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ABSTRACT
Thailand is a country that is prone to both floods and droughts, and these natural
disasters have significant impacts on the country’s people, economy, and environment.
Estimating rainfall is an important part of flood and drought prevention. Rainfall
data typically contains both zero and positive observations, and the distribution of
rainfall often follows the delta-lognormal distribution. However, it is important to
note that rainfall data can be censored, meaning that some values may be missing or
truncated. The interval estimator for the ratio of means will be useful when comparing
themeans of two samples. The purpose of this articlewas to compare the performance of
several approaches for statistically analyzing left-censored data. The performance of the
confidence intervals was evaluated using the coverage probability and average length,
which were assessed through Monte Carlo simulation. The approaches examined
included several variations of the generalized confidence interval, the Bayesian, the
parametric bootstrap, and the method of variance estimates recovery approaches. For
(ξ1, ξ2) = (0.10,0.10), simulations showed that the Bayesian approach would be a
suitable choice for constructing the credible interval for the ratio of means of delta-
lognormal distributions based on left-censored data. For (ξ1, ξ2) = (0.10,0.25), the
parametric bootstrap approach was a strong alternative for constructing the confidence
interval. However, the generalized confidence interval approach can be considered to
construct the confidence when the sample sizes are increase. Practical applications
demonstrating the use of these techniques on rainfall data showed that the confidence
interval based on the generalized confidence interval approach covered the ratio of
population means and had the smallest length. The proposed approaches’ effectiveness
was illustrated using daily rainfall datasets from the provinces of Chiang Rai and Chiang
Mai in Thailand.

Subjects Statistics, Natural Resource Management, Ecohydrology, Environmental Impacts
Keywords Bayesian credible interval, Delta-lognormal distribution, Left-censored data, Ratio,
Rainfall

INTRODUCTION
Floods occur in Thailand primarily during the monsoon season, which typically lasts from
May to October. During this time, heavy rainfall can cause rivers to overflow and inundate
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low-lying areas, leading to widespread flooding. In some cases, flash floods can also occur,
particularly in urban areas with poor drainage systems. The impacts of floods in Thailand
can include damage to crops and infrastructure, loss of property and livelihoods, and
loss of life. On the other hand, droughts are more common during the dry season, which
typically lasts from November to April. During this time, rainfall is limited, and water
resources such as rivers, reservoirs, and groundwater become depleted. Droughts can have
significant impacts on agriculture, which is a major sector of Thailand’s economy. They
can also lead to water shortages for households and industries, as well as damage to the
environment. Rainfall estimation is an essential tool for addressing these challenges and
preventing floods and droughts in Thailand. By accurately estimating rainfall patterns,
authorities can better prepare for andmitigate the impacts of these natural disasters, helping
to protect the country’s people, economy, and environment. The analysis and modeling
of rainfall patterns play a crucial role in various fields, such as hydrology, agriculture, and
climate science. Thailand experiences a wide range of rainfall patterns due to its geographic
location, varying topography, and monsoonal climate. The characteristics of rainfall data
fit various distributions, such as the normal distribution, log-normal distribution, gamma
distribution, Weibull distribution, inverse Gaussian distribution, and delta-lognormal
distribution. Several researchers have indicated that the delta-lognormal distribution is
a suitable model for rainfall data in Thailand; see Krstanovic & Singh (1992), Singh &
Rajagopal (1986) and Singh & Singh (1987).

The delta-lognormal distribution is a statistical distribution commonly used to model
continuous positive data, such as rainfall, crop yields, and stock prices. It is a two-part
distribution that contains both zero and positive values. The number of zero values follows
a binomial distribution, while the positive values follow a log-normal distribution. The
log-normal distribution is formed by taking the exponential of a normal distribution.
The delta-lognormal distribution is often used in hydrology and other fields to model
variables that exhibit high variability and are bounded by zero. It has been found to be an
effective model for a wide range of applications, particularly for modeling rainfall data.
Several researchers have studied confidence intervals for functions of the delta-lognormal
distribution. Thangjai et al. (2023) proposed the confidence interval estimation for the
ratio of the percentiles of two delta-lognormal distributions. Additionally, given that
rainfall data is often censored, it is crucial to estimate the functions of the delta-lognormal
distribution based on left-censored data for obtaining accurate statistics. Thangjai &
Niwitpong (2023) estimated the confidence intervals for mean and difference between
means of delta-lognormal distributions based on left-censored data with application to
rainfall data.

The difference of parameters refers to the subtraction or comparison of two parameters
or coefficients in a statistical model. This is typically done to quantify the difference in the
impact or effect of two variables on an outcome. In rainfall data analysis, the difference of
parameters is used to assess the difference in the effects of two variables. For instance, the
difference between the coefficients of rainfall associated with different geographical regions
is computed to determine if one region experiences significantly more or less rainfall than
the other. The ratio of parameters refers to the division or comparison of two parameters
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or coefficients in a statistical model. Parameters can represent various aspects of a model,
such as the coefficients of variables in a regression model, the proportions in a probability
distribution, or the odds ratios in logistic regression. In the context of rainfall data analysis,
the ratio of parameters is used to compare the effects of different variables on rainfall. For
example, the ratio of the coefficients of temperature and humidity in a regression model is
used to determine how each of these factors contributes to changes in rainfall. Moreover,
the difference of means is likely to be minor when both means are small, and such a minor
difference can lead to an inability to draw powerful or definite conclusions. Therefore, the
ratio of means is often considered more accurate than the difference of means. The ratio of
means is the ratio of two means and is used in many fields. For instance, in bioequivalence,
the ratio of means is used to compare the mean of the test drug and the mean of the
reference drug. In epidemiology, the ratio of means is used to compare the particulate
matter with a diameter of less than 2.5 µm (PM2.5) level averages of two areas. In climate
sciences, the ratio of means is used to compare the daily rainfall averages of two areas.
Confidence intervals for the ratio of means have been constructed inmany research studies,
such as those by Chen & Zhou (2006a).

In statistics, the information in a sample is used to make inferences about an unknown
parameter. The inference methods are hypothesis testing and estimation (Casella & Berger,
2002). Estimations have a point estimation and an interval estimation. Estimation is of
interest in many fields. For example, in the environment, Luo, Shen & Xu (2022) studied
the modeling and estimation of system reliability under dynamic operating environments
and lifetime ordering constraint. They used the maximum likelihood method for point
estimation while proposing generalized inference methods for interval estimation. In
industry, Zhang et al. (2022) studied the problem of reliability estimation for a parallel
system when one stress variable is involved, referred to as the multicomponent stress–
strength model.

The construction of confidence intervals is a crucial aspect of statistical inference, and
many researchers have proposed various approaches for constructing such intervals. The
generalized confidence interval (GCI) approach uses the concepts of the generalized pivotal
quantity (GPQ) to construct the confidence interval. Chen & Zhou (2006a) presented the
GCI estimate for the ratio and the difference between themeans of log-normal distributions.
It gave a highly accurate coverage rate and fairly low bias, especially for small sample sizes.
Tian & Wu (2007) proposed the GCI approach for inferences on the common mean of
log-normal distributions. Ye, Ma &Wang (2010) proposed inferences on the common
mean of several inverse Gaussian populations using the GCI approach.

The bootstrap approach relies heavily on computer simulations. Traditionally, standard
errors have been calculated using well-known formulae, often based on assumptions
that are not satisfied or only approximately satisfied. In some cases, it may not even
be known if the assumptions hold or not. In essence, the bootstrap approach relies on
resampling with replacement from the given sample and calculating the required statistic
from these repeated samples. The values of the statistic from the repeated sampling
can then be used to generate standard errors and confidence intervals for the statistic
(Dunn, 2001). Thangjai et al. (2023) constructed the confidence interval for the ratio of
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the percentiles of two delta-lognormal distributions based on the parametric bootstrap
approach. Moreover, Altunkaynak & Gamgam (2019) proposed the bootstrap confidence
intervals for the coefficient of quartile variation.

The method of variance estimates recovery (MOVER) approach utilizes the initial
confidence interval of a single parameter of interest to construct the final confidence
interval. Zou & Donner (2008) constructed the confidence limits about effect measures
using the MOVER approach. Zou, Taleban & Hao (2009) proposed the MOVER approach
to estimate the confidence interval for log-normal distribution.

Statistics can be divided into two different techniques: the classical approach and the
Bayesian approach. The classical approach includes techniques such as the GCI, parametric
bootstrap, and MOVER. In this approach, the parameter of interest is unknown but
fixed. In contrast, the Bayesian approach considers the parameter of interest as a quantity,
and its variation is described by the prior distribution. There are many reasons why a
researcher may prefer to use Bayesian estimation over classical estimation. The main
reason for choosing the Bayesian approach is that the models are often too complex for
traditional methods to handle. It is important to note that, regardless of the reasons for
implementing the Bayesian approach, conducting a sensitivity analysis of priors is always
crucial and should be included (Depaoli, Winter & Visser, 2020). The impact of the priors
is highly dependent on model complexity, and it is crucial to thoroughly examine their
influence on the final model estimates. The Bayesian approach can effectively capture
the features of posteriors of the parameters of interest by combining information from
data and priors. However, obtaining closed forms for each marginal posterior in Bayesian
analysis is a challenging task. Markov chain Monte Carlo (MCMC) can be employed to
obtain posterior samples from a set of Markov chains with respect to the parameters of
interest and nuisance parameters. The iteration is terminated when all chains are stable
and well-mixed. MCMC has been well-developed and widely utilized for complex models,
allowing parameter estimation through posterior samples generated from a collection of
Markov chains (Zhou et al., 2023). Thangjai et al. (2023) proposed the credible interval
estimation for the ratio of the percentiles of two delta-lognormal distributions using the
Bayesian approach. Furthermore, Thangjai & Niwitpong (2023) constructed the Bayesian
credible interval for mean and difference between means of delta-lognormal distributions
based on left-censored data. Moreover, the Bayesian approach is also widely used for
uncertainty quantification (Zhuang, Xu &Wang, 2023). Aizpurua et al. (2022) studied how
uncertainty quantification was incorporated into machine health prognostics through the
Bayesian approach.

The rest of this article is organized as follows. ‘Materials & Methods’ describes the
four approaches used to construct confidence intervals for the ratio of means of delta-
lognormal distributions based on left-censored data. ‘Results’ presents the performance of
the proposed approaches using simulation studies. ‘Empirical Application’ shows a real data
example. ‘Discussion’ provides a discussion. Finally, ‘Conclusions’ presents concluding
remarks.
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MATERIALS & METHODS
Suppose Z1 =

(
Z11,Z12,...,Z1n1

)
is random sample from delta-lognormal distribution

with parameters mean µ1, variance σ 2
1 , and probability of obtaining a zero observation

δ1. Similary, let Z2= (Z21,Z22,...,Z2n2) be random sample following the delta-lognormal
distribution with parameters mean µ2, variance σ 2

2 , and probability of obtaining a zero
observation δ2. The delta-lognormal distribution is combination of zero and positive
values. This distribution contains a binomial distribution and a log-normal distribution.
This is because the zero values follow the binomial distribution and the positive values
follow the log-normal distribution. The mean of delta-lognormal distribution for Z1 and
Z2 are given by

γ1= (1−δ1)exp
(
µ1+

1
2
σ 2
1

)
(1)

and

γ2= (1−δ2)exp
(
µ2+

1
2
σ 2
2

)
. (2)

SupposeX1 andX2 are nonnegative randomvariables drawn fromZ1 andZ2, respectively.
In other words, X1= (X11,X12,...,X1n1) and X2= (X21,X22,...,X2n2) follow the log-normal
distributions so that Y1 = log(X1) and Y2 = log(X2) follow the normal distributions.
Suppose that X̄1 and X̄2 are the means of X1 and X2, respectively. Moreover, suppose that
S2X1

and S2X2
are the variances of X1 and X2, respectively. Let log(ξ1) be censoring point

value. Let n1(1) be the number of observations less than or equal to some censoring point
log(ξ1) and let n1(2) be the number of observations greater than some censoring point
log(ξ1). Let Y1 =

(
Y11,Y12,...,Y1n1(2)

)
be the observations above log(ξ1). The mean and

variance of Y1 are given by

Ȳ1=
1

n1(2)

n1(2)∑
j=1

Y1j (3)

and

S21=
1

n1(2)

n1(2)∑
j=1

(Y1j− Ȳ1)2. (4)

Suppose that φ and 8 are the density function and the distribution function of the
standard normal distribution. According to Krishnamoorthy, Mallick & Mathew (2011),
the maximum likelihood estimators of µ1 and σ 2

1 are given by

µ̂1= Ȳ1−ψ(h1,a1)
(
Ȳ1− log(ξ1)

)
(5)

and

σ̂ 2
1 = S21+ψ(h1,a1)

(
Ȳ1− log(ξ1)

)2
, (6)

where

h1=
n1(1)
n1
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a1=
log(ξ1)−µ1

σ1

W (a1)=
φ(a1)

1−8(a1)

V (h1,a1)=
h1W (−a1)
1−h1

and

ψ(h1,a1)=
V (h1,a1)

V (h1,a1)−a1
.

The mean of censored log-normal distribution is

θ1= exp
(
µ1+

1
2
σ 2
1

)
. (7)

The estimator of the mean of censored log-normal distribution is

θ̂1= exp
(
µ̂1+

1
2
σ̂ 2
1

)
. (8)

Similarly, let log(ξ2) be censoring point value. Let n2(1) be the number of observations
less than or equal to log(ξ2) and let n2(2) be the number of observations greater than some
censoring point log(ξ2). Let Y2=

(
Y21,Y22,...,Y2n2(2)

)
be the observations above log(ξ2).

The mean and variance of Y2 are given by

Ȳ2=
1

n2(2)

n2(2)∑
j=1

Y2j (9)

and

S22=
1

n2(2)

n2(2)∑
j=1

(Y2j− Ȳ2)2. (10)

The maximum likelihood estimators of µ2 and σ 2
2 are given by

µ̂2= Ȳ2−ψ(h2,a2)
(
Ȳ2− log(ξ2)

)
(11)

and

σ̂ 2
2 = S22+ψ(h2,a2)

(
Ȳ2− log(ξ2)

)2
, (12)

where

h2=
n2(1)
n2

a2=
log(ξ2)−µ2

σ2

W (a2)=
φ(a2)

1−8(a2)
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V (h2,a2)=
h2W (−a2)
1−h2

and

ψ(h2,a2)=
V (h2,a2)

V (h2,a2)−a2
.

The mean of censored log-normal distribution is

θ2= exp
(
µ2+

1
2
σ 2
2

)
. (13)

The estimator of the mean of censored log-normal distribution is

θ̂2= exp
(
µ̂2+

1
2
σ̂ 2
2

)
. (14)

Therefore, the estimator of the ratio of means of censored log-normal distributions is
given by

θ̂ =
θ̂1

θ̂2
, (15)

where θ̂1 and θ̂2 are defined in Eqs. (8) and (14), respectively.
The estimator of the ratio of means of censored log-normal distributions, defined

in Eq. (15), is used to construct the confidence intervals for the ratio of means of
delta-lognormal distributions based on left-censored data. Here, four newly proposed
approaches are applied to construct the confidence intervals. Next, the computation of the
GCI, Bayesian, parametric bootstrap, and MOVER approaches is explained.

Generalized confidence interval approach
The generalized pivotal quantity (GPQ) is used to construct the GCI which is defined in
Weerahandi (1993). According to Krishnamoorthy, Mallick & Mathew (2011), the GPQs
for µ1, σ1, and θ1 are defined by

Rµ1 = µ̂1−
µ̂∗1

σ̂ ∗1
σ̂1 (16)

Rσ1 =
σ̂1

σ̂ ∗1
(17)

and

Rθ1 = exp
(
Rµ1+

1
2
(
Rσ1
)2)

, (18)

where µ̂∗1 and σ̂
∗

1 are the maximum likelihood estimators based on a censored sample from
standard normal distribution.

Similarly, the GPQs for µ2, σ2, and θ2 are defined by

Rµ2 = µ̂2−
µ̂∗2

σ̂ ∗2
σ̂2 (19)
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Rσ2 =
σ̂2

σ̂ ∗2
(20)

and

Rθ2 = exp
(
Rµ2+

1
2
(Rσ2)

2
)
, (21)

where µ̂∗2 and σ̂
∗

2 are the maximum likelihood estimators based on a censored sample from
standard normal distribution.

The GPQ for the difference between means of delta-lognormal distributions based on
left-censored data was used as previously described in Thangjai & Niwitpong (2023). In
this article, the GPQ for the ratio of means of delta-lognormal distributions based on
left-censored data is given by

Rθ =
Rθ1
Rθ2
, (22)

where Rθ1 and Rθ2 are defined in Eqs. (18) and (21), respectively.
Therefore, the 100(1−α)% two-sided confidence interval for the ratio of means of

delta-lognormal distributions based on left-censored data using the GCI approach is given
by

CIGCI = [LGCI ,UGCI ] = [Rθ (α/2),Rθ (1−α/2)], (23)

where Rθ (α/2) and Rθ (1−α/2) denote the 100(α/2)-th and 100(1−α/2)-th percentiles
of Rθ , respectively.

The Algorithm 1 is used to construct the GCI for the ratio of means of delta-lognormal
distributions based on left-censored data.

Algorithm 1.
Step 1: Generate sample from the standard normal distribution and compute µ̂∗1 , µ̂

∗

2 ,
σ̂ ∗1 , and σ̂

∗

2
Step 2: Compute Rµ1 , Rσ1 , and Rθ1 from Eqs. (16), (17), and (18), respectively.
Step 3: Compute Rµ2 , Rσ2 , and Rθ2 from Eqs. (19), (20), and (21), respectively.
Step 4: Compute Rθ from Eq. (22)
Step 5: Repeat step 1 - step 4, a total times and obtain an array of Rθ ’s
Step 6: Compute LGCI and UGCI

Bayesian approach
The Bayesian approach offers a framework for updating beliefs and making predictions
using new evidence or data. It is rooted in Bayes’ theorem, which combines prior probability
and likelihood to calculate the posterior probability. The prior distribution represents
uncertainty about parameters before observing data. In this article, we employed the
Jeffreys Independence prior. According to Thangjai & Niwitpong (2023), the posterior
distributions of σ 2

1 , µ1, and θ1.BS are defined by

σ 2
1 |y1∼ IG

(
n1(2)−1

2
,
(n1(2)−1)s21

2

)
(24)
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µ1|σ
2
1 ,y1∼N

(
ȳ1,

σ 2
1

n1(2)

)
(25)

and

θ1.BS= exp
(
µ1+

1
2
σ 2
1

)
, (26)

where ȳ1 is observed value of Ȳ1 defined in Eq. (3) and s21 is the observed value of S
2
1 defined

in Eq. (4).
The posterior distributions of σ 2

2 , µ2, and θ2.BS are defined by

σ 2
2 |y2∼ IG

(
n2(2)−1

2
,
(n2(2)−1)s22

2

)
(27)

µ2|σ
2
2 ,y2∼N

(
ȳ2,

σ 2
2

n2(2)

)
(28)

and

θ2.BS= exp
(
µ2+

1
2
σ 2
2

)
, (29)

where ȳ2 is observed value of Ȳ2 defined in Eq. (9) and s22 is the observed value of S
2
2 defined

in Eq. (10).
Thangjai & Niwitpong (2023) proposed the posterior distribution of the difference

between means of delta-lognormal distributions based on left-censored data. Therefore,
the posterior distribution of the ratio of means of delta-lognormal distributions based on
left-censored data is given by

θBS=
θ1.BS

θ2.BS
, (30)

where θ1.BS and θ2.BS are defined in Eqs. (26) and (29), respectively.
Therefore, the 100(1−α)% two-sided credible interval for the ratio of means of

delta-lognormal distributions based on left-censored data using the Bayesian approach is
given by

CIθ.BS= [Lθ.BS,Uθ.BS], (31)

where Lθ.BS and Uθ.BS denote the lower and upper limits of the shortest 100(1−α)%
highest posterior density interval of θBS, respectively.

The Algorithm 2 is used to construct the Bayesian credible interval for the ratio of means
of delta-lognormal distributions based on left-censored data.

Algorithm 2.
Step 1: Compute σ 2

1 |y1, µ1|σ
2
1 ,y1, and θ1.BS from Eqs. (24), (25), and (26), respectively.

Step 2: Compute σ 2
2 |y2, µ2|σ

2
2 ,y2, and θ2.BS from Eqs. (27), (28), and (29), respectively.

Step 3: Compute θBS from Eq. (30)
Step 4: Repeat step 1 - step 3, a total m times and obtain an array of θBS’s
Step 5: Compute Lθ.BS and Uθ.BS
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Parametric bootstrap approach
Let Y ∗1 =

(
Y ∗11,Y

∗

12,...,Y
∗

1n1(2)

)
be the observations above log(ξ1). The mean and variance

of Y ∗1 are given by

Ȳ ∗1 =
1

n1(2)

n1(2)∑
j=1

Y ∗1j (32)

and

S2∗1 =
1

n1(2)

n1(2)∑
j=1

(Y ∗1j− Ȳ
∗

1 )
2. (33)

The estimator of the mean of delta-lognormal distribution based on left-censored data
is

θ̂∗1 = exp
(
Ȳ ∗1 +

1
2
S2∗1

)
, (34)

where Ȳ ∗1 and S2∗1 are defined in Eqs. (32) and (33), respectively.

Let Y ∗2 =
(
Y ∗21,Y

∗

22,...,Y
∗

2n2(2)

)
be the observations above log(ξ2). The mean and variance

of Y ∗2 are given by

Ȳ ∗2 =
1

n2(2)

n2(2)∑
j=1

Y ∗2j (35)

and

S2∗2 =
1

n2(2)

n2(2)∑
j=1

(Y ∗2j− Ȳ
∗

2 )
2. (36)

The estimator of the mean of delta-lognormal distribution based on left-censored data
is

θ̂∗2 = exp
(
Ȳ ∗2 +

1
2
S2∗2

)
, (37)

where Ȳ ∗2 and S2∗2 are defined in Eqs. (35) and (36), respectively.
The estimator of the difference between means of delta-lognormal distributions based

on left-censored data was proposed as previously described in Thangjai & Niwitpong
(2023). According to Thangjai & Niwitpong (2023), the estimator of the ratio of means of
delta-lognormal distributions based on left-censored data is given by

θ̂∗=
θ̂∗1

θ̂∗2
, (38)

where θ̂∗1 and θ̂∗2 are defined in Eqs. (34) and (37), respectively.
The lower and upper limits of the confidence interval for the ratio of means of delta-

lognormal distributions based on left-censored data are given by

LPB= θ̂∗−z1−α/2sd(θ̂∗) (39)
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and

UPB= θ̂∗+z1−α/2sd(θ̂∗), (40)

where θ̂∗ is the mean of θ̂∗, sd(θ̂∗) is the standard deviation of θ̂∗, and z1−α/2 is the
100(1−α/2)-th percentile of the standard normal distribution.

Therefore, the 100(1−α)% two-sided confidence interval for the ratio of means of
delta-lognormal distributions based on left-censored data using the parametric bootstrap
approach is given by

CIPB= [LPB,UPB], (41)

where LPB and UPB are defined in Eqs. (39) and (40), respectively.
The Algorithm 3 is used to construct the parametric bootstrap confidence interval for

the ratio of means of delta-lognormal distributions based on left-censored data.
Algorithm 3.
Step 1:Parametric bootstrapping assumes that the data comes from a known distribution

with unknown parameters. We estimate these parameters from the data and then use the
estimated distributions to simulate the samples. Generate y∗1 =

(
y∗11,y

∗

12,...,y
∗

1n1(2)

)
from

normal distribution with µ̂1 and σ̂ 2
1 and generate y∗2 =

(
y∗21,y

∗

22,...,y
∗

2n2(2)

)
from normal

distribution with µ̂2 and σ̂ 2
2

Step 2: Compute ȳ∗1 from Eq. (32), s2∗1 from Eq. (33), and θ̂∗1 from Eq. (34)
Step 3: Compute ȳ∗2 from Eq. (35), s2∗2 from Eq. (36), and θ̂∗2 from Eq. (37)
Step 4: Compute θ̂∗ from Eq. (38)
Step 5: Repeat step 1 - step 4, a total m times and obtain an array of θ̂∗’s
Step 6: Compute LPB and UPB from Eqs. (39) and (40)

Method of variance estimates recovery approach
According to Maneerat, Niwitpong & Niwitpong (2020), the lower and upper limits of the
confidence interval for µ1 are defined by

lµ1 = µ̂1−z1−α/2

√√√√(n1(2)−1)σ̂ 2
1

n1(2)χ2
n1(2)−1

(42)

and

uµ1 = µ̂1+z1−α/2

√√√√(n1(2)−1)σ̂ 2
1

n1(2)χ2
n1(2)−1

, (43)

where z1−α/2 is the 100(1−α/2)-th percentile of the standard normal distribution, χ2
n1(2)−1

is the chi-squared distribution with n1(2)−1 degrees of freedom, and µ̂1 and σ̂ 2
1 are defined

in Eqs. (5) and (6), respectively.
Similarly, the lower and upper limits of the confidence interval for µ2 are given by

lµ2 = µ̂2−z1−α/2

√√√√(n2(2)−1)σ̂ 2
2

n2(2)χ2
n2(2)−1

(44)
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and

uµ2 = µ̂2+z1−α/2

√√√√(n2(2)−1)σ̂ 2
2

n2(2)χ2
n2(2)−1

, (45)

where z1−α/2 is the 100(1−α/2)-th percentile of the standard normal distribution, χ2
n2(2)−1

is the chi-squared distribution with n2(2)−1 degrees of freedom, and µ̂2 and σ̂ 2
2 are defined

in Eqs. (11) and (12), respectively.
Following Maneerat, Niwitpong & Niwitpong (2020), the lower and upper limits of the

confidence interval for σ 2
1 are defined by

lσ 2
1
=

(n1(2)−1)σ̂ 2
1

χ2
1−α/2,n1(2)−1

(46)

and

uσ 2
1
=

(n1(2)−1)σ̂ 2
1

χ2
α/2,n1(2)−1

, (47)

where χ2
1−α/2,n1(2)−1 and χ

2
α/2,n1(2)−1 are the 100(1−α/2)-th and 100(α/2)-th percentiles of

the chi-squared distribution with n1(2)−1 degrees of freedom, and σ̂ 2
1 is defined in Eq. (6).

The lower and upper limits of the confidence interval for σ 2
2 are defined by

lσ 2
2
=

(n2(2)−1)σ̂ 2
2

χ2
1−α/2,n2(2)−1

(48)

and

uσ 2
2
=

(n2(2)−1)σ̂ 2
2

χ2
α/2,n2(2)−1

, (49)

where χ2
1−α/2,n2(2)−1 and χ

2
α/2,n2(2)−1 are the 100(1−α/2)-th and 100(α/2)-th percentiles of

the chi-squared distribution with n2(2)−1 degrees of freedom, and σ̂ 2
2 is defined in Eq (12).

Applying the concept of Donner & Zou (1993), the lower and upper limits of confidence
interval for θ1= exp

(
µ1+

1
2σ

2
1
)
are given by

lθ1 = exp

(µ̂1+
1
2
σ̂ 2
1

)
−

√(
µ̂1− lµ1

)2
+

(
1
2
σ̂ 2
1 −

1
2
lσ 2

1

)2
 (50)

and

uθ1 = exp

(µ̂1+
1
2
σ̂ 2
1

)
+

√(
uµ1− µ̂1

)2
+

(
1
2
uσ 2

1
−

1
2
σ̂ 2
1

)2
, (51)

where µ̂1, σ̂ 2
1 , lµ1 , uµ1 , lσ 2

1
, and uσ 2

1
are defined in Eqs. (5), (6), (42), (43), (46), and (47),

respectively.
Similarly, the lower and upper limits of confidence interval for θ2= exp

(
µ2+

1
2σ

2
2
)
are

given by

lθ2 = exp

(µ̂2+
1
2
σ̂ 2
2

)
−

√(
µ̂2− lµ2

)2
+

(
1
2
σ̂ 2
2 −

1
2
lσ 2

2

)2
 (52)
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and

uθ2 = exp

(µ̂2+
1
2
σ̂ 2
2

)
+

√(
uµ2− µ̂2

)2
+

(
1
2
uσ 2

2
−

1
2
σ̂ 2
2

)2
, (53)

where µ̂2, σ̂ 2
2 , lµ2 , uµ2 , lσ 2

2
, and uσ 2

2
are defined in Eqs. (11), (12), (44), (45), (48), (49),

respectively.
Using the concept of Donner & Zou (2012) and Thangjai & Niwitpong (2023), the lower

and upper limits of confidence interval for θ = θ1
θ2
are given by

LMOVER=
θ̂1θ̂2−

√(
θ̂1θ̂2

)2
− lθ1uθ2

(
2θ̂1− lθ1

)(
2θ̂2−uθ2

)
uθ2
(
2θ̂2−uθ2

) (54)

and

UMOVER=
θ̂1θ̂2+

√(
θ̂1θ̂2

)2
−uθ1 lθ2

(
2θ̂1−uθ1

)(
2θ̂2− lθ2

)
lθ2
(
2θ̂2− lθ2

) , (55)

where θ̂1, θ̂2, lθ1 , uθ1 , lθ2 , and uθ2 are defined in Eqs. (8), (14), (50), (51), (52), and (53),
respectively.

Therefore, the 100(1−α)% two-sided confidence interval for the ratio of means of
delta-lognormal distributions based on left-censored data using the MOVER approach is
given by

CIMOVER= [LMOVER,UMOVER], (56)

where LMOVER and UMOVER are defined in Eqs. (54) and (55), respectively.

RESULTS
In this section, we conducted simulation studies to evaluate the performance of the
proposed confidence interval, which was constructed using four different approaches. We
calculated the coverage probability and average length using R software. The criteria for
choosing the best performing confidence interval were a coverage probability greater than
or equal to 0.95 and the shortest average length for each tested scenario. For each generated
data set, we used R code to compute the confidence intervals based on the GCI, Bayesian,
parametric bootstrap, and MOVER approaches (Thangjai & Niwitpong, 2023), with M =
5,000 runs for each and m= 2,500 runs for the GCI, Bayesian, and parametric bootstrap
approaches. Following Owen & De Rouen (1980), the standardized sensitivity for many
air contaminants is typically around 0.25. Although 0.25 was determined to be the most
appropriate value for ξ when examining the censoring techniques, additional runs were
performed using ξ = 0.10, allowing for the examination of results for the delta distribution
with different values of µ and σ . We generated random sample sizes of (n1,n2)= (20,20),
(30,30), (20,30), (50,50), (30,50), (100,100), and (50,100) with specific parameters, as
described in Table 1.
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Table 1 Values selected for the population means, population standard deviations, probabilities of ob-
taining zero observation, and censoring points.

Run number (µ1,µ2) (σ1,σ2) (δ1,δ2) (ξ1,ξ2)

0 (0.00,0.00) (0.30,0.30) (0.10,0.10) No censoring
1 (0.00,0.00) (1.00,1.00) (0.10,0.10) (0.10,0.10)
2 (0.00,0.00) (1.00,1.00) (0.10,0.10) (0.10,0.25)
3 (0.00,0.00) (1.00,1.00) (0.10,0.25) (0.10,0.10)
4 (0.00,0.00) (1.00,1.00) (0.10,0.25) (0.10,0.25)
5 (0.00,0.00) (1.00,2.00) (0.10,0.10) (0.10,0.10)
6 (0.00,0.00) (1.00,2.00) (0.10,0.10) (0.10,0.25)
7 (0.00,0.00) (1.00,2.00) (0.10,0.25) (0.10,0.10)
8 (0.00,0.00) (1.00,2.00) (0.10,0.25) (0.10,0.25)

The Algorithm 4 is used to construct the confidence intervals for the ratio of means
of delta-lognormal distributions based on left-censored data, and then the coverage
probability and average length of the confidence intervals are computed.

Algorithm 4.
Step 1: Generate z1 from delta-lognormal distribution with parameters µ1, σ1, and δ1

and set x1 from log-normal distribution with parameters µ1 and σ1
Step 2: Generate z2 from delta-lognormal distribution with parameters µ2, σ2, and δ2

and set x2 from log-normal distribution with parameters µ2 and σ2
Step 3: Compute y1= log(x1) and select y1> log(ξ1)
Step 4: Compute y2= log(x2) and select y2> log(ξ2)
Step 5: Compute n1(1), n1(2), n2(1), n2(2), µ̂1, µ̂2, σ̂1, σ̂2, θ̂1, θ̂2, and θ̂
Step 6: Construct the confidence intervals CIGCI , CIBS, CIPB, and CIMOVER

Step 7: If L6 θ 6U , set p= 1; else set p= 0
Step 8: Compute U −L
Step 9: Repeat step 1 - step 8, a totalM times
Step 10: Compute mean of p defined by the coverage probability
Step 11: Compute mean of U −L defined by the average length
The coverage probability and average length of the confidence intervals for the ratio of

means of delta-lognormal distributions based on left-censored data are presented in Table 2
and shown in Figs. 1–3. For run 0, the Bayesian approach outperforms the others in terms
of both coverage probability and average length for all sample sizes. Overall, the coverage
probabilities are less than or equal to the nominal confidence level of 0.95. Therefore,
we used the confidence intervals for the ratio of means of delta-lognormal distributions
based on left-censored data to estimate the ratio of means for datasets containing zero,
positive, and censored observations. For runs 1–8, the results show that the coverage
probabilities of the confidence intervals based on the GCI, Bayesian, parametric bootstrap
and MOVER approaches were almost greater than the nominal confidence level of 0.95.
The average lengths of the confidence interval based on the Bayesian approach were the
shortest for (ξ1,ξ2)= (0.10,0.10), while the average lengths of the confidence interval
based on the parametric bootstrap approach were shorter than those of the others for
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Table 2 The coverage probabilities (CPs) and average lengths (ALs) of 95% two-sided confidence in-
tervals for the ratio of means of delta-lognormal distributions based on left-censored data.

(n1,n2) Run number CP (AL)

CIGCI CIBS CIPB CIMOVER

(20, 20) 0 0.9442 0.9570 0.9376 0.9480
(0.4111) (0.4326) (0.3913) (0.4358)

1 0.9822 0.9812 0.9396 0.9870
(4.2060) (3.5736) (2.1539) (5.1344)

2 0.9796 0.9850 0.9488 0.9850
(4.6143) (3.8363) (2.2088) (6.4682)

3 0.9862 0.9858 0.9258 0.9948
(4.5750) (4.0626) (2.4027) (6.2972)

4 0.9828 0.9904 0.9574 0.9898
(5.0102) (4.2274) (2.4848) (6.2869)

5 0.9566 0.9718 0.9668 0.9774
(1.7387) (1.5506) (1.5333) (2.4622)

6 0.9540 0.9768 0.9642 0.9772
(1.7741) (1.6403) (1.5060) (2.6641)

7 0.9476 0.9718 0.9578 0.9864
(1.8618) (1.7981) (1.8586) (3.0510)

8 0.9342 0.9754 0.9614 0.9848
(1.9484) (1.9493) (1.8062) (5.8979)

(30,30) 0 0.9344 0.9506 0.9334 0.9460
(0.3275) (0.3440) (0.3233) (0.3468)

1 0.9816 0.9824 0.9420 0.9868
(2.6356) (2.3787) (1.6508) (2.8968)

2 0.9808 0.9878 0.9582 0.9832
(2.8724) (2.4416) (1.6901) (2.9633)

3 0.9880 0.9878 0.9366 0.9952
(2.8720) (2.7300) (1.8001) (3.4266)

4 0.9798 0.9924 0.9614 0.9880
(3.2285) (2.8937) (1.9375) (3.5624)

5 0.9540 0.9678 0.9612 0.9766
(1.0608) (0.9934) (1.0431) (1.2940)

6 0.9520 0.9760 0.9630 0.9786
(1.0498) (1.0423) (1.0376) (1.3833)

7 0.9340 0.9622 0.9432 0.9810
(1.1444) (1.1641) (1.2322) (1.5948)

8 0.9378 0.9784 0.9628 0.9816
(1.1568) (1.2536) (1.2359) (1.7320)

(20,30) 0 0.9428 0.9568 0.9406 0.9508
(0.3748) (0.3932) (0.3589) (0.3964)

1 0.9814 0.9858 0.9328 0.9874
(3.9451) (3.4056) (1.9245) (4.9194)

(continued on next page)
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Table 2 (continued)

(n1,n2) Run number CP (AL)

CIGCI CIBS CIPB CIMOVER

2 0.9778 0.9866 0.9418 0.9814
(4.3365) (3.5499) (1.9858) (5.1065)

3 0.9856 0.9814 0.9080 0.9928
(4.0345) (3.5815) (2.0299) (5.1957)

4 0.9820 0.9938 0.9616 0.9886
(4.7817) (4.0717) (2.2738) (5.8989)

5 0.9610 0.9722 0.9580 0.9768
(1.3996) (1.2598) (1.1147) (1.9116)

6 0.9572 0.9774 0.9670 0.9824
(1.3685) (1.3347) (1.1302) (2.0536)

7 0.9372 0.9638 0.9416 0.9818
(1.4648) (1.4277) (1.3012) (2.2402)

8 0.9382 0.9826 0.9658 0.9856
(1.5085) (1.5732) (1.3543) (2.5036)

(50,50) 0 0.9374 0.9496 0.9422 0.9488
(0.2475) (0.2593) (0.2508) (0.2609)

1 0.9824 0.9806 0.9460 0.9868
(1.7057) (1.6105) (1.1956) (1.7847)

2 0.9808 0.9876 0.9632 0.9826
(1.8963) (1.6690) (1.2599) (1.8472)

3 0.9854 0.9842 0.9246 0.9932
(1.8930) (1.9056) (1.3053) (2.1481)

4 0.9754 0.9924 0.9600 0.9810
(2.1639) (2.0206) (1.4505) (2.2564)

5 0.9516 0.9660 0.9578 0.9750
(0.6564) (0.6582) (0.6677) (0.7660)

6 0.9446 0.9722 0.9636 0.9764
(0.6627) (0.7121) (0.7045) (0.8355)

7 0.9254 0.9540 0.9288 0.9776
(0.6808) (0.7374) (0.7530) (0.9003)

8 0.9276 0.9760 0.9594 0.9834
(0.6866) (0.8167) (0.8121) (0.9944)

(30,50) 0 0.9376 0.9510 0.9390 0.9464
(0.2918) (0.3055) (0.2894) (0.3074)

1 0.9852 0.9866 0.9382 0.9902
(2.3965) (2.1589) (1.4367) (2.5955)

2 0.9836 0.9900 0.9534 0.9844
(2.6092) (2.2311) (1.5015) (2.6781)

3 0.9846 0.9820 0.9158 0.9922
(2.4721) (2.3535) (1.5021) (2.8636)

4 0.9818 0.9932 0.9682 0.9888
(2.8244) (2.5417) (1.6759) (3.0589)

5 0.9550 0.9676 0.9498 0.9774
(0.8059) (0.7777) (0.7231) (0.9666)

(continued on next page)
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Table 2 (continued)

(n1,n2) Run number CP (AL)

CIGCI CIBS CIPB CIMOVER

6 0.9412 0.9736 0.9584 0.9794
(0.7694) (0.8141) (0.7389) (1.0140)

7 0.9362 0.9606 0.9284 0.9804
(0.8027) (0.8387) (0.7959) (1.0721)

8 0.9284 0.9782 0.9594 0.9816
(0.8330) (0.9602) (0.8796) (1.2372)

(100,100) 0 0.9400 0.9530 0.9512 0.9520
(0.1726) (0.1807) (0.1784) (0.1820)

1 0.9852 0.9858 0.9530 0.9888
(1.0970) (1.0656) (0.8239) (1.1218)

2 0.9696 0.9832 0.9512 0.9730
(1.2069) (1.0866) (0.8579) (1.1443)

3 0.9832 0.9862 0.9238 0.9934
(1.2068) (1.2656) (0.8807) (1.3390)

4 0.9716 0.9872 0.9372 0.9724
(1.3686) (1.3111) (0.9788) (1.3837)

5 0.9462 0.9610 0.9438 0.9734
(0.3998) (0.4269) (0.4103) (0.4614)

6 0.9156 0.9706 0.9596 0.9758
(0.3991) (0.4655) (0.4399) (0.5040)

7 0.9014 0.9382 0.9036 0.9712
(0.4029) (0.4698) (0.4404) (0.5244)

8 0.8904 0.9720 0.9538 0.9804
(0.4092) (0.5367) (0.5033) (0.5946)

(50,100) 0 0.9422 0.9530 0.9482 0.9510
(0.2137) (0.2237) (0.2177) (0.2250)

1 0.9846 0.9838 0.9432 0.9890
(1.5013) (1.4103) (1.0234) (1.5517)

2 0.9760 0.9846 0.9564 0.9804
(1.6523) (1.4719) (1.0816) (1.6180)

3 0.9842 0.9848 0.9204 0.9932
(1.5717) (1.5690) (1.0646) (1.7336)

4 0.9786 0.9930 0.9642 0.9808
(1.8058) (1.6931) (1.2063) (1.8667)

5 0.9508 0.9608 0.9426 0.9732
(0.4717) (0.4879) (0.4421) (0.5458)

6 0.9256 0.9722 0.9534 0.9728
(0.4616) (0.5328) (0.4777) (0.5973)

7 0.9098 0.9412 0.8990 0.9724
(0.4611) (0.5181) (0.4653) (0.5922)

8 0.8950 0.9716 0.9502 0.9774
(0.4714) (0.6041) (0.5407) (0.6880)

Notes.
Bold font means the confidence interval with coverage probability greater than or equal to 0.95 and the shortest average
length.
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Figure 1 Comparison of the coverage probabilities and average lengths of the confidence intervals for
the ratio of means of delta-lognormal distributions based on left-censored data according to sample
sizes. (A) Coverage probabilities. (B) Average lengths.

Full-size DOI: 10.7717/peerj.16397/fig-1

Figure 2 Comparison of the coverage probabilities and average lengths of the confidence intervals for
the ratio of means of delta-lognormal distributions based on left-censored data according to probabili-
ties of non-zero values. (A) Coverage probabilities. (B) Average lengths.

Full-size DOI: 10.7717/peerj.16397/fig-2

(ξ1,ξ2)= (0.10,0.25). The results indicate that the Bayesian approach is recommended for
constructing the credible interval for the ratio of means of delta-lognormal distributions
based on left-censored data for (ξ1,ξ2)= (0.10,0.10). However, the parametric bootstrap
approach can be used to estimate the confidence interval for the ratio of means of delta-
lognormal distributions based on left-censored data for (ξ1,ξ2)= (0.10,0.25). Moreover,
the GCI approach can be used to construct the confidence interval for the ratio of means
of delta-lognormal distributions based on left-censored data for run 3 and run 5 when the
sample sizes are increase.

EMPIRICAL APPLICATION
The GCI, Bayesian, parametric bootstrap, and MOVER approaches discussed in ‘Materials
& Methods’ can be applied to estimate the ratio of average daily rainfall datasets from
Chiang Rai and Chiang Mai provinces in Thailand. Table 3 shows the daily rainfall data
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Figure 3 Comparison of the coverage probabilities and average lengths of the confidence intervals for
the ratio of means of delta-lognormal distributions based on left-censored data according to standard
deviations. (A) Coverage probabilities. (B) Average lengths.

Full-size DOI: 10.7717/peerj.16397/fig-3

Table 3 The daily rainfall data of Chiang Rai and ChiangMai provinces.

Province Daily rainfall data (mm)

Chiang Rai province 0.0 0.4 0.5 0.0 0.0
0.0 0.1 0.0 0.2 0.0
0.0 0.0 0.0 3.3 21.0
7.9 0.2 0.0 – 2.5
0.0 0.0 47.5 0.5 0.0
10.4 0.0 0.0 9.0 –

ChiangMai province 0.0 0.0 0.0 0.0 41.9
0.4 0.0 0.0 0.1 0.0
0.0 0.0 0.0 0.0 1.3
0.0 0.2 – – 0.0
0.0 0.0 23.1 0.0 0.1
– 0.0 – 5.4 8.7

Notes.
Source: Thai Meteorological Department.

from June 1st to June 30th, 2022, presented by the Thai Meteorological Department. The
table includes 30 observations, out of which 13 of 30 (43.33%) represent positive observed
values in Chiang Rai province, and nine of 30 (30.00%) represent positive observed values
in Chiang Mai province. Table 4 shows the possible distributions for the positive rainfall
data applied to the minimum Akaike information criterion (AIC). Figure 4 presents the
densities of the daily rainfall data in Chiang Rai andChiangMai provinces. Figure 5 presents
the histograms of the daily rainfall data in Chiang Rai and Chiang Mai provinces. Figure 6
presents the normal QQ-plots of the log-transformed the daily rainfall data in Chiang Rai
and Chiang Mai provinces. The log-transformed positive daily rainfall values of Chiang
Rai and Chiang Mai provinces follow normal distributions. Therefore, the daily rainfall
datasets in Chiang Rai and Chiang Mai provinces fit the delta-lognormal distributions.
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Table 4 The estimated AIC values for the four probability models, calculated using rainfall data in
Chiang Rai and ChiangMai provinces.

Distribution Chiang Rai province ChiangMai province

Normal 107.2557 76.5153
Log-Normal 73.6376 51.4921
Gamma 75.4915 52.5742
Exponential 80.9402 58.5944

Notes.
Bold font means the distribution with the lowest AIC value.

Figure 4 Densities of the daily rainfall data in Chiang Rai and ChiangMai provinces. (A) Chiang Rai
Province. (B) Chiang Mai Province.

Full-size DOI: 10.7717/peerj.16397/fig-4

Figure 5 Histograms of the daily rainfall data in Chiang Rai and ChiangMai provinces. (A) Chiang Rai
Province. (B) Chiang Mai Province.

Full-size DOI: 10.7717/peerj.16397/fig-5

For Chiang Rai province, the statistics are n1= 30, n1(1)= 18, n1(2)= 12, µ̂1=−1.24,
σ̂ 2
1 = 9.84, and θ̂1= 39.61. For Chiang Mai province, the statistics are n2= 30, n2(1)= 23,

n2(2)= 7, µ̂2=−1.65, σ̂ 2
2 = 13.57, and θ̂2= 168.88. Therefore, the ratio of means of the

daily rainfall data in Chiang Rai and Chiang Mai provinces is θ̂ = 0.23. The 95% two-sided
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Figure 6 Normal QQ-plots of the log-transformed the daily rainfall data in Chiang Rai and Chiang
Mai provinces. (A) Chiang Rai Province. (B) Chiang Mai Province.

Full-size DOI: 10.7717/peerj.16397/fig-6

confidence intervals for the ratio of means of the daily rainfall data in Chiang Rai and
Chiang Mai provinces are constructed based on GCI, Bayesian, parametric bootstrap,
and MOVER approaches. For GCI approach, CIGCI = [0.0005,34.4100] with an interval
length of 34.4095. For Bayesian approach, CIBS = [0.0000,291.1944] with an interval
length of 291.1944. For parametric bootstrap approach, CIPB= [-54.4900,63.6449] with
an interval length of 118.1349. For MOVER approach, CIMOVER = [0.0000,40960.7200]
with an interval length of 40960.7200. The lower and upper limits of the 95% confidence
interval correspond to the 2.50-th and 97.50-th percentiles of the average rainfall average
ratio between Chiang Rai and Chiang Mai provinces. Therefore, the GCI approach has the
shortest interval length. Therefore, the GCI approach is recommended for constructing
the confidence intervals for the ratio of means of delta-lognormal distributions based
on left-censored data. Moreover, confidence intervals for the ratio of means of delta-
lognormal distributions, based on left-censored data, can be applied to environmental,
meteorological, and climatological data, which often consist of positive values or exhibit
right-skewed distributions, such as PM2.5 and PM10.

DISCUSSION
Ratio of parameters focuses on the relative strength or proportion of effects, while difference
of parameters emphasizes the absolute difference in the effects of two variables. Both
concepts are valuable in statistical analysis, and their application in rainfall data analysis
depends on the specific research question and the variables being examined. In bioassays,
the ratio quantities are of potential interest. Calculating relative potency necessitates
estimating the ratio of normal means. This is due to the fact that the ratio of means
represents the expected values of the least squares estimates in a simple linear regression.
Moreover, the problem of estimating the unoriented direction of a mean vector can lead
to ratio estimation, as the direction is fully specified by the collection of all ratios of
the component means (James, 1982). Therefore, the ratio of means is important. Several
researchers have studied interval estimation for the ratio of means. For example, in
environmental science, Zhang et al. (2021) constructed simultaneous confidence intervals
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for ratios of means of zero-inflated log-normal populations, with an application to rainfall
data. Moreover, Singhasomboon & Piladaeng (2023) approximated the estimation of the
ratio of means for log-normal distributions, applied to PM2.5 concentrations in northern
Thailand. In medical science, Abdel-Karim (2015), Zhou & Tu (2020), and Chen & Zhou
(2006b) estimated the ratio of means for medical costs. Furthermore, Singhasomboon,
Panichkitkosolkul & Volodin (2021) constructed confidence intervals for the ratio of means
to compare the survival times in months for patients who died from two cancer groups.

Thangjai et al. (2023) proposed the confidence interval estimation for the ratio of
the percentiles of two delta-lognormal distributions using the Bayesian and parametric
bootstrap approaches. Thangjai & Niwitpong (2023) estimated the confidence intervals
for mean and difference between means of delta-lognormal distributions based on left-
censored data using the GCI, Bayesian, parametric bootstrap, and MOVER approaches. In
this study, we extended the GCI, Bayesian, parametric bootstrap, and MOVER approaches
to construct the confidence intervals for the ratio of means of delta-lognormal distributions
based on left-censored data.

We recommend using the Bayesian approach to construct the credible intervals for
the ratio of means of delta-lognormal distributions based on left-censored data. This is
consistent with the findings of previous studies by Thangjai et al. (2023) and Thangjai
& Niwitpong (2023). Moreover, the parametric bootstrap is considered to construct the
confidence interval. It is similar to Thangjai et al. (2023) and Altunkaynak & Gamgam
(2019). Additionally, the GCI approach, which is similar to the method proposed by
Chen & Zhou (2006a), Tian & Wu (2007), and Ye, Ma &Wang (2010), can also be used for
estimating the confidence interval.

CONCLUSIONS
We constructed confidence intervals for the ratio of means of delta-lognormal distributions
based on left-censored data using the GCI, Bayesian, parametric bootstrap, and MOVER
approaches. The Bayesian credible intervals performed the best in terms of coverage
probabilities and average lengths for (ξ1,ξ2)= (0.10,0.10). Moreover, we recommend
using the GCI approach to construct the confidence interval for (ξ1,ξ2)= (0.10,0.25).

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work (grant no. RGNS 65-178) was supported by Office of the Permanent Secretary,
Ministry of Higher Education, Science, Research and Innovation (OPS MHESI), Thailand
Science Research and Innovation (TSRI) and Ramkhamhaeng University. The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

Thangjai and Niwitpong (2023), PeerJ, DOI 10.7717/peerj.16397 22/25

https://peerj.com
http://dx.doi.org/10.7717/peerj.16397


Office of the Permanent Secretary, Ministry of Higher Education, Science, Research
and Innovation (OPS MHESI), Thailand Science Research and Innovation (TSRI) and
Ramkhamhaeng University: RGNS 65-178.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Warisa Thangjai conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.
• Sa-Aat Niwitpong conceived and designed the experiments, authored or reviewed drafts
of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The raw measurements are available in the Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.16397#supplemental-information.

REFERENCES
Abdel-Karim AH. 2015. Construction of simultaneous confidence intervals for ratios

of means of lognormal distributions. Communications in Statistics-Simulation and
Computation 44(2):271–283 DOI 10.1080/03610918.2013.767911.

Aizpurua JI, Stewart BG, McArthur SDJ, PenalbaM, Barrenetxea M, Muxika E, Ring-
wood JV. 2022. Probabilistic forecasting informed failure prognostics framework for
improved RUL prediction under uncertainty: a transformer case study. Reliability
Engineering and System Safety 226:108676 DOI 10.1016/j.ress.2022.108676.

Altunkaynak B, GamgamH. 2019. Bootstrap confidence intervals for the coefficient
of quartile variation. Communication in Statistics-Simulation and Computation
48:2138–2146 DOI 10.1080/03610918.2018.1435800.

Casella G, Berger RL. 2002. Statistical inference. Pacific Grove: Duxbury-Thomson
Learning.

Chen YH, Zhou XH. 2006a. Generalized confidence intervals for the ratio or difference
of two means for lognormal populations with zeros. In: UW biostatistics working
paper series. 1–16.

Chen YH, Zhou XH. 2006b. Interval estimates for the ratio and difference of two
lognormal means. Statistics in Medicine 25:4099–4133 DOI 10.1002/sim.2504.

Depaoli S, Winter SD, Visser M. 2020. The importance of prior sensitivity analysis
in Bayesian statistics: demonstrations using an interactive Shiny App. Frontiers in
Psychology 11:608045 DOI 10.3389/fpsyg.2020.608045.

Thangjai and Niwitpong (2023), PeerJ, DOI 10.7717/peerj.16397 23/25

https://peerj.com
http://dx.doi.org/10.7717/peerj.16397#supp-1
http://dx.doi.org/10.7717/peerj.16397#supplemental-information
http://dx.doi.org/10.7717/peerj.16397#supplemental-information
http://dx.doi.org/10.1080/03610918.2013.767911
http://dx.doi.org/10.1016/j.ress.2022.108676
http://dx.doi.org/10.1080/03610918.2018.1435800
http://dx.doi.org/10.1002/sim.2504
http://dx.doi.org/10.3389/fpsyg.2020.608045
http://dx.doi.org/10.7717/peerj.16397


Donner A, Zou GY. 2012. Closed-form confidence intervals for function of the
normal standard deviation. Statistical Methods in Medical Research 21:347–359
DOI 10.1177/096228021038308.

Dunn PK. 2001. Bootstrap confidence intervals for predicted rainfall quantiles. Interna-
tional Journal of Climatology 21:89–94 DOI 10.1002/joc.596.

James DM. 1982. Simultaneous confidence intervals for ratio of normal means. Journal of
the American Statistical Association 77(377):170–176
DOI 10.1080/01621459.1982.10477782.

Krishnamoorthy K, Mallick A, Mathew T. 2011. Inference for the lognormal mean
and quantiles based on samples with left and right Type I censoring. Technometrics
53:72–83 DOI 10.1198/TECH.2010.09189.

Krstanovic PF, Singh VP. 1992. Evaluation of rainfall networks using entropy: I.
Theoretical development.Water Resources Management 6:279–293
DOI 10.1007/BF00872281.

Luo C, Shen L, Xu A. 2022.Modelling and estimation of system reliability under dynamic
operating environments and lifetime ordering constraints. Reliability Engineering and
System Safety 218:108136 DOI 10.1016/j.ress.2021.108136.

Maneerat P, Niwitpong S-A, Niwitpong S. 2020. Statistical estimation of mean of delta-
lognormal distribution. Thailand Statistician 18:439–456.

OwenWJ, De Rouen TA. 1980. Estimation of the mean for lognormal data containing
zeroes and left-censored values, with applications to the measurement of worker
exposure to air contaminants. Biometrics 36:707–719 DOI 10.2307/2556125.

Singh VP, Rajagopal AK. 1986. A new method of parameter estimation for hydrologic
frequency analysis. Hydrological Science and Technology 2:33–40.

Singh VP, Singh K. 1987. Parameter estimation for TPLN distribution for flood
frequency analysis. JAWRA Journal of the American Water Resources Association
23:1185–1189 DOI 10.1111/j.1752-1688.1987.tb00871.x.

Singhasomboon L, PanichkitkosolkulW, Volodin A. 2021. Confidence intervals for the
ratio of means of two independent log-normal distributions.WSEAS Transactions on
Mathematics 20:45–52 DOI 10.37394/23206.2021.20.5.

Singhasomboon L, Piladaeng J. 2023. On the normal approximation of the ratio of
means estimation of lognormal distributions with application to PM2.5 concen-
trations in northern Thailand. Lobachevskii Journal of Mathematics 44(2):873–881
DOI 10.1134/S1995080223020348.

Thangjai W, Niwitpong S. 2023. Confidence intervals for mean and difference between
means of delta-lognormal distributions based on left-censored data. Symmetry
15(6):1216 DOI 10.3390/sym15061216.

Thangjai W, Niwitpong S-A, Niwitpong S, Smithpreecha N. 2023. Confidence interval
estimation for the ratio of the percentiles of two delta-lognormal distributions with
application to rainfall data. Symmetry 15(4):794 DOI 10.3390/sym15040794.

Tian L,Wu J. 2007. Inferences on the common mean of several log-normal popu-
lations: the generalized variable approach. Biometrical Journal 49(6):944–951
DOI 10.1002/bimj.200710391.

Thangjai and Niwitpong (2023), PeerJ, DOI 10.7717/peerj.16397 24/25

https://peerj.com
http://dx.doi.org/10.1177/096228021038308
http://dx.doi.org/10.1002/joc.596
http://dx.doi.org/10.1080/01621459.1982.10477782
http://dx.doi.org/10.1198/TECH.2010.09189
http://dx.doi.org/10.1007/BF00872281
http://dx.doi.org/10.1016/j.ress.2021.108136
http://dx.doi.org/10.2307/2556125
http://dx.doi.org/10.1111/j.1752-1688.1987.tb00871.x
http://dx.doi.org/10.37394/23206.2021.20.5
http://dx.doi.org/10.1134/S1995080223020348
http://dx.doi.org/10.3390/sym15061216
http://dx.doi.org/10.3390/sym15040794
http://dx.doi.org/10.1002/bimj.200710391
http://dx.doi.org/10.7717/peerj.16397


Weerahandi S. 1993. Generalized confidence intervals. Journal of the American Statistical
Association 88(423):899–905 DOI 10.2307/2290779.

Ye RD, Ma TF,Wang SG. 2010. Inferences on the common mean of several inverse
Gaussian populations. Computational Statistics and Data Analysis 54(4):906–915
DOI 10.1016/j.csda.2009.09.039.

Zhang L, Xu A, An L, Li M. 2022. Bayesian inference of system reliability for multicom-
ponent stress–strength model under Marshall–Olkin Weibull distribution. Systems
10(6):96 DOI 10.3390/systems10060196.

Zhang Q, Xu J, Zhao J, Liang H, Li X. 2021. Simultaneous confidence intervals for ratios
of means of zero-inflated log-normal populations. Journal of Statistical Computation
and Simulation 92:1113–1132 DOI 10.1080/00949655.2021.1986508.

Zhou XH, TuW. 2000. Interval estimation for the ratio in means of log-normally
distributed medical costs with zero values. Computational Statistics and Data Analysis
35(2):201–210 DOI 10.1016/S0167-9473(00)00009-8.

Zhou S, Xu A, Tang Y, Shen L. 2023. Fast Bayesian inference of reparameterized Gamma
process with random effects. IEEE Transactions on Reliability Epub ahead of print
2023 18 April DOI 10.1109/TR.2023.3263940.

Zhuang L, Xu A,Wang XL. 2023. A prognostic driven predictive maintenance frame-
work based on Bayesian deep learning. Reliability Engineering and System Safety
234:109181 DOI 10.1016/j.ress.2023.109181.

Zou GY, Donner A. 2008. Construction of confidence limits about effect measures: a
general approach. Statistics in Medicine 27(10):1693–1702 DOI 10.1002/sim.3095.

Zou GY, Taleban J, Hao CY. 2009. Confidence interval estimation for lognormal data
with application to health economics. Computational Statistics and Data Analysis
53(11):3755–3764 DOI 10.1016/j.csda.2009.03.016.

Thangjai and Niwitpong (2023), PeerJ, DOI 10.7717/peerj.16397 25/25

https://peerj.com
http://dx.doi.org/10.2307/2290779
http://dx.doi.org/10.1016/j.csda.2009.09.039
http://dx.doi.org/10.3390/systems10060196
http://dx.doi.org/10.1080/00949655.2021.1986508
http://dx.doi.org/10.1016/S0167-9473(00)00009-8
http://dx.doi.org/10.1109/TR.2023.3263940
http://dx.doi.org/10.1016/j.ress.2023.109181
http://dx.doi.org/10.1002/sim.3095
http://dx.doi.org/10.1016/j.csda.2009.03.016
http://dx.doi.org/10.7717/peerj.16397

