

169 Japan) every other 5 min for five times to induce cycloplegia. Results from the two independent 

170 skilled optometrists from Zhongshan Ophthalmic Center, who were blinding with regard to the 

171 treatment, were averaged. Refractive error was taken as the mean value of the refractive errors 

172 with the vertical and horizontal meridians of three repeated measurements and expressed as 

173 spherical equivalent (SE).

174  Ocular biometry was performed by A-scan ultrasonography with a probe of 10 MHz (KN-1800; 

175 Kangning Medical Device Co., Ltd., Wuxi, Jiangsu Province, China) as described by Li(Li et al. 

176 2014). In order to achieve local anesthesia while using biepharostat, 0.5% proparacaine 

177 hydrochloride (Alcaine, Alcon) eye drops were applied to eyes before measurement. The 

178 ultrasonic probe was in direct contact with the corneal apex and carefully made sure that it was 

179 vertical to the corneal surface. The mean of the 10 repeated measurements was used for ocular 

180 parameters analysis. Due to the fact that the 10 MHz ultrasound probe does not allow choroidal 

181 measurements, the AL in vivo was described as the axial distance from the anterior corneal 

182 surface to the vitreo-retinal interface(Di et al. 2013b).  

183 Statistics

184 Data were represented as mean ± SD and statistical analyses were performed with GraphPad 

185 Prism (v7.0) (GraphPad Software Inc.). Before analyzing the data, complete the normal 

186 distribution test. Paired t-tests were used to compare the relative changes between deprived eyes 

187 and non-deprived eyes within a group. Comparisons among groups were assessed by one-way 

188 ANOVA followed by Tukey's multiple comparisons test or Kruskal-Wallis test. If significant 
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189 differences were detected, post hoc range tests were performed using the Duncan test using SPSS 

190 25 (SPSS, Chicago, IL, USA). Statistical tests were two-tailed, and p-value < 0.05 was 

191 considered statistically significant. 

192

193 Results

194 Ocular parameters of all guinea pigs at different time points are listed in Table 1. No significant 

195 difference was found in the parameters between the left and right eyes of the individual animals 

196 within any group prior to the treatment (all P > 0.05, see Table 1). 

197 Refractive errors

198 Although all lens-treated eyes became significantly less hyperopic than the contralateral eyes in 

199 all light conditions after 3 weeks of light exposure (Table 1), the magnitude of the response 

200 differed among the lighting conditions. 

201 To directly compare the effect of light conditions on LIM, the overall refractive changes (change 

202 in the lens-treated eye (ΔX) subtract change in the contralateral eye (ΔN), ΔX-ΔN) of the 

203 animals were compared. As shown in Figure 2A and Table 1, at the end of the experiment, 

204 refractive error in vLFL had the greatest myopic shift of -1.83±0.66 D (95% confidence interval 

205 [CI]: -2.137,-1.522; n=21), followed by CLI (-1.80±0.65 D; 95% CI: -2.09, -1.5; n=22), CHI (-

206 1.20±0.96 D; 95% CI: -1.681, -0.733; n=19), and LFL (-0.89±0.95 D; 95% CI: -1.345, -0.432; 

207 n=20) (one-way ANOVA, F=6.298, P<0.001). Tukey�s multiple comparisons test revealed that 

208 refractive changes in LFL had significantly less myopia shift than that of CLI (P=0.004) and 

209 vLFL (P=0.003).  Post hoc analysis showed that CLI and vLFL belonged to one subset 

210 (P=0.898), while CHI and LFL belonged to another subset (P=0.224).

211 Given that both eyes will be affected by the lighting conditions, we further compared the changes 

212 in refraction of eyes with or without lens conditions. Consistent with the overall refractive 

213 changes, refractive error of lens-treated eyes in vLFL group had the greatest myopic shift and 

214 that in LFL group had the least at the end of the experiment (one-way ANOVA, F=6.298, 

215 P<0.001) (Figure 2B). Comparing different light intensities, CHI exhibited a significantly lower 

216 myopic shift than CLI (P=0.035). Comparing different light temporal frequencies, LFL showed 

217 significantly lower myopic shift than vLFL in lens-treated eyes (P<0.001). Post hoc analysis also 

218 showed that lens-treated eyes in CLI and vLFL groups belonged to one subset (P=0.665), while 

219 CHI and LFL belonged to another subset (P=0.420). Likewise, refractive error of the 

220 contralateral eyes in vLFL had the greatest myopic shift of -0.589±0.279 D (95% CI: -0.719, -

221 0.459; n=21), followed by CLI (-0.511±0.119 D; 95% CI: -0.565, -0.458; n=22), LFL (-

222 0.513±0.153 D; 95% CI: -0.586, -0.439; n=20), and CHI (-0.401±0.224 D; 95% CI: -0.512, -0.29; 

223 n=19) (one-way ANOVA, F=2.750, P=0.048) (Figure 2C). Specifically, the contralateral eyes in 

224 vLFL group exhibited a significantly more myopic shift than that in CHI group (P<0.001).

225 Ocular dimensions
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226 All eyes elongated throughout the experiment (Table 1). As shown in Figure 3A, after 3 weeks, 

227 relative changes of axial length in LFL had the minimum elongation of 0.38±0.12 mm (95% CI: 

228 0.321, 0.44; n=20), followed by CHI (0.47±0.15 mm; 95% CI: 0.395, 0.546; n=19), CLI 

229 (0.47±0.16 mm; 95% CI:0.398, 0.547; n=22), and vLFL (0.53±0.15 mm; 95% CI: 0.464,0.606; 

230 n=21) (one-way ANOVA, F=3.488, P=0.02). Nevertheless, only LFL showed a statistically 

231 significant difference in axial elongation with vLFL (P= 0.01). The relative changes in axial 

232 length mainly came from the axial elongation in lens-treated eyes, which showed the minimum 

233 axial elongation of 0.693±0.115 mm (95% CI: 0.638, 0.748; n=20) in LFL, followed by CHI 

234 (0.714±0.114 mm; 95% CI: 0.657, 0.77; n=19), CLI (0.776±0.123 mm; 95% CI: 0.721, 0.832; 

235 n=22), and vLFL (0.803±0.103 mm; 95% CI: 0.755, 0.851; n=21) (one-way ANOVA, F=4.001, 

236 P=0.01). No statistically significant difference in axial elongation of contralateral eyes among 

237 groups was found (one-way ANOVA, F=2.043, P=0.115). 

238 During the observation period, there was no obvious change of ACD in interocular difference 

239 and lens-treated eyes (one-way ANOVA, all P>0.05, see Table 1). However, as shown in figure 

240 3B, the ACD illustrated an increasing trend with the observation period among all groups in 

241 contralateral eyes (Friedman test, P<0.001).  On the contrary, compared with the initial time 

242 point, with the extension of treatment time, the relative changes of lens thickness (ΔX-ΔN) in 

243 each groups increased gradually (one-way ANOVA, all P<0.01), but no differences was found 

244 between the groups at any time point (all P>0.05, see Table 1). This was also true for lens-treated 

245 eyes. With respect to contralateral eyes, the lens thickened less at low temporal frequencies 

246 (One-way ANOVA, F=4.128, P=0.009; P=0.02 for LFL with CLI, P=0.022 for LFL with vLFL) 

247 (Figure 3C). VCD of all eyes also increased significantly with age (one-way ANOVA, all 

248 P<0.05). However, changes in VCD among groups were not statistically significant (all P > 0.05) 

249 (Table 1).

250 Correlation between changes in refractive error and ocular dimensions 

251 Figure 4 shows the correlation between axial length elongation and refractive shift for the lens-

252 treated eyes and contralateral eyes under each light regimen. Specifically, the decrease in 

253 refractive error (i.e., more myopia) of both eyes correlated significantly with the axial length 

254 elongation (contralateral eyes: CLI: R2 = 0.132; vLFL: R2 = 0.148; LFL: R2 = 0.436; lens-treated 

255 eyes: CLI: R2 = 0.5213; CHI: R2 = 0.3226; vLFL: R2 = 0.447; LFL: R2 = 0.299; all P<0.001), 

256 except the contralateral eyes in CHI group (R2 = 0.010, P = 0.231). These results indicated that 

257 the refraction shift was largely axial origin excluding the contralateral eyes in the CHI group. To 

258 know what correlated with the refractive shift of contralateral eyes in CHI group, we analyzed 

259 the correlation of its refractive shift with other ocular parameters. However, none of the ocular 

260 parameters correlated with refractive shift of contralateral eyes in the CHI group (All P>0.05; 

261 data not show).

262

263 Discussion
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264 Here, we show that under the same housing conditions, compared with the low light conditions, 

265 the bright light conditions retard the myopic shift of LIM. The very low temporal frequency 

266 (0.0016 Hz) bright light condition produced a similar myopic shift to the low intensity 

267 illumination, while the low temporal frequency (0.05 Hz) bright light condition led to 

268 significantly less eye growth, implying a temporal sensitivity in hyperopic defocus. Additionally, 

269 LFL condition significantly slacked the thickening of lenses in contralateral eyes.

270 Why short outdoor time has protective effects against myopia and how myopia development is 

271 related to light parameters are two of the most studied but as yet unanswered questions in this 

272 field. Although human epidemiological studies have shown a correlation between bright light 

273 and myopia, the confounding effect of optical distance is not eliminated(Ngo et al. 2013). While 

274 in animal studies, myopia is indeed suppressed by bright light, which seems to be indiscriminate 

275 suppression of eye growth rather than suppressing myopia per se(Biswas et al. 2021; 

276 Chakraborty et al. 2020; Chen et al. 2017; Feldkaemper & Schaeffel 2013). Consistent with these 

277 studies, bright light condition at 8,000 lux effectively retarded the decrease in spherical 

278 equivalent refraction (SER) of LIM eyes. However, no significant difference was found in the 

279 overall myopia shift. One explanation was that bright light which was reported to be capable of 

280 retarding myopia development and enhanced hyperopic shifts of lens-induced myopia in guinea 

281 pigs was 10,000 lux(Li et al. 2014), while the light intensity of bright light (8,000 lux) in this 

282 study was much lower. Nevertheless, does that mean children should be exposed to continuous 

283 higher ambient light for longer periods of time? It should be noted that the refractive changes of 

284 contralateral eyes in CHI did not correlate to axial elongation. It is possible that the corneal 

285 radius of curvature was flattened under continued bright light, as was reported in chicken(Cohen 

286 et al. 2012; Li et al. 1995). Besides, recent studies suggested that a sufficient cumulative lux per 

287 day at an approximately 5000 lux light intensity with about 2.8 hours reduced 25.5±4.5% myopia 

288 risk, which was equivalent to the anti-myopic effect of the same cumulative lux at a lower 

289 outdoor light intensity with much more outdoor times(He et al. 2022). Additionally, daily 

290 exposure to intermittent bright light at very low frequencies showed to be capable of fully 

291 suppressing FDM development(Lan et al. 2014; Ramachandran et al. 2022). These evidences 

292 suggest that the overall photons arriving at eyes in necessary time, instead of continued bright 

293 light exposure, is imperative for myopic control. Nonetheless, temporal bright light at low 

294 frequencies showed stronger inhibitory effects on LIM also suggested a temporal sensitivity of 

295 bright light.

296 With respect to temporal stimuli, accumulating evidence suggests that in chickens, guinea pigs 

297 and mice, stroboscopic flicker effectively induces myopia at low frequencies and prevents 

298 myopic drift at high frequencies(Crewther et al. 2006; Di et al. 2013b; Schwahn & Schaeffel 

299 1997; Yu et al. 2011). Inspired by the fact that temporal stimuli are processed by midget and 

300 parasol ganglion cells in the ON and OFF pathways within the retina(Schiller 2010), imbalance 

301 of ON and OFF retinal pathway activation is suggested to be the underlying 

302 mechanisms(Crewther & Crewther 2002; Crewther et al. 2006; Wang et al. 2019). Specifically, 

303 with accumulating evidence finding that blockade of ON pathways effectively inhibited myopia 
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304 progression, some studies suggested that ON pathways were the pro-myopic factor(Crewther & 

305 Crewther 1990; Crewther & Crewther 2002; Crewther & Crewther 2003; Smith et al. 1991). 

306 Nevertheless, other studies suggest that bright light or high frequency flicker might inhibit 

307 myopia development by stimulation of the ON pathway proposed via increasing DA pathway 

308 activation(Chen et al. 2017; Chuang & Rucker 2019). Theoretically, the temporal bright light 

309 with a smooth decline and ascent waveform used in the current study produced a strong 

310 stimulation of both ON and OFF pathways. Since we have not accomplished monitoring the b-

311 wave (rapid ON response) and d-wave (slower OFF response) components of the flash ERG, we 

312 cannot be certain whether temporal bright stimuli interfered with emmetropization also via the 

313 imbalance of ON and OFF retinal pathway activation as it was presumed to be for stroboscopic 

314 flicker. 

315 According to a previous study, temporal bright light with its lowest light intensity being 300 lux 

316 should activate cone-photoreceptors while rod-photoreceptors are saturated(Joesch & Meister 

317 2016). However, a recent study found that rods do saturate at beginning, but rhodopsin bleaching 

318 allows them to escape saturation at bright conditions, with the recovery time shorter at brighter 

319 background(Kelber 2018; Tikidji-Hamburyan et al. 2017). Besides, rod activities were supposed 

320 to suppress cone flicker sensitivity and response amplitude(Alexander & Fishman 1986; Bush et 

321 al. 2019; Lankford et al. 2022; Zele et al. 2008). Additionally, several studies have found that rod 

322 activation contributed to eye growth and myopia development(Park et al. 2014; Smith et al. 2009; 

323 Smith et al. 2007). Furthermore, rod function was supposed to be the only photoreceptor defining 

324 the dopamine release light threshold which is about 400 lux for mice(Perez-Fernandez et al. 

325 2019).   Combined together, we speculated that bright temporal light at a frequency whose cycle 

326 is less than rod light response period (i.e., keep rod saturated) should be expected to retard 

327 myopia shift and eye growth, while the lower temporal frequencies failed to affect refractive 

328 development. The lifetime of rod desensitization in guinea pigs is supposed to be approximately 

329 10 s, while the recovery of bleached pigment from saturation takes about 10 minutes(Demontis 

330 et al. 1993). In support of our hypothesis, temporal bright light at low temporal frequencies (0.05 

331 Hz) showed significant inhibitory effects on axial elongation and the decrease in SER than CLI 

332 and vLFL group, while the vLFL condition (0.0016 Hz) showed no effect on LIM and even 

333 promoted myopic susceptibility. However, the mentioned above evidence of rod activity under 

334 bright light condition were all from mice and there are no references from previous literature 

335 about rod function under bright condition in guinea pigs far to now. Therefore, our hypothesis 

336 needs future evidence of these temporal bright lights in mouse myopic model. Additionally, 

337 since we failed to measure if the effective intervals of repeated bright light cycles were confined 

338 to the time scale of light adaptation, we cannot be certain whether this conjecture applies to all 

339 cases. Further studies are also required to clarify the effects of bright flicker on children myopia. 

340 The exact mechanisms underlying light effects on refractive development remain elusive. A 

341 number of hypotheses have been proposed, such as the change in depth of focus, physical 

342 activity and retinal dopamine (DA) activity (for reviews see Refs. 61, 62)(Ashby et al. 2009; 

343 Ashby & Schaeffel 2010; French et al. 2013; Muralidharan et al. 2021; Troilo et al. 2019). 
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344 Among them, the involvement of retinal DA seems to be most likely. In this regard, DA 

345 synthesis and release were stimulated by light and DA concentration was down regulated in 

346 experimental myopic eyes(Boatright et al. 1989; Brainard & Morgan 1987; Dong & McReynolds 

347 1991; Kirsch & Wagner 1989; Megaw et al. 1997; Rohrer et al. 1995; Stone et al. 1989). The 

348 antagonists of DA receptors (DR) shown to reverse the anti-myopic effect of bright light(Ashby 

349 & Schaeffel 2010; Chen et al. 2017) also favored this presumption. Besides, flicker light was 

350 shown to stimulate more retinal DA release than steady light(Kirsch & Wagner 1989; Kramer 

351 1971; Umino et al. 1991). In addition, light with different spectral compositions also showed 

352 different efficiency in stimulating DA release(Wang et al. 2018). In particular, continuous full 

353 spectrum artificial light with no peak or valley inhibited axial elongation with higher retinal 3, 4-

354 dihydroxyphenylacetic acid (DOPAC) /DA ratio-the metabolic efficiency of DA(Xu et al. 2023). 

355 Accordingly, it is reasonable for us to speculate that temporal bright light with full spectrum in 

356 the current study stimulated more retinal DA release which led to the inhibition of axial 

357 elongation. However, flicker light induced myopia in guinea pigs was corroborated by up 

358 regulating DA release(Luo et al. 2017). Nevertheless, a recent study in guinea pigs suggested 

359 that retinal DOPAC/DA ratio, instead of retinal DA per se, is associated with flicker-induced 

360 myopia(Tian et al. 2021). Further studies measuring levels of DOPAC/DA ratio may be helpful 

361 to better characterize the involvement of dopaminergic pathway in the temporal bright light 

362 modulation of myopia progression. 

363 Another possible mechanism that might contribute to the anti-myopic effect of naturallight is the 

364 incremental UV exposure upregulating vitamin D in circulation(Dixon et al. 2013). In favor of 

365 this mechanism, accumulating evidence showed that UV exposure was inversely associated with 

366 myopia and vitamin D level was lower in myope(Choi et al. 2014; Gao et al. 2021; Mutti & 

367 Marks 2011; Tideman et al. 2016; Yazar et al. 2014). It is further supported by the recent 

368 observation that calcipotriol supplement can effectively retard moues FDM(Jiao et al. 2023). 

369 However, several evidences suggest that low vitamin D level is not associated with myopia(Harb 

370 & Wildsoet 2021; Li et al. 2022; Lingham et al. 2019; Specht et al. 2020; Williams et al. 2017). 

371 It should also be pointed out that the Solux halogen lamp applied in this study does not contain 

372 UVB (λ = 290�315 nm) radiation, which is the only light parameter that could promote vitamin 

373 D synthesis and activation(Chan et al. 2022). Besides, our previous study comparing UV-free 

374 fluorescent lamps vs solux halogen lamps also showed no significant difference between these 

375 lamps in inhibiting LIM in guinea pigs, though with a trend of inhibiting myopia(Li et al. 2014). 

376 Nevertheless, it should be noted that the observed changes in refractive error are relatively small, 

377 most particularly for eyes raised at lower light levels. Other experiments have shown larger 

378 changes for low light stimuli with -6D lenses(Wang et al. 2014; Wu et al. 2020). Several studies 

379 suggested that violet light (VL, 360 to 400 nm) could effectively inhibit myopia development in 

380 experimental myopic mice and children(Jiang et al. 2021; Torii et al. 2017a; Torii et al. 2022; 

381 Torii et al. 2017b). Furthermore, wavelength-induced myopia was shown in guinea pigs as in 

382 chicks, mice, tree shrews, and human(Gawne et al. 2017; Jiang et al. 2021; Rohrer et al. 1992; 

383 Rucker et al. 2018; Strickland et al. 2020; Torii et al. 2017a; Torii et al. 2017b; Wang et al. 2018; 

384 Wen et al. 2022; Yu et al. 2021). Since dichromatic guinea pigs also have a violet-sensitive 
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385 pigment (peak at around 400 nm)(Parry & Bowmaker 2002), we could not deny the possibility of 

386 the VL in solux lamps producing less compensation for optical defocus. Further studies are 

387 needed to investigate the effectiveness of the spectral distribution in refractive development so as 

388 to test its necessity in indoor light design for children myopia inhibition.

389 One unexpected finding was that thickening of crystalline lenses on the contralateral eyes in the 

390 LFL group was less than that in other lighting conditions. According to previous studies, the 

391 lenticular thickness of guinea pigs increased rapidly from birth to 5 weeks of age under 

392 laboratory lighting conditions, which mainly determines the increase of the axial length(Zhou et 

393 al. 2006). The initial increase in lens thickness after visual experience was also reported in tree 

394 shrew(Norton & McBrien 1992) and marmoset(Graham & Judge 1999), which differed from 

395 children and primates whose crystalline lenses thinned throughout infancy and childhood(Mutti 

396 et al. 2005; Mutti et al. 2018; Qiao-Grider et al. 2007). The increase in lens thickness, assuming 

397 no change in lens curvature, would tend to increase the lens power, which was suggested to be 

398 compensated for by the steepening of the cornea, leading to the continued decline of hyperopia 

399 toward emmetropization(Zhou et al. 2006). In addition, the acceleration of decline in lens 

400 thickness in children is related to myopia onset and progression(Lu et al. 2021).  Given that at 

401 the end of the experiment the guinea pigs used in this study were 4 weeks of age and lenses 

402 thickening occurred synchronously with increasing vitreous chamber depth, we considered the 

403 tardier increase in lens thickness in the LFL group as the reflection of slowing the overall eye 

404 growth. Considering that crystalline is essential to the focusing power of the vertebrate eye 

405 lens(Roskamp et al. 2020), how flickering light affects lenticular thickness and refractive power 

406 still needs further studies.

407 A limitation in the current study was that the 10 MHz ultrasound probe used in the current study 

408 does not allow choroidal measurements. According to previous studies, experimental myopia in 

409 guinea pigs shows significant changes in choroidal thickness(Yang et al. 2023; Zhang et al. 

410 2019). The insensitive ultrasound may compromise the accuracy of axial length measurements 

411 and account for our failure to detect significant axial differences between groups. However, the 

412 results of refraction and ocular dimensions in the present study still provide support for the 

413 inhibitory effect of bright light on LIM. In this respect, since light levels affect axial responses to 

414 lenses and occluders in guinea pigs(Li et al. 2014; Zhang & Qu 2019), in the current study, a 

415 group with the same mean illuminance as the modulated light sources might be an alternative 

416 control. However, the brightest light in the current study did not show significant influence on 

417 the axial length compared with the low light group. The impact of mean illuminance on 

418 refractive outcomes across light modulated conditions is likely to be minimal. One more shortage 

419 in the current study is that the duration of treatment is short (3W), which might also be the 

420 reason that the axial differences between groups are not captured. Longer-term studies are 

421 needed in future studies to provide a better understanding of the prolonged effects. 

422 Conclusion

423 Collectively, the results of this preliminary study suggest that temporal modulation of Solux 
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424 halogen lamps at low temporal frequency (0.05 Hz) could be an effective way of inhibiting LIM 

425 progression. Nonetheless, the application of these findings to humans is limited by the fact that, 

426 different from humans, guinea pigs are dichromatic and have no fovea(Do-Nascimento et al. 

427 1991; Rohlich et al. 1994). Future studies are required to investigate how temporal stimuli affect 

428 the refractive shift and eye growth. Nevertheless, this study is helpful in understanding the effect 

429 of light environment and temporal stimuli on myopia, which may help the development of novel 

430 and effective treatment options for slowing myopia progression in children.
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Figure 1
Lighting conditions used in the study

(A) Waveforms of flicker used in the experiment changed smoothly; (B) Arrangement of
lamps on top of cages.
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Figure 2
Comparison of the changes of refractive error among the groups at the end of
experiment.

(A) Guinea pigs exposed to CLI and vLFL demonstrated a significant reduction in the average
refractive shift (OD-OS) compared to the CHI and LFL groups. The refractive shift of lens-
treated eyes (B) and the contralateral eyes (C) showed different changes. CLI, constant low
illumination (n=22); CHI, constant high illumination (n=19); vLFL, temporal bright light at
very low frequency (n=21); LFL, temporal bright light at low frequency (n=20); Data are
presented as mean ± SD. *P<0.05, **P<0.01, ***P<0.001; Error bars: ± SEM.

PeerJ reviewing PDF | (2023:07:88873:1:0:NEW 1 Oct 2023)

Manuscript to be reviewed



PeerJ reviewing PDF | (2023:07:88873:1:0:NEW 1 Oct 2023)

Manuscript to be reviewed



Figure 3
The effects of four light conditions on ocular biometry.

(A) At the end of treatment, LFL exposure significantly reined in the axial elongation (OD-OS)
than vLFL condition. (B) Changes in anterior chamber depth of contralateral eyes were
growing with age. (C) Changes in lens thickness of contralateral eyes was less in LFL group.
CLI, constant low illumination (n=22); CHI, constant high illumination (n=19); vLFL, temporal
bright light at very low frequency (n=21); LFL, temporal bright light at low frequency (n=20);
Data are presented as mean ± SD. * (black) P<0.05, **P<0.01, ***P<0.001; * (red) P<0.05,
LFL versus CLI group; # P<0.05; LFL versus vLFL group; Error bars: ± SEM.
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Figure 4
Correlations between changes in axial length and refractive error.

All eyes, including the contralateral and lens-treated eyes, showed a significant correlation
between changes in axial length and refractive error, except the contralateral eyes in CHI
group. Solid line represented the data from the contralateral eyes (i.e., OS) of all guinea pigs;
long dash line represented the data from the lens-treated eyes (i.e., OD) of all guinea pigs.
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Table 1(on next page)

Biometric results (mean ± SD) of ocular parameters and changes at different time
points.

CLI, constant low illumination; CHI, constant high illumination; vLFL, very low frequency
cycles of dynamic light; LFL, low frequency cycles of dynamic light; ACD, anterior chamber
depth; LT, lens thickness; VCD, vitreous chamber depth; AL, axial length. Data are presented
as mean ± SD.
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Paradigms Groups Time Points Refractive 

Error, D

ACD, mm LT, mm VCD, mm AL, mm

CLI Baseline 3.60±0.58 1.10±0.05 2.49±0.14 3.46±0.16 7.24±0.14Without 

lenses First Week 3.39±0.57 1.11±0.05 2.53±0.14 3.52±0.15 7.33±0.14

Second week 3.28±0.54 1.13±0.05 2.57±0.14 3.57±0.16 7.45±0.14

Third Week 3.09±0.55 1.14±0.05 2.58±0.14 3.61±0.16 7.55±0.16

Change -0.51±0.05 0.05±0.02 0.10±0.03 0.14±0.05 0.30±0.08

CHI Baseline 3.64±0.62 1.09±0.06 2.47±0.14 3.43±0.20 7.25±0.13

First Week 3.50±0.65 1.10±0.06 2.51±0.15 3.48±0.18 7.34±0.16

Second week 3.39±0.65 1.12±0.06 2.53±0.15 3.53±0.17 7.40±0.17

Third Week 3.24±0.62 1.13±0.06 2.55±0.15 3.57±0.18 7.49±0.17

Change -0.40±0.23 0.05±0.01 0.08±0.03 0.14±0.05 0.24±0.15

vLFL Baseline 3.95±0.67 1.11±0.05 2.51±0.14 3.44±0.19 7.26±0.09

First Week 3.84±0.79 1.13±0.06 2.55±0.13 3.49±0.20 7.36±0.08

Second week 3.56±0.60 1.15±0.06 2.59±0.13 3.55±0.20 7.48±0.08

Third Week 3.36±0.60 1.16±0.06 2.61±0.12 3.59±0.20 7.53±0.08

Change -0.59±0.29 0.05±0.03 0.10±0.04 0.14±0.05 0.27±0.07

LFL Baseline 3.76±0.62 1.11±0.05 2.50±0.12 3.44±0.20 7.28±0.09

First Week 3.69±0.54 1.12±0.06 2.51±0.13 3.48±0.20 7.38±0.10

Second week 3.41±0.63 1.14±0.06 2.55±0.12 3.53±0.20 7.50±0.12

Third Week 3.25±0.60 1.15±0.06 2.56±0.12 3.57±0.20 7.60±0.12

Change -0.51±0.16 0.04±0.02 0.07±0.03 0.13±0.04 0.31±0.08

CLI Baseline 3.58±0.41 1.09±0.04 2.49±0.14 3.43±0.16 7.22±0.1With -6D

 lenses First Week 2.89±0.62 1.1±0.04 2.62±0.13 3.58±0.17 7.61±0.1

Second week 1.78±0.52 1.11±0.05 2.7±0.13 3.73±0.21 7.74±0.1

Third Week 1.27±0.48 1.09±0.05 2.83±0.16 4.07±0.2 7.99±0.09

Change -2.31±0.64 -0.01±0.07 0.35±0.24 0.64±0.27 0.78±0.13
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CHI Baseline 3.54±0.53 1.08±0.05 2.45±0.14 3.39±0.18 7.22±0.09

First Week 2.96±0.39 1.1±0.04 2.61±0.14 3.54±0.25 7.65±0.15

Second week 2.55±0.77 1.09±0.05 2.71±0.12 3.56±0.19 7.76±0.14

Third Week 1.93±0.9 1.11±0.06 2.85±0.17 3.88±0.24 7.94±0.1

Change -1.61±0.94 0.02±0.07 0.4±0.2 0.48±0.25 0.71±0.12

vLFL Baseline 3.67±0.58 1.09±0.05 2.48±0.14 3.42±0.19 7.19±0.07

First Week 2.8±0.67 1.11±0.04 2.61±0.13 3.56±0.17 7.58±0.09

Second week 1.77±0.58 1.11±0.05 2.69±0.14 3.64±0.22 7.74±0.1

Third Week 1.25±0.47 1.09±0.05 2.83±0.16 3.97±0.18 8±0.08

Change -2.42±0.69 0±0.07 0.35±0.24 0.55±0.3 0.8±0.11

LFL Baseline 3.55±0.52 1.11±0.05 2.48±0.14 3.43±0.15 7.22±0.08

First Week 2.96±0.38 1.09±0.05 2.6±0.13 3.56±0.25 7.65±0.14

Second week 2.68±0.76 1.09±0.05 2.71±0.13 3.65±0.17 7.76±0.13

Third Week 2.15±0.89 1.1±0.04 2.84±0.17 3.87±0.22 7.91±0.09

Change -1.4±0.94 -0.01±0.06 0.36±0.25 0.44±0.24 0.69±0.12
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