Gene mutation analysis of oral squamous cell carcinoma in the background of oral submucous fibrosis in Hainan Island (#86806)

First submission

Guidance from your Editor

Please submit by 25 Jul 2023 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

- 4 Figure file(s)
- 3 Table file(s)
- 1 Raw data file(s)

Human participant/human tissue checks

- Have you checked the authors ethical approval statement?
- Does the study meet our <u>article requirements</u>?
- Has identifiable info been removed from all files?
- Were the experiments necessary and ethical?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Gene mutation analysis of oral squamous cell carcinoma in the background of oral submucous fibrosis in Hainan Island

Bingxia Li Equal first author, 1, 2, Xinyu Chen Corresp., Equal first author, 3, Haiyu Xian 1, 2, Qitao Wen 1, 2, Tao Wang Corresp. 1, 2

Corresponding Authors: Xinyu Chen, Tao Wang

Email address: chenxinyu814@sr.gxmu.edu.cn, 18608917377@163.com

Objective. The sequencing panel composed of 61 target genes was used to explore the related mutation genes of oral squamous cell carcinoma (OSCC) and OSCC in the background of oral submucous fibrosis (OSF), which would provide a theoretical basis for the early diagnosis of OSCC in the background of OSF. **Methods.** A total of 74 clinically diagnosed samples were included, including 36 cases of OSCC and 38 cases of OSCC in the background of OSF. DNA was extracted, and targeted gene Panel sequencing technology was used to analyze the gene frequency of pathogenic mutation sites in clinical samples. **Results.** Gene panel sequencing analysis showed that there were 69 mutations in 18 genes in OSCC and OSCC in the background of OSF. The results of gene panel sequencing were screened, and 18 mutant genes were finally screened out and their mutation frequencies in the samples were analyzed. According to the frequency of gene mutations from high to low, they were TP53, FLT4, PIK3CA, CDKN2A, FGFR4, HRAS, BRCA1, PTPN11, NF1, KMT2A, RB1, PTEN, MSH2, MLH1, KMT2D, FLCN, BRCA2, APC. Mutation of FLT4 gene was found to be unique to OSCC in the background of OSF group and its mutation frequency was significantly higher than that of OSCC group (P<0.05). **Conclusion.** FLT4 gene may be related to OSCC in the background of OSF and is expected to be an early diagnostic biomarker for it.

¹ Department of stomatology, Hainan General Hospital, Haikou, China

² College of Stomatology, Hainan Medical College, Haikou, China

³ College of Stomatology, Guangxi Medical University, Nanning, China

Gene mutation analysis of oral submucous fibrosis carcinogenesis in Hainan

2	Island
3	Bingxia Li ^{1,2,a} , Xinyu Chen ^{3,a} , Haiyu Xian ^{1,2} , Qitao Wen ^{1,2} , Tao Wang ^{1,2,*}
4	
5	¹ Department of stomatology, Hainan General Hospital, Haikou, Hainan, China
6	² The Affiliated Hainan Hospital of Hainan Medical University, Haikou, Hainan, China
7	³ College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning,
8 9	Guangxi, China
10	* Corresponding author.
11	Tao Wang
12	Dental Medical Center, Hainan Affiliated Hospital of Hainan medical University (Hainan
13	General Hospital), 19 Xiuhua Road, Haikou, Hainan, 570311, China.
14	E-mail address: 18608917377@163.com
15	^a Authors contributed equally.
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29 30	
31	
32	
33	
34	
35	
36	
37	
38	

Abstract

Objective. The sequencing panel composed of 61 target genes was used to explore the related mutation genes of oral squamous cell carcinoma and oral submucous fibrosis, which provided a theoretical basis for the early diagnosis of oral submucous fibrosis.

Methods. A total of 74 clinically diagnosed samples were included, including 36 cases of OSCC and 38 cases of OSF cancer patients. DNA was extracted, and targeted gene Panel sequencing technology was used to analyze the gene frequency of pathogenic mutation sites in clinical samples.

Results. Gene panel sequencing analysis showed that there were 69 mutations in 18 genes in OSCC and OSF cancerous specimens. The results of gene panel sequencing were screened, and 18 mutant genes were finally screened out and their mutation frequencies in the samples were analyzed. According to the frequency of gene mutations from high to low, they were TP53, FLT4, PIK3CA, CDKN2A, FGFR4, HRAS, BRCA1, PTPN11, NF1, KMT2A, RB1, PTEN, MSH2, MLH1, KMT2D, FLCN, BRCA2, APC. The mutation frequency of FLT4 gene was significantly higher than that of OSCC group (P < 0.05).

Conclusion. FLT4 gene may be related to OSF carcinogenesis and is expected to be an early diagnostic biomarker for OSF carcinogenesis.

Keywords. Oral squamous cell carcinoma; oral submucous fibrosis; gene Panel sequencing analysis; Gene mutation

Introduction

oral carcinoma is traditionally defined as oral squamous cell carcinoma (OSCC), which is the most common malignancy of squamous cell carcinoma of the head and neck. It is the sixth most common cancer in the world. It seriously affects people's chewing, swallowing and speech functions, and brings huge personal and social costs. In our country, there is a lot of cases in Hainan, Hunan, and Taiwan(Lee et al., 2011). Residents in these areas have the habit of chewing betel nut, which is the main factor that leads to the oral submucous fibrosis (OSF) and its cancerous transformation into OSCC. The International Agency for Research on Cancer (IARC) has classified areca nut as a Group I carcinogen and has identified it as an independent risk factor for OSCC. Despite the development of comprehensive and multidisciplinary therapies, the

prognosis and 5-year survival rate for OSCC remain unsatisfactory, and studies have shown a low rate of lymph node metastasis in patients with areca chewing OSCC. In the past, Some scholars defined OSF canceration as "oral cancer complicated with or accompanied by OSF", which included cases of leucoplakia canceration of oral mucosa. After years of research, our team deemed that cases developed from leucoplakia should be excluded and OSF canceration should be defined as oral squamous cell carcinoma directly transformed by OSF. Because oral cancer is often detected and diagnosed at a later stage, it is usually fatal for those affected, with a death rate of about 80 percent for advanced oral cancer, which can be reduced to about 50 percent with early screening and diagnosis(Warnakulasuriya, 2009, 2010). Therefore, it is essential to identify early diagnostic targets for OSF canceration.

Common types of gene sequencing include whole genome sequencing, whole exon sequencing, transcriptome sequencing, and targeted capture sequencing. Targeted sequencing is a research strategy in which the genome region of interest is enriched by capture kits for sequencing. According to different applications, ultra-high sensitivity and accuracy can be obtained with less data, and rapid screening of variation sites can be realized. Targeted gene Panel sequencing is a sequencing strategy and method designed on the basis of whole exome sequencing and whole genome sequencing. Compared with targeted sequencing, targeted sequencing can focus on the region of concern, remove the interference of redundant data, and maximize the use of sequencing reads, which has the advantages of deeper sequencing, lower cost and more sensitive. It is the preferred method to identify complex disease susceptibility genes at present(Kamps et al., 2017). No targeted sequencing studies have been found on OSF cancerosis. Therefore, here we used a gene sequencing panel composed of oncogenes and tumor suppressor genes to identify the most common and unique mutations in the OSF cancerosis genome.

Materials & Methods

Research object and ethical statement

This study included the primary focus tissues of 74 patients with OSCC and OSF 101 canceration admitted to Hainan Provincial People's Hospital from June 2020 to September 2021. 102 103 This study was approved by the Clinical Research Ethics Committee of Hainan Provincial People's Hospital(Approval No. [2019] 37). All samples used were informed by the patient, and 104 the consent form for sample use was signed before the operation. The research complies with the 105 World Medical Association's Code of Ethics (Helsinki Declaration) for experiments involving 106 107 human beings. Subjects were recruited according to the defined inclusion and exclusion criteria. For cases: (1) subjects over 18 years old; (2) Diagnosed as OSCC or OSF canceration; (3) All 108 patients with oral cancer were first-time patients without radiotherapy and chemotherapy; (4) It 109 belongs to Hainan Province. All tissue samples were stored in the tissue sample storage tube of 110 Kangwei Century within half an hour after the operation, without the influence of formalin 111 fixation or paraffin embedding. The clinical diagnosis of all specimens was confirmed by 112 histopathological examination. 113

DNA extraction

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Use Magen tissue DNA extraction kit (Guangzhou Meiji Biotechnology Co., Ltd. D3126) to extract DNA from oral cancer tissue samples, and strictly follow the steps described in the extraction kit. The DNA concentration was determined using Qubit 3.0 (Thermofly).

Library construction and gene panel sequencing

HieffNGSOnePotlDNA library kit (Yisheng Biotechnology, 13321ES96) was used to construct the library by enzyme digestion. According to the instructions of the kit, DNA fragmentation/end repair/dA tail addition, connector connection, product purification, DNA fragment length sorting, library amplification and other operations were performed on all samples to complete the construction of the library, and quality inspection was performed using Qsep100 (Guangding Biotechnology).

For qualified libraries, the hybridized capture of the library is carried out by using the hybridized capture system (product number: P10006A) of Heyin Biological and the panel probe of oral squamous cell carcinoma independently designed by Hefei Novel Gene Technology

- 128 Service Co., Ltd., including library hybridization, elution, amplification, purification and
- quantification. Among them, the panel probe covers 61 genes related to oral squamous cell
- carcinoma, including ABCB1, APC, BRAF, BRCA1, BRCA2, CDA, CDKN2A, CYP19A1,
- 131 CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, DHFR, DPYD, EGFR,
- ERBB2, ERCC1, ERCC2, FGFR4, FLCN, FLT1, FLT4, GSTM1, GSTP1, GSTT1, HRAS,
- 133 IDH1, IDH2, KDR, KIT, KMT2A, KMT2D, KRAS, MET, MLH1, MSH2, MTHFR, NF1,
- 134 NQO1 NRAS、NTRK1、NTRK2、NTRK3、PDGFRA、PDGFRB、PIK3CA、PTEN、
- 135 PTPN11、RB1、RRM1、SLC19A1、SMAD4、SULT1A1、TP53、TPMT、TYMS、
- 136 UGT1A1、XRCC1。 Finally, Hefei Novel Gene Technology Service Co., Ltd. was entrusted to
- use the MGISEQ-200RS high-throughput sequencing platform for sequencing and analysis of
- 138 sequencing data.

Experimental grouping and statistical treatment

- The subjects were divided into OSCC group and OSF canceration group for comparison.
- SPSS26.0 software was used for statistical analysis. The measurement data were described by (x
- ±s) and t-test was used; The counting data is expressed by passing (%), using 2 test; Fisher's
- exact test is used to detect the association between genes and OSCC; Results The difference was
- statistically significant with<0.05.

145146

151

139

Results

147 Results of tumor specimen collection

- All patients with OSCC were selected for surgical resection, and the postoperative
- 149 pathological diagnosis was OSCC, and the diagnosis was clear. The following are the
- characteristics of 74 cases (Table 1)

Quality assessment of hybridization capture sequencing data

- We performed next-generation sequencing analysis on 36 OSCC samples and 61 genes
- from 38 OSF cancerous samples classified by histopathology (Table S1). All sample sequencing
- reads are processed in the following steps: 1. Use trim-galore software to filter low-quality reads
- and remove adapters to obtain clean date; 2. Compare Clean Date with the reference genome

157

158

159

160

161

162

hg19 using the BWA MEN program, and remove PCR repeats during sequencing using samtools and GATK toolkits; 3. Analysis of variant sites using the GATK toolkit; 4. Annotate mutation sites using VEP, snpEFF, ANNOVAR annotation software, and ClinVar database. All samples have a read length of 100bp. The summary statistics of the sequencing results show that the total data volume of sample sequencing is 2.97G, the average median target rate is 81.12% (range: 54.52%~98.30%), the average sequencing depth range is 697.41X~9861X, the one-time average target coverage is 98.90% (range: 92.13%~100%), and the average Q30 measurement value is 92.60% (range: 88.37%~95.73%) (Table S2).

164165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

163

Mutation analysis of study subjects

Results by panel sequencing of targeted genes, Further bioinformatics analysis revealed 69 mutations (Table S3). Based on the type of mutation, variants are divided into missense mutations (35), nonsense mutations (20), frameshift deletion (13), and frameshift insertion (1) (Figure 1), The largest number of missense mutations is among them. It can be seen from the gene waterfall plot that FLT4 are all frameshift deletion mutations, and they are all distributed in OSCC and OSF samples. Single nucleotide variation (SNV) is when one base is replaced by another, also known as single-nucleotide polymorphism (SNP). SNV is generally superior to SNP because only variants found in a single sample are called SNV, whereas SNP is a population concept, and this difference accounts for more than 1% of the population. Classified by transition/swap level, a total of 55 mutations were identified, of which 3 8 were converted and 17 were switched, with a higher number of transitions than reversals among all study subjects, most of which were distributed in mutation rates of 50% or more (Figure 2). Most mutations were C-to-T transitions (33, including 17 for G>A and 16 for C>T (Fig 2).Mia(Petljak et al., 2022) believes that this is due to cytosine mutations produced by overexpression of cytosine deaminase APOBEC3, and the replication of uracil may lead to C to T mutations leading to single-base substitution 2 (SBS2). We also found a G to A transition in a large sample size.

Analysis of sample gene mutation

Gene frequency statistics of pathogenic mutation sites in 74 samples. The mutation

screening conditions in each sample were satisfied: Pathogenic on the ClinVar database 184 comment, mutation frequency AF higher than 3%, and GATK software identified the mutation 185 186 as PASS. Eighteen mutant genes were screened out, and the mutation frequency of these 18 genes in 74 samples was counted, and the mutation frequency of these 18 genes in 74 samples 187 was calculated as TP53, FLT4, PIK3CA, CDKN2A, FGFR4, HRAS, BRCA1, PTPN11, NF1, 188 KMT2A, RB1, PTEN, MSH2, MLH1, KMT2D, FLCN, BRCA2, APC. (Figure 3). In addition to 189 190 TP53, the mutant gene of FLT4 gene was the most frequent in 74 oral squamous cell carcinoma samples, The number of mutations was 27 and 7, respectively (Figure 4). 191 Seventy-four samples were divided into OSCC group and OSF carcinogenesis group, and 192 the mutation ratio of mutant genes in the two groups was analyzed and compared. Six mutant 193 genes were found to be common to both groups of samples: TP53, PIK3CA, CDKN2A, FGFR4, 194 195 BRCA1, PTPN11; Five genes were unique to OSCC samples: NF1, PTEN, MSH2, BRCA2, APC; Seven genes were specific to OSF carcinogenomic samples: FLT4, HRAS, KMT2A, RB1, 196 MLH1, KMT2D, FLCN (Table 2). 197 Mutations were detected in 50% (18/36) of OSCC cases and 65.8% (25/38) of OSF 198 carcinogenesis cases, and the proportion of mutations in the OSF carcinogenesis group was 199 higher than in the OSCC group alone, with 1.444 mutations/tumors and 1.6 mutations/tumors, 200 respectively. The incidence of FLT4 gene mutations in OSF cancerous tissues was 18.4% (7/38), 201 which was significantly higher than that in OSCC tissues alone (0/36) (P<0.05), and the 202 203 difference was statistically significant (Table 3).

Discussion

204

205

206

207

208

209

210

Most patients with oral squamous cell carcinoma are diagnosed in the late stage, resulting in a 5-year survival rate of less than 50%(Bugshan & Farooq, 2020). The prognosis is still very poor, so early diagnosis and treatment are still the key to improve the survival rate of patients(Rivera, 2015). For many years, people have been looking for early tumor biomarkers to find prevention and better treatment options for oral cancer patients. In recent years, various sequencing technologies have found several mutations in oral cancer, including NOTCH1, FAT1,

211	CASP810, etc(Jayaprakash et al., 2020), and also identified mutations in the composition of
212	tumor suppressor genes, oncogenes and mitochondrial genes, but no relevant reports have been
213	reported on OSF oncogenic gene mutations. Compared with whole genome and whole exome
214	analysis, there are few articles on gene Panel targeted sequencing in oral cancer genome
215	sequencing, which has been used to analyze and detect mutations in breast cancer, ovarian
216	cancer(Kraus et al., 2017) and non-small cell lung cancer(Mosele et al., 2020). Gene Panel
217	targeted sequencing enriches and sequenced the genome region of interest through the capture kin
218	which enables rapid and cost-effective analysis of mutations in clinical samples and
219	identification at the early stage of cancer occurrence, so as to achieve "early detection, early
220	diagnosis and early treatment", providing an excellent opportunity for rapid clinical treatment
221	decision-making. Panel targeting sequencing plays a unique role in the new generation of high-
222	throughput sequencing, which has produced many exciting new discoveries and has been applied
223	more and more widely. Therefore, we used Panel targeted sequencing to detect the most common
224	and unique mutations in the OSF cancer group and OSCC group.
225	In our study, 7 specific gene mutations in the OSF cancer group were identified by gene
226	Panel targeted sequencing technology. 7 mutations were identified in FLT4, which was the
227	largest number of mutations, followed by 3 mutations in HRAS and 2 mutations in KMT2A.
228	Combining the mutation frequency and distribution of OSCC and OSF cancer groups, we found
229	that the mutation frequency of FLT4 was significantly higher in OSF cancer group, while the
230	OSCC group had no mutation of FLT4 gene, and the mutation of FLT4 gene was unique to OSF
231	cancer group. The analysis of the relationship between OSCC and FLT4 gene mutation with or
232	without OSF showed that OSCC with or without OSF was correlated with FLT4 gene mutation,
233	and FLT4 gene mutation in OSF cancer group was significantly higher than that in OSCC group
234	alone.
235	FLT4, also known as vascular endothelial growth factor receptor 3 (VEGFR3), is a highly
236	glycoylated single-chain transmembrane protein. Together with VEGF-C, it is the only group of
237	regulatory factors for lymphangiogenesis in embryonic tissue and the physiological function of

lymphangiogenesis in mature individuals(Kaipainen et al., 1995). At the same time, it is also
associated with cancer and its role in promoting new angiogenesis(Gore et al., 2011). Several
studies have reported that the expression level of FLT4 in tumors is significantly positively
correlated with the development of cancer cell metastasis and poor prognosis(Garouniatis et al.,
2013; Martins et al., 2013). Xiao(Xiao et al., 2015) found that the increased expression of FLT4
was significantly positively correlated with the invasive tumor phenotype, resulting in poor
survival rate, and was associated with lymph node metastasis of colorectal cancer and early and
late death of patients.
Panel targeting sequencing found that the mutation frequency of FLTA in cancer cells of

Panel targeting sequencing found that the mutation frequency of FLT4 in cancer cells of OSCC patients with OSF was extremely high, while that of patients with simple OSCC was almost non-mutated. Chewing areca nuts was the main factor leading to OSF. Therefore, we speculated that, FLT4 gene may be related to OSCC caused by OSF canceration. At present, there are few studies on the influence and correlation of FLT4 on oral cancer cells. Therefore, in the later stage, we plan to observe whether the physiological function of cancer cells changes and the changes of its related pathways by knocking down the expression of FLT4 in oral cancer cells. In the current study, which used bioinformatics methods to identify candidate biomarkers, we anticipate that the identified FLT4 gene will contribute to our understanding of the molecular mechanisms behind the carcinogenesis of OSF into OSCC and to the identification of new targeted therapies.

Conclusions

In the present work, we found that the mutation frequency of FLT4 in cancer cells of OSCC patients with OSF was extremely high, while that of patients with simple OSCC was almost non-mutated by panel targeting sequencing. Therefore, we deem that FLT4 gene may be related to OSF carcinogenesis and is expected to be an early diagnostic biomarker for OSF carcinogenesis.

Acknowledgements

ir help
960199)
ewed
thored
pproved
proved
ewed
′
siliou, A.
1

- G. (2013). Vascular endothelial growth factor receptors 1,3 and caveolin-1 are implicated in colorectal cancer aggressiveness and prognosis--correlations with epidermal growth factor receptor, CD44v6, focal adhesion kinase, and c-Met. *Tumour Biol*, *34*(4), 2109-2117. https://doi.org/10.1007/s13277-013-0776-1
- Gore, A. V., Swift, M. R., Cha, Y. R., Lo, B., McKinney, M. C., Li, W., . . . Weinstein, B. M. (2011).

 Rspo1/Wnt signaling promotes angiogenesis via Vegfc/Vegfr3. *Development*, *138*(22),
 4875-4886. https://doi.org/10.1242/dev.068460
- Jayaprakash, C., Varghese, V. K., Jayaram, P., Chakrabarty, S., Kudva, A., Ray, S., & Satyamoorthy, K. (2020). Relevance and actionable mutational spectrum in oral squamous cell carcinoma. *J Oral Pathol Med*, *49*(5), 427-434. https://doi.org/10.1111/jop.12985
- Kaipainen, A., Korhonen, J., Mustonen, T., van Hinsbergh, V. W., Fang, G. H., Dumont, D., . . .

 Alitalo, K. (1995). Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. *Proc Natl Acad Sci U S A*, 92(8), 3566-3570. https://doi.org/10.1073/pnas.92.8.3566
- Kamps, R., Brandão, R. D., Bosch, B. J., Paulussen, A. D., Xanthoulea, S., Blok, M. J., & Romano, A. (2017). Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification. *Int J Mol Sci*, *18*(2). https://doi.org/10.3390/ijms18020308
- Kraus, C., Hoyer, J., Vasileiou, G., Wunderle, M., Lux, M. P., Fasching, P. A., . . . Reis, A. (2017).

 Gene panel sequencing in familial breast/ovarian cancer patients identifies multiple novel mutations also in genes others than BRCA1/2. *Int J Cancer*, *140*(1), 95-102.

 https://doi.org/10.1002/ijc.30428
- Lee, C. H., Ko, A. M., Warnakulasuriya, S., Yin, B. L., Sunarjo, Zain, R. B., . . . Ko, Y. C. (2011).

 Intercountry prevalences and practices of betel-quid use in south, southeast and eastern
 Asia regions and associated oral preneoplastic disorders: an international collaborative
 study by Asian betel-quid consortium of south and east Asia. *Int J Cancer*, *129*(7), 17411751. https://doi.org/10.1002/ijc.25809
- Martins, S. F., Garcia, E. A., Luz, M. A., Pardal, F., Rodrigues, M., & Filho, A. L. (2013).

 Clinicopathological correlation and prognostic significance of VEGF-A, VEGF-C, VEGFR-2 and VEGFR-3 expression in colorectal cancer. *Cancer Genomics Proteomics*, *10*(2), 55-67.
- Mosele, F., Remon, J., Mateo, J., Westphalen, C. B., Barlesi, F., Lolkema, M. P., . . . André, F. (2020). Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group. *Ann Oncol*, 31(11), 1491-1505. https://doi.org/10.1016/j.annonc.2020.07.014
- Petljak, M., Dananberg, A., Chu, K., Bergstrom, E. N., Striepen, J., von Morgen, P., . . .

 Maciejowski, J. (2022). Mechanisms of APOBEC3 mutagenesis in human cancer cells.

 Nature, 607(7920), 799-807. https://doi.org/10.1038/s41586-022-04972-y
- 336 Rivera, C. (2015). Essentials of oral cancer. Int J Clin Exp Pathol, 8(9), 11884-11894.
- Warnakulasuriya, S. (2009). Global epidemiology of oral and oropharyngeal cancer. *Oral Oncol*,

PeerJ

338	45(4-5), 309-316. https://doi.org/10.1016/j.oraloncology.2008.06.002
339	Warnakulasuriya, S. (2010). Living with oral cancer: epidemiology with particular reference to
340	prevalence and life-style changes that influence survival. Oral Oncol, 46(6), 407-410.
341	https://doi.org/10.1016/j.oraloncology.2010.02.015
342	Xiao, X., Liu, Z., Wang, R., Wang, J., Zhang, S., Cai, X., Fan, D. (2015). Genistein
343	suppresses FLT4 and inhibits human colorectal cancer metastasis. Oncotarget, 6(5),
344	3225-3239. https://doi.org/10.18632/oncotarget.3064
345	
346	

Table 1(on next page)

Patient characteristics of OSCC (n=74)

Table 1 Patient characteristics of OSCC (n=74)

	Table 1 Tatient characteristics of OSCC (n-74)
variable	figure
Age (mean)	55.72±10.728 (34-82)
Gender	
Male	52 (70.3%)
Female	22 (29.7%)
Primary site	
Tongue	32
Buccal mucosa	17
Gingiva	11
Other	14
TNM stage	
I	7
I	22
Ш	24
IV	
Tumor size (cm)	
$\leq 4 (T I/2)$	51
>4 (T 3/4)	23
lymph node metastasis	
Negative	40
Positive	34

Table 2(on next page)

Distribution of mutated genes in two groups

Table 2 Distribution of mutated genes in two groups

gene	OSCC Mutated genes	OSF	Cancerous	mutated
		genes		
TP53	$\sqrt{}$	$\sqrt{}$		
FLT4		$\sqrt{}$		
PIK3CA	$\sqrt{}$	$\sqrt{}$		
CDKN2A	$\sqrt{}$	$\sqrt{}$		
FGFR4	$\sqrt{}$	$\sqrt{}$		
HRAS		$\sqrt{}$		
BRCA1	$\sqrt{}$	$\sqrt{}$		
PTPN11	$\sqrt{}$	$\sqrt{}$		
NF1	$\sqrt{}$			
KMT2A		$\sqrt{}$		
RB1		$\sqrt{}$		
PTEN	$\sqrt{}$			
MSH2	$\sqrt{}$			
MLH1		$\sqrt{}$		
KMT2D		$\sqrt{}$		
FLCN		$\sqrt{}$		
BRCA2	$\sqrt{}$			
APC	$\sqrt{}$			

Table 3(on next page)

Clinicopathological features based on whether OSCC is associated with OSF

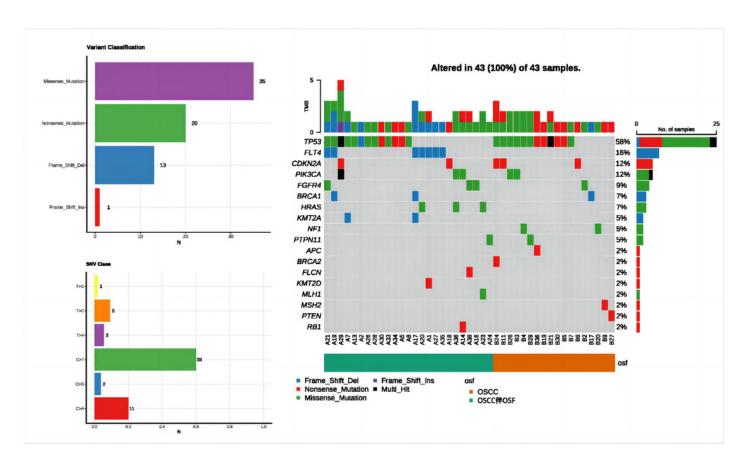
Note: Number of mutations: the number of mutated genes in each sample, for example: OSCC-mutation number≥ 1 is 18: it means that in the group [OSCC], the number of [number of mutated genes per sample≥1] is 18; Except for the t-test used for [mutation average], the rest used the chi-square test; [FLT4 mutation] was accurately tested using Fisher.

Table 3 Clinicopathological features based on whether OSCC is associated with OSF

	OSCC	OSF canceration	P value
Total	36	38 (51.4%)	
	(48.6%)		
Gender			
Female	15	7	0.05333
Male	21	31	
TNM stage			
I 、 II	13	16	0.772
Ⅲ、Ⅳ	23	22	
Lymph node metastasis			
Negative	21	19	0.4722
Positive	15	19	
Mutation number			
0	18	13	0.2542
≥1	18	25	
Mutation number			
average	1.444	1.6	0.4646
FLT4 mutations	FLT4 mutations		
Negative	36	31	0.02094
Positive	0	7	

3

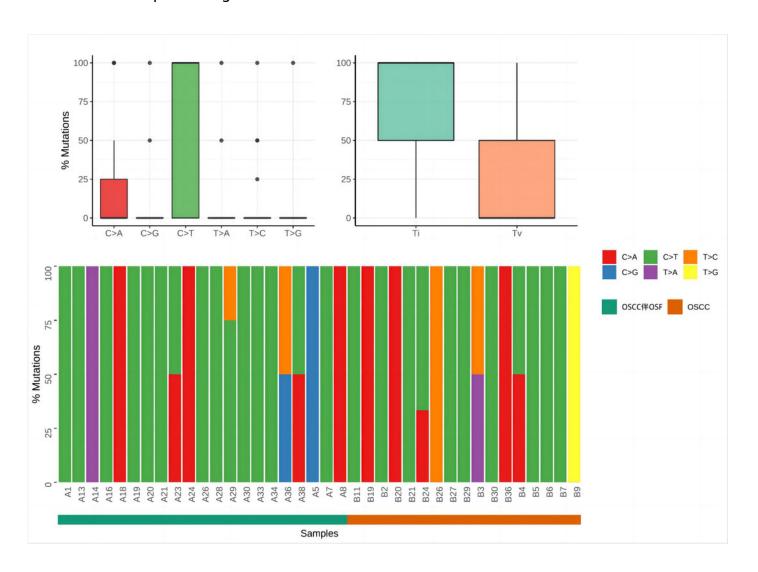
Note: Number of mutations: the number of mutated genes in each sample, for example: OSCC-mutation number≥ 1 is 18: it means that in the group [OSCC], the number of [number of mutated genes per sample≥1] is 18; Except for the t-test used for [mutation average], the rest used the chi-square test; [FLT4 mutation] was accurately tested using Fisher.

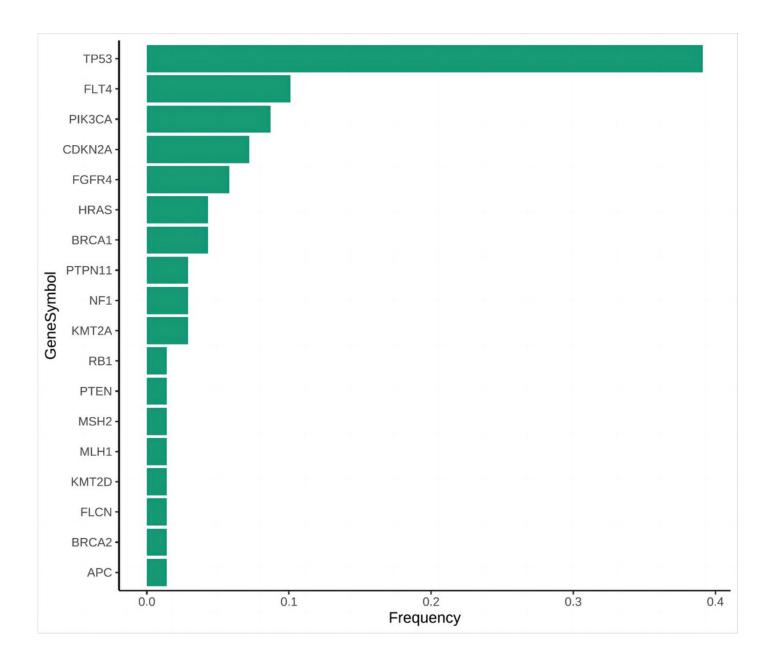

7 8

5

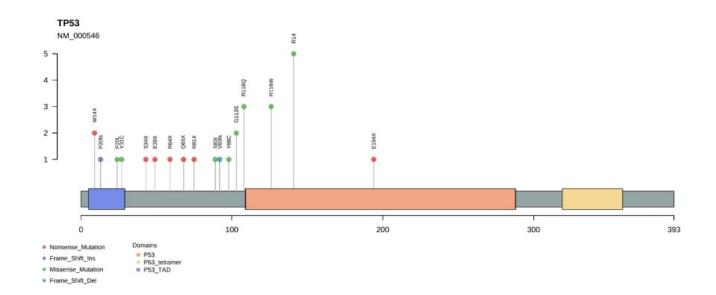
6

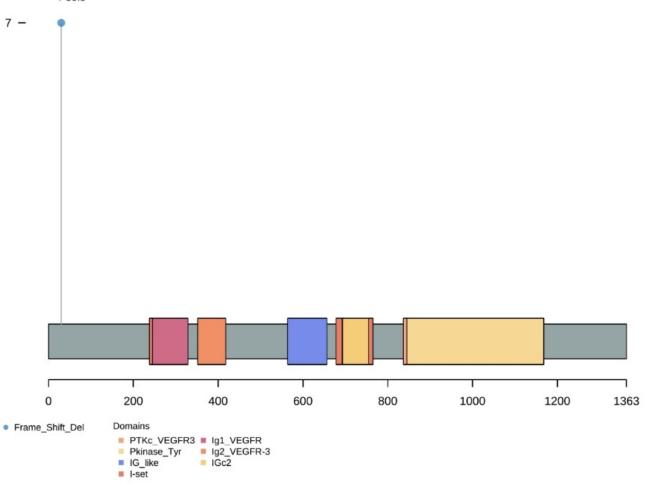
Mutation summary and gene waterfall plot for SCC-targeted NGS sequencing


A. Mutation aggregation. Mutation identification was performed using the "maftools" R program, which summarizes the data generated by NGS and shows the type of mutation and SNV classification, as well as the number of mutations, through a box plot B. Gene waterfall chart. The figure, generated by the "maftools" R program, represents all types of mutations in highly mutated genes. Comment Multi_Hit: Refers to a gene that has mutated multiple times in the same sample. The figure shows a large number of nonsense and missense mutations in the TP53 gene.


Mutation classification and proportion of OSCC-targeted NGS sequencing data

Mutation classification: The "maftools" R procedure is used to identify and classify mutations. The data was visualized to show six different base conversions a boxplot of the population distribution of types, a boxplot of the population distribution of transformations and reversals, and a plot showing the individual base conversion types in each sample stacked column chart of percentages


Mutation frequency bar plot, the abscissa is the mutation frequency in 74 samples, and the ordinate is the gene that has been mutated



Needle plot of mutations. Mutations in selected significantly mutated genes across OSCC clinical specimens

