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ABSTRACT
The current consensus is that sexual selection is responsible for the rapid and diverse
evolution of genitalia, with several mutually exclusive mechanisms under debate,
including non-antagonistic, antagonistic and stabilizingmechanisms.We used the orb-
web spider, Argiope lobata (Araneidae), as a study model to quantify the allometric
relationship between body size and genitalia, and to test for any impact of genital
structures on male mating success or outcome in terms of copulation duration, leg loss
or cannibalism. Our data do not support the ‘one-size-fits-all’ hypothesis that predicts
a negative allometric slope between genitalia and body size. Importantly, we measured
both male and female genitalia, and there was no sex specific pattern in allometric
slopes. Unexpectedly, we found no predictor for reproductive success as indicated by
copulation duration, cannibalism, and leg loss.

Subjects Animal Behavior, Evolutionary Studies
Keywords Sexual selection, Allometry, Evolution of genitalia, Argiope lobata, Mating success

INTRODUCTION
Body size has an enormous impact on practically every trait of an animal’s morphology,
physiology, and ecology (Lindstedt, 1987). In its broadest sense, allometry describes how
morphological features change according to body size—in other words, it describes the
scaling relationship between the size of a trait with the overall size of the body as trait
and body growth during development (Small, 2012). Arthropods, encompassing diverse
groups such as insects, spiders, and crustaceans, exhibit a wide range of allometric patterns
of traits such as genitalia and weapons, ranging from positive to negative allometries
against body size (Wickman & Karlsson, 1989; Karim, Guild & Thummel, 1993; Stern &
Emlen, 1999; Shingleton et al., 2007; Bertin & Fairbairn, 2007; Lease & Wolf, 2010; Bidau,
Taffarel & Castillo, 2016). In Argiope aurantia orb-web spiders, for instance, male and
female genital characteristics scale negatively with body size (Assis & Foellmer, 2016). The
nature of these allometric relationships can provide significant information about trait
evolution and function.

Most complex morphologies show allometric variation that can include (i) no
relationship with body size (the slope of a log–log regression is not different from 0),
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(ii) traits which increase in proportion with body size (isometry, slope is not different from
1), (iii) traits which grow disproportionately larger with body size (positive allometry or
hyperallometry, slope > 1) or (iv) traits which grow disproportionately smaller with body
size (negative allometry or hypoallometry, slope < 1; Gould, 1966).

Possibly the most intensely studied morphological traits and their relationship with
body size are animal genitalia. So far, genital evolution research has focused primarily
on males, with male genitalia receiving around twice the amount of research attention
than female genitalia (Ah-King, Barron & Herberstein, 2014). To investigate the nature of
selection on sexual traits such as genitalia, many studies interpret the allometric relationship
between body size and genital size (see Bonduriansky, 2007). Explaining genital variation
and the selective processes responsible for this variation has been hotly debated with several
divergent views (Eberhard, 1985; Edwards, 1993; Arnqvist & Danielsson, 1999; Kinahan et
al., 2008). While there is current consensus that sexual selection is responsible for the
rapid and diverse evolution of genitalia (Eberhard, 1985; Eberhard, 2010; Arnqvist, 1998;
Hosken & Stockley, 2004, for examples see: House & Simmons, 2003; Simmons & Garcia-
Gonzalez, 2011), there are several mutually exclusive mechanisms under debate. First, male
genitalia may be under sexual selection to stimulate the female or to position sperm in
locations that facilitate successful fertilisation within the female tract (Lande, 1981), thus
genitalia evolve in a non-antagonistic process. Second, antagonistic selection resulting
from a coevolutionary arms race between male and female reproductive optima may be
at play. Males and females often have competing interests when it comes to mating and
fertilization, which can lead to the evolution of male genitalia that bypass female choice.
This can, in turn, lead to female genitalia counter-evolving defences to regain control over
mating or fertilization (at a cost to the male) (Rice, 1984; Arnqvist & Rowe, 1995; Arnqvist
& Rowe, 2005; Rönn, Katvala & Arnqvist, 2007; Foerster et al., 2007; Kuntner, Coddington &
Schneider, 2009; Brennan, Clark & Prum, 2010; Innocenti & Morrow, 2010; Perry & Rowe,
2015). The third process is a stabilizing mechanism known as ‘one-size-fits-all’, which
argues that males may be selected on intermediate-sized genitalia regardless of body size
to be able to copulate with all females regardless of size (Eberhard et al., 1998).

Argiope lobata is an excellent model for studying allometric relationships of male and
female genitalia as they interact both synergistically and antagonistically during copulation.
The two copulatory openings of the epigyne are separated by amedian septum (Fig. 1) (Levi,
1968; Uhl, Nessler & Schneider, 2007; Foelix, 2011). During copulation, several structures
of the male genitalia (the conductor and the pedipalp apophysis) contact the copulatory
opening and the median septum (Schneider, Uhl & Herberstein, 2015). Moreover, the
pedipalp apophysis has a thin and pointed spur, which is common in the Argiope genus
(Levi, 1983). The spur is important for the successful transfer of sperm, and in A. lobata
removal of the spur prevents successful coupling (Schneider, Uhl & Herberstein, 2015).
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Figure 1 Female genital structure characteristics of A. lobata (modified diagram from Levi, 1983).
Full-size DOI: 10.7717/peerj.16413/fig-1

MATERIAL AND METHODS
Subadult male and female Argiope lobata (Pallas, 1774) were collected from their natural
webs in several sites near Ashkelon, Israel, in 2010. F1 offspring derived from the above
collected females were used in this study (Fig. 2). Argiope lobata belongs to the family
Araneidae and shows sexual dimorphism where females (body length: 16.5–25.5 mm) are
larger than males (body length: 5–7.5 mm) (Preston, 1998). In the laboratory, spiders were
housed in 330 ml plastic containers and were fed with Drosophila twice a week. The spiders
and their webs were sprayed with water every day. Adult females were placed in Perspex
frames (36×36×6 cm) after their final moult, where they constructed their customary orb
webs. Adult males were housed in plastic containers until the mating experiment started.
Here we ask two questions: first, what is the allometric relationship between body size and
genitalia and second, do genital structures influence male mating success? We predict that
if genital structures are disproportionately larger relative to body size (allometric regression
slope is > 1) then genital structures are under positive sexual selection, while if the slope
is < 1 they are more likely to be under stabilizing selection (‘one size fits all’).

Experiments were conducted in a laboratory at the University of Hamburg from June
2010 until September 2010. All spiders used for this study were unmated. Once a male
was introduced to a female, the male typically walked slowly through the female’s web
towards the hub. As characterised in A. keyserlingi (Wignall & Herberstein, 2013; Wignall
& Herberstein, 2022), fast vibrating movements were commonly observed during the
courtship. The female’s receptivity was frequently indicated by a slow tugging of the web
and a mating position in the hub where her abdomen was slanted backwards, providing
access to the copulatory openings. The male climbed onto the female, drumming her
abdomen with his pedipalps until inserting one of his pedipalps into her copulatory
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Figure 2 Argiope lobatamale and female in their natural habitats at Ashkelon, Israel.
Full-size DOI: 10.7717/peerj.16413/fig-2

opening. As copulation commenced, the female typically attacked the male thereby ending
the copulation and her attack frequently resulted in either cannibalism or leg loss (Nessler,
Uhl & Schneider, 2009). Copulation duration (from the point of pedipalp insertion to the
removal of the pedipalp from the copulatory opening of the female) (seconds), frequency
of female attacks, cannibalism and leg loss during copulation were recorded. If the male
was still alive after copulation, he was classified as ‘not cannibalized’. Cannibalized males
were removed from the female and saved for further investigations.

After copulation, males and females were euthanized, and body measurements were
taken. Leg length and the carapace maximum width and length were measured (to the
nearest 0.01 mm) as indicators of body size (see also Nessler, Uhl & Schneider, 2009). We
then calculated carapace area from the width and length and square root transformed
area for analysis. Most studies that investigate sperm transfer in spiders used either body
mass, tibia and patella length (Dharmarathne & Herberstein, 2022) or the square root of
the carapace area as proxy for body size (Assis & Foellmer, 2016). Because body mass can
vary substantially between individuals of similar size due to their recent feeding status,
we measured both the carapace area (later converted to square root carapace area) and
total length of the tibia and patella of the first pair of legs as a proxy of body size, using a
stereomicroscope (Fig. 3).

We measured several male and female genital structures that are known to interact
during copulation or that are linked to sperm transfer. We measured female median
septum length and width under a stereomicroscope. Length and width were measured
at the longest and widest points of the median septum respectively. In male pedipalps,
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Figure 3 Male and female body structure characteristics of A. lobata.
Full-size DOI: 10.7717/peerj.16413/fig-3

the apophysis connects tightly with the female genital structures, especially with the
median septum, during sperm transfer (Huber, 1995; Welke & Schneider, 2009; Hirt, Ruch
& Schneider, 2017). The presence of a slender, pointed spur on the apophysis is unique to
theArgiope genus and the size and shape of the spur varies between species (Levi, 1983). The
spur aids in the process of genital damage where the tip of the embolus breaks off during
copulation (Nessler, Uhl & Schneider, 2007). In this study, we measured the area of the
apophysis and the length of the spur under a stereomicroscope. Microscopic analysis was
conducted using a Leica MZ16 stereomicroscope (Leica Microsystems, Wetzlar, Germany)
equipped with a Leica DFC320 digital camera (Leica Microsystems, Wetzlar, Germany).
Themicroscope was connected to a computer running Leica IM500 image analysis software
(LeicaMicrosystems,Wetzlar, Germany) for capturing and processing the acquired images.
Length was measured in µm for all measurements. We discarded records involving one
female with median septum width < 1

2 that of the other spiders (ID Al1 570), and one male
with an abnormally short right tibia-patella length (ID Al6 653).

Allometric relationships
Testing allometric hypotheses usually involves fitting a linear model to log-transformed
measures of body size and the trait of interest (Warton et al., 2006). Choice of line-fitting
method is the subject of an extended and robust debate (e.g., Eberhard, Huber & Rodriguez,
1999; Eberhard et al., 1998; Green, 1999; Kilmer & Rodríguez, 2017; Smith, 2009; Warton et
al., 2006), however there is no single correct choice, as the appropriate method depends on
the biological question (Smith, 2009;Warton et al., 2006). Ordinary least squares regression
(OLS) identifies the variation in a variable y that can be described as a function of another
variable x. Accordingly, it is appropriate for assessing variation in a trait y (such as genital
size) that is caused by variation in a trait x (such as body size), while allowing for ‘‘error’’
in y that arises from other factors (Kilmer & Rodríguez, 2017). Here, the term ‘‘error’’
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encompasses all causes of variation in y that are not accounted for (or caused) by the
variation in x ; importantly this ‘‘error’’ includes biological and environmental factors
(‘‘equation error’’; Warton et al., 2006), as well as experimental and measurement error
(‘‘measurement error’’;Warton et al., 2006) (arguably, ‘‘noise’’ may be a more appropriate
and less misleading term than ‘‘error’’). If, however, trait x and trait y are both explained
by a third trait, z, and the errors in x and y are independent, then OLS will underestimate
the slope of the relationship, and the greater the error in x, the greater the underestimate
(Smith, 2009). Smith (2009) describes this situation as a ‘‘symmetric relationship’’ and
finds that reduced major axis (RMA) regression is indicated here. RMA is also known as
‘‘standardised major axis’’ (SMA). In our tests of allometry, we use proxy measures of body
size, the square root of the carapace area and tibia-patella length. Hence, we use RMA for
estimating the slope of the regression line when testing allometric hypotheses.

When testing for hyperallometry or isometry, we are asking howone variable (e.g., genital
size) increases with another (such as body size), because we are looking for a functional
scaling relationship between the two variables. For reasons described above, we estimated
the regression slope using RMA, however RMA does not take covariance between the two
variables into account. Hence, when testing for isometry or hyperallometry, we must test
two conditions: (1) the RMA slope is equal to (isometry) or significantly greater than 1
(hyperallometry), and (2) there is a positive correlation between the two variables. To test
condition 2, we test whether theOLS regression slope is significantly greater than 0 (Warton
et al., 2006). When testing the one-size-fits-all hypothesis, we need to determine whether
there is less variation in genital size than would be expected from simple isometry. In this
case, the nature of the relationship between body size and genital size (i.e., the existence
or otherwise of a causal relationship, or even whether there is a correlation) is immaterial.
For that reason, OLS is not suitable and again, RMA regression is the appropriate choice
(Smith, 2009;Warton et al., 2006). For hypothesis testing, we compared the 99% confidence
intervals of the regression slopes to 1 (rather than the more conventional level of 95%)
since we performed multiple comparisons (Altman et al., 2000). Accordingly, we tested
for statistical significance with the corresponding level of alpha = 0.01. Analyses were
performed in R (R Core Team, 2020) using the packages smatr (Warton et al., 2012), boot
(Canty & Ripley, 2002) and Durga (Khan & McLean, 2023).

INFLUENCE OF BODY SIZE AND GENITAL MORPHOLOGY
ON MALE REPRODUCTIVE OUTCOME
We only included data where individuals copulated. Impact of morphology on copulation
duration was determined by fitting a multiple linear regression with body size and genital
characteristics as independent variables and copulation duration as the dependent variable.
Similarly, the impact of morphology on leg loss or cannibalism during copulation was
assessed by fitting a generalized linear model to the data with a logit error distribution.
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Figure 4 Static allometry of
√
carapace area and tibia patella length, in female (A) andmale (B) A. lo-

bata. Red line shows the fitted RMA regression. Filled polygon depicts 99% confidence intervals (CI) of
the RMA slope. The black dotted line indicates isometry (slope= 1 and passing through the centroid of
the points). Points represent individual spiders. Female leg length is isometric with carapace area, male leg
length is hyperallometric.

Full-size DOI: 10.7717/peerj.16413/fig-4

RESULTS
When analysing allometric relationships, both the square root of carapace area and
tibia-patella length have been used as proxies for spider body size (see Dharmarathne &
Herberstein, 2022 for a review). The square root of carapace area may be a more relevant
linear indicator of body size (Assis & Foellmer, 2016) for sexually dimorphic species such
as Argiope lobata, where leg length in males may also be under selection. Consequently,
we first analysed the scaling relationship of patella-tibia length with the square root of
carapace area and found that male tibia-patella length exhibited hyperallometry with
respect to the square root of carapace area, while female tibia-patella length was isometric
(Fig. 4). Accordingly, we performed the allometric relationship analyses between genital
traits and body size using both the square root of carapace area and tibia-patella length as
body size proxies.

Allometric relationships
The slope of the log–log RMA regression against tibia-patella length and square root
carapace area was used to determine whether the genital structures are under directional
selection (hyperallometry, slope> 1), stabilizing selection (‘one size fits all’: hypoallometry,
slope < 1) or scale in proportion to body size (isometry, slope = 1). To establish isometry
or hyperallometry, we also required a significant positive correlation between the variables.
Of the four traits we compared, only a single RMA slope differed significantly from 1:
female median septum width, with a slope >1 (Tables 1 and 2). Of the four traits, only
pedipalp apophysis area showed a significant correlation with body size (tibia patella length
and the square root of the carapace area), so no genital traits satisfied our criteria for either
hyperallometry or hypoallometry (Figs. 5 and 6).
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Table 1 Static allometry: 99% confidence interval (lower limit, LL, and upper limit, UL) of slope of re-
ducedmajor axis (RMA) regression analysis and correlation (P-value and R2) of male and female geni-
tal characteristics on body size proxy.

Body size vs genital characteristics LL UL P R2 n

Female TPL vsmedian septum length 0.88 1.80 0.02 0.11 50
Female TPL vsmedian septum width 1.06 2.24 0.21 0.03 50
Male TPL vs pedipalp apophysis area 0.62 1.27 0.002 0.21 47
Male TPL vs spur length 0.57 1.24 0.25 0.03 47

Table 2 Static allometry: 99% confidence interval (lower limit, LL, and upper limit, UL) of slope of re-
ducedmajor axis (RMA) regression analysis and correlation (P-value and R2) of male and female geni-
tal characteristics on body size proxy (

√
carapace area, SCA) in A. lobata. LL and UL values in bold in-

dicate slope 6= 1. P-value and R2 in bold indicate a significant positive correlation between SCA and geni-
tal trait at the p< 0.01 level.

Body size vs genital characteristics LL UL P R2 n

Median septum length vs female SCA 0.99 2.02 0.013 0.12 50
Median septum width vs female SCA 1.19 2.51 0.023 0.03 50
Pedipalp apophysis area vsmale SCA 0.89 1.73 <0.001 0.29 47
Spur length vsmale SCA 0.89 1.93 0.066 0.07 47

Influence of body size and genital morphology on male reproductive
outcome
Multiple linear regression analysis was conducted to determine the impact of body size and
genital characteristics on copulationduration.No variableswere found to significantly affect
copulation duration (Table 3). Further, logistic regression models were used to determine
the impact of size and genital morphology on the copulation outcomes, cannibalism or leg
loss. Again, none of the size and morphology traits had a significant impact on cannibalism
or leg loss (Tables 4 and 5).

Testing our four allometric hypotheses involve eight analyses of statistical significance,
leading to a high family-wise rate of type I errors if not controlled for. Applying a Bonferroni
correction for eight comparisons results in an alpha level of 0.05/8= 0.00625, which is very
conservative (Nakagawa, 2004). We instead selected the more statistically powerful alpha
level of 0.01, as it is easy to comprehend and visualize the corresponding 99% confidence
intervals (i.e., 99% CI corresponds to alpha = 0.01), and is recommended by Altman et
al. (2000). We feel that applying an alpha of 0.05 would result in an unacceptably high
probability of type I errors.

DISCUSSION
There are several ways of performing allometric studies within a species, including plotting
allometric relationships between size and genital traits (Arnqvist, 1997) or conducting an
experiment that links genital traits with direct selection outcomes. Here, we apply both
approaches by investigating the nature of the allometric relationship between body size
and genitalia and asking whether these genital structures influenced male mating success in
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Figure 5 Static allometry of genital structures and body size proxy (
√
carapace area) in female (left

panels) andmale (right panels) A. lobata. Red line shows the fitted RMA regression; dashed indicates
there is not a significant correlation between the two variables. Filled polygon depicts 99% confidence in-
tervals (CI) of the RMA slope. The black dotted line indicates isometry (slope= 1 and passing through
the centroid of the points). Points represent individual spiders. Evidence for allometry requires (1) a sig-
nificant correlation between the two variables and (2) the RMA CI does not include the line of isometry.
None of the relationships satisfy both conditions.

Full-size DOI: 10.7717/peerj.16413/fig-5

Table 3 Regression coefficients for copulation duration vsmale and female genital size and tibia-
patella length in A. lobata (R2 = 0.04, n= 32, p= 0.98).

Variable Estimate Std. error t value Pr (> |t |)

(Intercept) −351.2 400.3 −0.87 0.39
Median septum length 0.025 0.25 0.10 0.92
Median septum width 0.079 0.19 0.42 0.98
Pedipalp apophysis area 0.001 0.002 0.52 0.61
Spur length 0.049 0.47 0.11 0.92
Male tibia-patella length 0.003 0.035 0.08 0.93
Female tibia-patella length 0.018 0.026 0.72 0.48

terms of copulation duration, leg loss and cannibalism. We found no strong evidence for a
hyper- or hypoallometric relationship between male and female body size and genital size.
These results do not support the ‘‘one size fits all’’ hypothesis, which states that genitalia
are under stabilising selection (Uhl & Vollrath, 2000; Ramos et al., 2005; Hosken, Minder &
Ward, 2005). Furthermore, the size of genitalia did not affect copulation success. Neither
copulation duration, cannibalism nor leg loss were related to body size or the size of genital
traits.
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Figure 6 Static allometry of genital structures and body size proxy (tibia-patella length) in female (left
panels) andmale (right panels) A. lobata. Red line shows the fitted RMA regression; dashed indicates
there is not a significant correlation between the two variables. Filled polygon depicts 99% confidence in-
tervals (CI) of the RMA slope. The black dotted line indicates isometry (slope= 1 and passing through the
centroid of the points). Points represent individual spiders. Evidence for allometry requires (1) a signifi-
cant correlation between the two variables and (2) the RMA CI does not include the line of isometry.

Full-size DOI: 10.7717/peerj.16413/fig-6

Table 4 Logistic regression coefficients for cannibalism vsmale and female genital size and tibia
patella length in A. lobata. Dispersion parameter for binomial family taken to be 1.

Variable Estimate Std. error z value Pr (> |z|)

(Intercept) 15.6 12.9 1.2 0.23
Median septum length 0.003 0.008 0.36 0.72
Median septum width −0.009 0.006 −1.4 0.17
Pedipalp apophysis area −0.00005 0.00006 −0.83 0.40
Spur length −0.002 0.012 −0.14 0.89
Male tibia-patella length −0.0006 0.001 −0.59 0.55
Female tibia-patella length −0.0002 0.0008 −0.23 0.82

A study on the congener A. aurantia that used a similar approach, also found little
support for the ‘‘one-size-fits-all’’ hypothesis and no support for the ‘‘lock-and-key’’
hypotheses. In addition to investigating the nature of the allometric relationship between
body size and the size of genitalic traits, they also experimentally tested whether these genital
structures influence aspects of male mating success, including sperm transfer success and
found no significant correlations (Assis & Foellmer, 2016).

Hypoallometric scaling (slope < 1) and rapid diversification of genitalia among species
have, in fact, been an evolutionary puzzle. Studies indicating hypoallometric scaling
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Table 5 Logistic regression coefficients for leg loss vsmale and female genital size and tibia patella
length in A. lobata. Dispersion parameter for binomial family taken to be 1.

Variable Estimate Std. error z value Pr (> |z|)

(Intercept) 17.1 13.6 1.2 0.21
Median septum length 0.0007 0.007 0.09 0.93
Median septum width −0.004 0.006 −0.63 0.53
Pedipalp apophysis area −0.00007 0.00006 −1.1 0.27
Spur length −0.02 0.02 −0.99 0.32
Male tibia-patella length −0.0003 0.001 −0.32 0.75
Female tibia-patella length −0.0001 0.0008 −0.15 0.88

(slope < 1) of animal genitalia with body size were described by Eberhard (2009). The
more common pattern describes genitalia that are hyperallometric (slope> 1) and thought
to be under strong selection (Lloyd, 1979; Eberhard, 1985; Eberhard, 1996; Eberhard, 2010;
Hosken & Stockley, 2004; Simmons, 2014, but see Bonduriansky, 2007). By contrast, our
study found slopes around 1 for Argiope lobata. Even the steepest slope for female median
septum against tibia-patella length was only slightly greater than 1 and the correlation was
not significant. Isometry between genital traits and body size may be more common than
expected and could be the result of unidentified trade-offs (Bonduriansky, 2007).

Eberhard et al. (1998) suggested that in spiders specifically, the ‘one size fits all’
mechanism (slopes< 1) may be pervasive as it suits the overall sexual size dimorphism and
sometimes dimorphic males in spiders. Small males are relatively prevalent among spiders,
especially among orb-web spiders (Hormiga, Scharff & Coddington, 2000). Moreover, in
many spider species, such as Trichonephila clavipes, T. plumipes or T. edulis, males can be
highly polymorphic (Cohn, 1990; Elgar & Fahey, 1996; Schneider et al., 2000). For example,
in T. edulis, large males can be 10 times the body length of small males (Schneider et al.,
2000). According to the ‘one-size-fits-all’ concept, males with average sized genitalia,
independent of their own body size, should be able to copulate with all females they
encounter irrespective of their relative size, particularly when there is substantial variation
in male size (Eberhard, 1985). While not described as intrasexually polymorphic, Argiope
lobata nevertheless displays variation in male than female body size (see Table A1,
male TPL CV = 10%; Zimmer, 2014). Even though sexual dimorphism in A. lobata is
pronounced (Foelix, 2011, size measurements in this study) this species does not seem to fit
the expectations of the ‘one size fits all’ mechanism (see supplementary summary statistics
for traits).

Copulation duration as a proxy for reproductive success in spiders is frequently used
in studies, where copulation duration is positively associated with the number of sperm
transferred in various species (Schneider et al., 2006; Herberstein et al., 2011; Albo, Bilde &
Uhl, 2013; Ceballos, Jones & Elgar, 2015). While it is reasonable to assume that a greater
amount of sperm transferred to the female will also result in more fertilizations for the
male, the direct link between the number of sperm transferred and fertilization is difficult
to establish, as quantifying sperm in the spermatheca prior to fertilization requires the
destruction of the female. One way of overcoming this limitation is to count the number
of sperm that remain in the used male pedipalp relative to the number of sperm in the
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unused pedipalp as an estimate of sperm transfer (Schneider et al., 2006). Alternatively,
direct fertilization success using sterile techniques can also link relative copulation duration
of two males to fertilization (see Magris, Wignall & Herberstein, 2020; Elgar, Schneider &
Herberstein, 2000). In our study, we found that larger females copulated for longer than
smaller females. These longer copulations could be driven by the female, the male or
both, reflecting female requirement for more sperm or male investment into more fecund
females.

CONCLUSION
Our data do not support the ‘‘one-size-fits-all’’ hypothesis for genitalia in Argiope lobata.
Importantly, we measured both male and female genitalia, and there was no sex specific
pattern in allometric slopes. Unexpectedly, we found no predictor for reproductive success
as indicated by copulation duration, cannibalism, and leg loss. It may be that actual
fertilisation success is a more appropriate measure of reproductive success in A. lobata,
even though copulation duration in A. keyserlingi was positively related to fertilisation
success (Magris, Wignall & Herberstein, 2020). Furthermore, we did not consider internal
genital morphology as a contributing factor, which may also be under strong sexual
selection, but is rarely studied.
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APPENDIX

Table A1 Summary statistics of spider traits used in the analysis. Linear units areµm and area units
areµm2.

Trait MEAN SD CV n

Female TPL 10319.7 660.6 0.064 50√
Female carapace area 6338.9 358.1 0.056 50

Median septum length 713.3 56.7 0.08 50
Median septum width 825.0 82.8 0.10 50
Male TPL 3923.2 400.9 0.10 45√
Male carapace area 2456.1 177.2 0.072 47

Pedipalp apophysis area 94529.9 8725.2 0.092 46
Spur length 341.9 32.5 0.095 46
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