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ABSTRACT
The Sebastes inermis complex includes three sympatric species (Sebastes cheni, viz
Sebastes inermis, and Sebastes ventricosus) with clear ecomorphological differences,
albeit incomplete reproductive isolation. The presence of putative morphological
hybrids (PMH) with plausibly higher fitness than the parent species indicates the
need to confirm whether hybridization occurs within the complex. In this sense, we
assessed the dynamics of genetic divergence and hybridization within the species
complex using a panel of 10 microsatellite loci, and sequences of the mitochondrial
control region (D-loop) and the intron-free rhodopsin (RH1) gene. The analyses
revealed the presence of three distinct genetic clusters, large genetic distances using
D-loop sequences, and distinctive mutations within the RH1 gene. These results are
consistent with the descriptions of the three species. Two microsatellite loci had
signatures of divergent selection, indicating that they are linked to genomic regions
that are crucial for speciation. Furthermore, nonsynonymous mutations within the
RH1 gene detected in S. cheni and “Kumano” (a PMH) suggest dissimilar adaptations
related to visual perception in dim-light environments. The presence of individuals
with admixed ancestry between two species confirmed hybridization. The presence of
nonsynonymous mutations within the RH1 gene and the admixed ancestry of the
“Kumano” morphotype highlight the potential role of hybridization in generating
novelties within the species complex. We discuss possible outcomes of hybridization
within the species complex, considering hybrid fitness and assortative mating.
Overall, our findings indicate that the genetic divergence of each species is
maintained in the presence of hybridization, as expected in a scenario of speciation-
with-gene-flow.

Subjects Aquaculture, Fisheries and Fish Science, Genetics, Marine Biology, Molecular Biology,
Population Biology
Keywords Hybridization, Sebastes, Divergent selection, Clustering analysis, Rhodopsin gene,
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INTRODUCTION
Speciation-with-gene-flow is postulated to occur in a scenario involving divergent
selection, in which populations adapt to diverse environments and reach distinct fitness
optima. In this scenario, prezygotic and extrinsic postzygotic isolating barriers are
expected to appear first, working together to reduce hybridization between species, while
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intrinsic postzygotic isolating barriers might appear later, enforcing the reproductive
isolation of species (Seehausen et al., 2014). If hybridization occurs, the possible outcomes
in speciation primarily depend on the fitness of hybrids related to the parent species and
their reproductive success in specific environments (Baskett & Gomulkiewicz, 2011;
Servedio & Hermisson, 2020). Accordingly, a higher fitness of hybrids may have a
significant evolutionary potential to generate novel lineages and/or adaptations (Arnold &
Fogarty, 2009; Abbott et al., 2013), leading to the maintenance of incomplete reproductive
isolation under certain circumstances of assortative mating (Servedio & Hermisson, 2020).
Conversely, if hybrids have lower fitness than the parent species, hybridization can
contribute to increasing reproductive isolation of the hybridizing lineages (i.e.,
reinforcement) (Bank, Hermisson & Kirkpatrick, 2012). Thus, the occurrence of
hybridization in a single clade offers the possibility of directly assessing hybrid fitness and
the significant contribution of its possible outcomes to speciation.

Sebastes is a genus whose diversification is driven mainly by divergent selection
(Ingram, 2011). Several cases of hybridization within this genus have been inferred using
various methods. For example, morphological analyses have been used to identify hybrids
endowed with morphotypes that are intermediate to their parent species (Valentin, Sévigny
& Chanut, 2002; Muto et al., 2013). Hybridization events have also been detected using
population genetic surveys and Bayesian clustering methods (Roques, Sévigny &
Bernatchez, 2001; Buonaccorsi et al., 2005; Burford, 2009; Saha et al., 2017; Keller et al.,
2022). These methods are widely used because they can infer the number of distinct genetic
clusters and estimate the admixture proportions of individuals in them (Pritchard,
Stephens & Donnelly, 2000; Porras-Hurtado et al., 2013; Thia, 2023).

The species complex Sebastes inermis encompasses three species: viz. Sebastes inermis
Cuvier, 1829 (red rockfish), Sebastes cheni Barsukov, 1988 (brown to golden-brown
rockfish, known as “white” in Japan), and Sebastes ventricosus Temminck & Schlegel, 1843
(greenish to black rockfish). They are slow-moving species with sympatric occurrence
along the coastal waters of Japan, particularly in rocky reefs and beds of Zostera L. and
Sargassum C. Agardh, 1820 (Kai & Nakabo, 2008). Although clear stock limits for these
species have not been defined, their economic significance for local communities has
prompted the annual release of thousands of juveniles to enhance populations (Nakagawa,
2008). In addition to their different body colours, the morphological identification of these
rockfishes mainly relies on meristic counts and body proportions (Kai & Nakabo, 2008),
and differences in otolith descriptors and body shape can facilitate their identification
(Deville et al., 2023). These rockfishes have different growth rates, with S. cheni attaining
larger body sizes than S. ventricosus, which is larger than S. inermis at the same age
(Kamimura et al., 2014). The morphological divergences of these species suggest
asymmetric depth distributions, which can reduce their interspecific competition and
allow their coexistence in sympatry (Deville et al., 2023). Genetic identification of the three
rockfishes can be accomplished by examining allele differences in amplified fragment
length polymorphisms (AFLP) (Kai, Nakayama & Nakabo, 2002; Kai & Nakabo, 2008)
and two microsatellite loci (Deville et al., 2023). Dissimilar alleles in these molecular
markers suggest reproductive isolation of these species (Kai, Nakayama & Nakabo, 2002).
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Prezygotic reproductive barriers, such as differences in acoustic and visual communication
systems, are expected to sustain the reproductive isolation of these species (Deville et al.,
2023). The three species are single brooders, and their reproductive seasons occur during
the winter months (Plaza, Katayama & Omori, 2004). Polygamous individuals have been
observed and inferred using paternity tests (Shinomiya & Ezaki, 1991; Blanco Gonzalez
et al., 2009).

Putative morphological hybrids (PMH) displaying intermediate colourations and
meristic counts but with otolith descriptors of S. cheni have been reported in the Seto
Inland Sea (Hiroshima Prefecture) (Deville et al., 2023). Additionally, an endemic
intermediate morphotype of S. cheni and S. inermis (colloquially called “big red”) has been
reported by local fishermen in Kumano Nada (Wakayama Prefecture) but without any
genetic information. Mating behaviour suggests that these PMH might have a higher
fitness than S. inermis and S. ventricosus during reproductive seasons because (1) in
contrast to smaller males, larger males perform agonistic behaviour and courtship rituals,
and occupy wider territories, and (2) females tend to mate with larger males (Shinomiya &
Ezaki, 1991). Therefore, there is an urgent need to confirm whether hybridization occurs
within the S. inermis complex. By confirming hybridization, it would also be possible to
determine the impact of this process on the population structure of each species because
hybridization can alter estimates of genetic diversity (Berntson & Moran, 2009;
Artamonova et al., 2013; Saha et al., 2017).

To investigate the dynamics of genetic divergence and hybridization within the
S. inermis complex, we employed genetic information from 10 microsatellite loci, and
sequences of both the mitochondrial control region (D-loop) and the intron-free
rhodopsin (RH1) gene. Microsatellite loci are highly polymorphic nuclear markers that
have been used to discriminate closely related species within Sebastes (e.g., Frable et al.,
2015; Saha et al., 2017; Bizzarro et al., 2020; Keller et al., 2022). By utilizing these markers,
it is possible to assess whether any locus is under putative divergent selection. This is
achieved by detecting anomalously high interspecific differences in contrast to low
intraspecific differences (called the “FST outlier” approach) (Beaumont & Balding, 2004).
D-loop was used since this region offers enough resolution to obtain significant genetic
distances among the three species (Kai & Nakabo, 2008). The RH1 gene was analysed to
identify any genetic basis for the suggested asymmetric depth distributions of the three
species (Deville et al., 2023), given that nonsynonymous mutations in this gene can
indicate that species inhabit environments with varying levels of downwelling sunlight
along the water column (Sivasundar & Palumbi, 2010; Shum et al., 2014).

Our study aimed to address the following objectives:

1) Assess the genetic divergences between species using sympatric individuals with clear
morphological distinction. This will allow us to increase the evidence supporting the
genetic divergence of the three species.

2) Investigate whether any of the microsatellite loci have signatures of divergent selection.
When a locus is under divergent selection, alleles of any locus near linked regions will
also be under divergent selection; thus, that selection will prevent gene flow in all nearby
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genomic regions, leading to a reduction in the migration rate (i.e., gene flow) of that
region (Feder, Egan & Nosil, 2012).

3) Infer the presence of hybrids by using clustering analyses of microsatellite loci. This can
confirm whether the PMH are genetically hybrid individuals.

4) Evaluate the level of genetic divergence of the PMH.

We hypothesized that each species maintains its genetic divergence even in the presence
of hybridization, as expected in a scenario of speciation-with-gene-flow (Feder, Egan &
Nosil, 2012). We also anticipated that the PMH would exhibit genetic signatures consistent
with the admixture of the parent species. We discuss how assortative mating and the
relative fitness of hybrids interact to maintain the divergence of species in the presence of
hybridization.

MATERIALS AND METHODS
Sampling, DNA isolation, and sequencing
We examined 360 individuals collected via bank fishing on rocky and sandy shores along
the coast of Japan (Table 1 and Fig. 1). Species identification was carried out following the
criteria established by Kai & Nakabo (2008), starting from colour alive and fresh, meristic
counts, and body proportions. In addition, the otolith weight~age relationship was used to
improve the identification of specimens older than 3 years, as suggested by Deville et al.
(2023).

Individuals were categorized into six different morphological groups, depending on
whether they had all the diagnostic traits of any species without overlap, or only some of
them (Table 1 and Fig. 2). The categories were as follows (Fig. 2): (1) white S. cheni, (2) red
S. inermis, (3) black S. ventricosus, (4) PMH black-white (BW) S. cheni x S. ventricosus,
with some individuals exhibiting colouration from one species while their meristic counts
and body proportions resemble the ones of the other species, (5) PMH red-white (RW)
S. cheni x S. inermis, with two slightly different intermediate colourations, intermediate
meristic counts but otolith weight~age relationships of S. cheni, and (6) “Kumano” or “big
red” morphotype collected in sandy and rocky shores in East Wakayama Prefecture. It is
considered a hypothetical hybrid of S. inermis and S. cheni because it displays intermediate

Table 1 Number of individuals of each species and putative morphological hybrid collected in each
sampling location.

Morphotype Akita Hiroshima Kagoshima Wakayama Total

S. ventricosus 41 28 33 102

S. inermis 42 32 37 111

S. cheni 30 43 3 13 89

Black-white 22 1 3 26

Red-white 19 7 26

Kumano 6 6

Total 30 167 71 94 360
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colouration and meristic counts of the two species but an otolith weight~age relationship
resembling that of S. cheni. Additional photos of reference specimens for each species and
PMH are shown in Fig. S1.

Total DNA was isolated from a small piece of pectoral fin using the TNES-urea buffer
(Asahida et al., 1996) followed by the standard phenol-chloroform isolation. A set of 10
microsatellite loci isolated from Sebastes schlegeliiHilgendorf, 1880 (SSC12, SSC23, KSs2A,
KSs6, KSs7, and CGN1) (Yoshida, Nakagawa & Wada, 2005; An et al., 2009; Gao et al.,
2018), S. inermis (Sebi1, Sebi2, and Sebi3) (Blanco Gonzalez et al., 2009), and Sebastes
rastregiller (Jordan & Gilbert, 1880) (SRA7-7) (Westerman et al., 2005) were
cross-amplified by multiplex PCRs. The four universal primers proposed by Blacket et al.
(2012) were labelled with 6-FAM (Tail A), VIC (B), NED (C), and PET (D), while the
forward primers of all loci were modified at their 5′ ends with the same universal primers
(Table S1). Standardization of multiplex PCRs was performed as described by Deville et al.
(2021). Each multiplex PCR was carried out in a volume of 5 µL containing 2.5 µL of 2×
KOD F× Neo buffer, 1 µL of dNTP 2 µM, 0.1 µL of 1U KOD polymerase (Toyobo Co., Ltd.,
Osaka, Japan), 1 µL of DNA 50 ng/µL, 0.3 µL of ddH2O, and 0.1 µL of a primer mix (5 mM
labelled universal primers and modified forward primers, and 10 mM reverse primers).
Multiplex PCRs were performed in a Mastercycler Gradient 96-well system (Eppendorf,
Hamburg, Germany) with initial denaturation at 94 �C for 4 min followed by a touchdown
(10 cycles at 94 �C/1 min, annealing from 63 �C to 54 �C/1 min and 72 �C/1 min), 20 cycles
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Figure 1 Sampling sites along coastal waters of Japan. Black points represent sampling sites.The
reference map was retrieved from the Natural Earth website (https://www.naturalearthdata.com/). Data
contained in this website is in the public domain. Full-size DOI: 10.7717/peerj.16391/fig-1
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with the same conditions but annealing at 55 �C, and a final step of 72 �C during 10 mins.
Then, 1 µL of the PCR product was mixed with 18.8 µL of Hi-DiTM Formamide (Applied
Biosystem, Waltha, MA, USA) and 0.2 µL of GeneScanTM-600 LIZ� size standard
(Applied Biosystem, Waltha, MA, USA). This mixture was denatured at 95 �C for 3 min
and run on an ABI 3,130×1 Genetic Analyzer (Applied Biosystem, Waltha, MA, USA).
Genotyping was performed using GeneMarker v.2.6� (Soft Genetics, State College, PA,
USA).

D-loop and RH1 gene were amplified in 124 and six individuals from Hiroshima and
Wakayama, respectively. This includes (1) 25 individuals of each species identified through
morphological and genetic analyses (clustering analysis, see Fig. 3), (2) eight individuals
morphologically assigned to a species but genetically classified as putative hybrids, (3) 22
individuals with the BWmorphotype, (4) 19 specimens showing the RWmorphotype, and
(5) six “Kumano” specimens from Wakayama. D-loop was amplified using the MebTD1F
forward (5′→3′: ACCTGAATCGGAGGAATGCC) and MebTD1R reverse (5′→3′:
GGGTTTACAGGAGCGTTAGC) primers. These primers were designed using the
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Figure 2 Colouration patterns, meristic counts, and otolith weight~age relationships of the three rockfishes Sebastes cheni, Sebastes inermis,
and Sebastes ventricosus, and the putative morphological hybrids between them. The frequency distributions of the number of pored lateral line
scales (SLL), number of gill rakers of the first arch (GR), and number of radials of the pectoral fin (PFR) are indicated in each species and putative
morphological hybrid. Reference sizes for frequencies are indicated below the three variables. Points in the otolith weight~age plot were coloured to
ease distinction of species and putative morphological hybrids. Arrows connecting specimens indicate the putative origin of each morphological
hybrid. A scale of 3 cm was added next to each specimen as reference for size. Full-size DOI: 10.7717/peerj.16391/fig-2
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mitochondrial genomes of S. inermis (NC_023456), S. schlegelii (NC_005450), and
Sebastes thompsoni (Jordan & Hubbs, 1925) (KJ834064) as references. The RH1 gene was
amplified using the Rh193 (5′→3′: CNTATGAATAYCCTCAGTACTACC) and Rh1039r
(5′→3′: TGCTTGTTCATGCAGATGTAGA) primers (Chen, Bonillo & Lecointre, 2003).
Both genetic regions were amplified in a total volume of 8 µL containing 4 µL of 2× KOD
buffer, 1.2 µL of dNTP 2 µM, 0.1 µL of each primer at 10 mM, 0.1 µL of 1U KOD Taq
polymerase, 1 µL of DNA 50 ng/µL, and 1.5 µL of ddH2O. PCR conditions for both genetic
regions were as follows: initial denaturation at 94 �C for 4 mins; 35 cycles of 94 �C for 20 s,
55 �C for 30 s, and 68 �C for 45 s; and a final extension at 68 �C for 5 mins. Each PCR
product was cleaned up using ExoSAP-IT (Affymetrix/USB Corporation, Cleveland, OH,
USA) and then sequenced using the BigDye v3.1 Terminator Sequencing Kit (Applied
Biosystems, Waltham, MA, USA) on a Genetic Analyzer ABI 3,130×1 (Applied
Biosystems, Waltham, MA, USA). D-loop amplicons were sequenced using the MebTD1F
primer, whereas RH1 amplicons were sequenced in both directions whenever an
ambiguous nucleotide was found in the chromatograms. Chromatograms were visualized
and manually edited using Chromas Lite v2.6.6 (Technelysium Pty. Ltd., Brisbane, QLD,
Australia), and the sequences were aligned using Clustal X2 (Larkin et al., 2007). RH1
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Figure 3 Genetic clusters inferred in the Sebastes inermis complex using ten (above and middle) and
eight microsatellite loci (below). Individuals are coloured based on their ancestry coefficients (Q-score)
for each genetic cluster. Putative morphological hybrids are indicated as K (“Kumano”), BW (S. cheni �
S. ventricosus morphotype), and RW (S. cheni × S. inermis morphotype).

Full-size DOI: 10.7717/peerj.16391/fig-3
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sequences were phased into two sequences per individual using the program PHASE
implemented in DNAsp v6 (Rozas et al., 2017) with a Markov chain Monte Carlo of
100,000 iterations, burn-in of 10,000 steps, and 10-step thinning intervals.

Descriptive statistics and genetic divergences
Descriptive statistics were estimated for only eight populations containing more than 25
individuals (two populations of S. cheni and three populations of each S. inermis and
S. ventricosus) (Table 1). The occurrence and percentages of null alleles were evaluated
using Micro-Checker v.2.2.3 (Van Oosterhout et al., 2004) and the formula of Brookfield
(1996), respectively. We estimated the number of alleles (NA), observed heterozygosity
(HO), and expected heterozygosity (HE) for each population. Exact tests for
Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium were performed for each
locus and pair of loci, respectively. Pairwise genetic distances between species (FST) were
estimated based on the number of different alleles (Weir & Cockerham, 1984). The FST
values were estimated within (1) the eight previously mentioned populations, and (2) the
genetically distinct individuals and PMH in which D-loop and the RH1 gene were
sequenced. All analyses were performed using Arlequin v3.5 (Excoffier & Lischer, 2010).
Because null alleles can inflate FST estimates, we used FreeNA (Chapuis & Estoup, 2007) to
calculate unbiased FST after null allele correction with the ENA method. Confidence
intervals of the corrected FST were obtained using a bootstrap resampling procedure
performed 1,000 times.

The D-loop and phased RH1 sequences were collapsed into haplotypes, and the number
of haplotypes, haplotype diversity, and nucleotide diversity were estimated using DNAsp
v6. The frequencies of D-loop haplotypes were used to estimate FST values between species
and PMH using the K2P model (K2P distances) (Kimura, 1980) in Arlequin v3.5.
Networks of D-loop and RH1 haplotypes were constructed using the TCS method
(Clement, Posada & Crandall, 2000) implemented in PopArt v1.7 (Leigh & Bryant, 2015).
To determine the position of mutations occurring in the RH1 sequences and their possible
relationships with changes in the protein function, we selected the individual with the
longest sequence in each species and pooled them together with the publicly available RH1
sequences of 36 Sebastes rockfishes (EF212407–EF212438, KM013899, KM013904,
KM013924, and KM013927). For this analysis, the complete amino acid sequence of the
bovine RH1 (NM_001014890) was used as a reference.

Detection of outlier loci
Outlier loci with very low or high divergence among species were detected using BayeScan
v2.1. (Foll & Gaggiotti, 2008). The analysis was performed only with allele frequencies of
individuals assigned to a species based on their morphology. The parameters for the
analysis were as follows: 100,000 burn-in steps, a thinning interval of 100, a sample size of
10,000, 50 pilot runs, a pilot length of 10,000, and a value of 10 for prior odds. The analysis
assesses selection using logistic regression. It decomposes FST coefficients into a
population-specific component (β) shared by all loci, and a locus-specific component (a)
shared by all populations. Loci under selection are inferred when FST coefficients are
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largely explained by the locus-specific component (i.e., a is significantly different from 0).
Positive a values indicate divergent selection, whereas negative values suggest balancing or
purifying selection. The significance of each a value per locus was evaluated by checking
corrected P values calculated using the False Discovery Rate method (FDR) (Benjamini &
Hochberg, 1995).

Genetic clusters and individual admixture analysis from microsatellite
loci
Genetic clustering was assessed using STRUCTURE v2.3.4 (Pritchard, Stephens &
Donnelly, 2000). The analysis estimates the number of homogeneous genetic clusters (K)
that maximize Hardy-Weinberg and linkage equilibrium (Pritchard, Stephens & Donnelly,
2000), and then calculates individual admixture proportions (Q-score = genome ancestry
coefficient). The inference of Q-scores performed in STRUCTURE is facilitated by using
markers showing different alleles at very high frequencies in distinct populations (Porras-
Hurtado et al., 2013), which can be expected in loci under putative divergence. Although
the inclusion of these loci can be problematic, combining them with other loci helps to
balance out selection, as selection is not expected to fix alleles across independent loci
scored in different populations (Selkoe & Toonen, 2006). Hence, two analyses were
performed: the first using all microsatellite loci, and the second excluding loci under
putative divergent selection. STRUCTURE analyses were run with a Markov chain Monte
Carlo of 1,000,000 steps, 10% burn-in, an independent allele frequency model, K values
from 1 to 7, and 10 replicates for each K value. The most likely number of genetic clusters
was inferred using the Evanno method (Evanno, Regnaut & Goudet, 2005), as
implemented in STRUCTURE HARVESTER (Earl & vonHoldt, 2012). To infer the
number of genetic clusters without the assumptions of HWE and linkage equilibrium
(assumed in STRUCTURE), we performed a Discriminant Analysis of Principal
Component (DAPC) implemented in the Adegenet 2.1.1 package (Jombart, Devillard &
Balloux, 2010). The optimal number of genetic clusters was determined by considering the
distribution of individuals projected into the space of principal components and the
“elbow point” in the distribution of the Bayesian information criterion (BIC) scores (Thia,
2023). For DAPC, we only preserved “K-1” principal components because they capture the
maximal among-species variation without adding an unplanned interpretation of the
population structure (Thia, 2023). It is possible to assign individuals to the inferred genetic
clusters or categorize them as putative hybrids, considering a threshold Q-score. Here,
individuals were categorized as putative genetic hybrids if they had Q-scores lower than
0.9, following Sanz et al. (2009).

For each species, a “reference population” of 30 individuals with clear morphological
distinction and Q-scores higher than 0.99 was established. These populations were used to
simulate putative pure individuals, putative first-generation (F1) hybrids, and putative
backcrosses in HYBRIDLAB v1.0 (Nielsen, Bach & Kotlicki, 2006). A total of 810 putative
pure parental genotypes were generated by simple mechanical mixing of the alleles from
each “reference population”. For putative F1 hybrids, we simulated 30 individuals from
each parent cross: S. cheni × S. inermis, S. cheni × S. ventricosus, and S. inermis ×
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S. ventricosus. For the putative backcrosses, 30 individuals were simulated for each putative
pure parental and putative F1 cross, resulting in six groups of backcrosses. Each group was
labelled with three letters depending on the colouration of each parent species (i.e., black:
B, red: R, and white: W) to ease their distinction. The first and second letters indicate the
putative F1 hybrid origin of the first parent, and the third letter indicates the putative pure
origin of the second parent. The six groups of backcrosses were BRB, BRR, BWB, BWW,
RWR, and RWW. The numbers of simulated putative pure individuals, putative F1
hybrids, and putative backcrosses were set to ensure 10% of putative hybrids in our
simulated dataset to effectively infer hybrids using clustering analyses (Vähä & Primmer,
2006). We pooled the simulated individuals in a single dataset and estimated the number of
genetic clusters and Q-scores using STRUCTURE with the same parameters as those used
in the analyses with our collected samples. The maximum Q-scores of all individuals
included in the observed and simulated datasets were plotted to detect putative F1 hybrids
and backcrosses.

RESULTS
Descriptive statistics from microsatellite loci
Micro-Checker indicated that the loci KSs2A and CGN1 presented null alleles in more
than two populations, which was corroborated by bootstrapped estimations of the
percentages of null alleles (Fig. S2). Individuals presenting homozygous alleles were
re-amplified to confirm allele sizes. All loci were polymorphic within each species, with the
number of alleles per locus ranging from six to 21 in S. cheni, six to 41 in S. inermis, and
five to 70 in S. ventricosus (Table 2). The mean HO values of S. cheni, S. inermis, and
S. ventricosus were 0.664, 0.725, and 0.726, respectively. The mean value of HE was 0.691
for S. cheni, 0.766 for S. inermis, and 0.754 for S. ventricosus. Significant differences in allele

Table 2 Descriptive statistics for each microsatellite locus in the three species.

Locus S. cheni (N = 86) S. inermis (N = 111) S. ventricosus (N = 102)

Na Ho He Na Ho He Na Ho He

SSC12 7 0.539 0.531 8 0.703 0.743 6 0.725 0.726

Sebi1 8 0.730 0.672 26 0.631 0.654 70 0.951 0.971

KSs2A 17 0.719 0.746 41 0.730 0.931 22 0.775 0.903

Sebi3 18 0.888 0.893 11 0.838 0.855 15 0.912 0.889

SSC23 8 0.629 0.605 14 0.838 0.798 9 0.696 0.727

KSs7 6 0.494 0.581 10 0.622 0.722 7 0.657 0.485

Sebi2 6 0.348 0.366 6 0.559 0.551 5 0.500 0.558

SRA7-7 16 0.876 0.873 15 0.793 0.830 15 0.804 0.838

KSs6 21 0.831 0.895 14 0.892 0.898 15 0.765 0.848

CGN1 11 0.584 0.752 8 0.649 0.679 6 0.480 0.594

Mean 11.8 0.664 0.691 15.3 0.725 0.766 17 0.726 0.754

Note:
N, sample size; NA, number of alleles; HO, observed heterozygosity; HE, expected heterozygosity. Loci in bold font are
under putative divergent selection.
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distributions (Fig. S3) were detected in nine of 10 microsatellite loci (P values < 0.005),
with 23 of 30 pairwise comparisons being statistically significant (P values < 0.002).
Significant deviations from HWE expectations were detected in six tests, three of which
occurred at locus CGN1 (P values < 0.005) (Table S2). Only one of the 360 pairwise
comparisons of loci (SSC23-Sebi2 in S. inermis from Hiroshima) showed significant
linkage disequilibrium (P value < 0.001). Significant FST values higher than 0.1 were found
between species in both the uncorrected and corrected null allele frequencies (Table 3).
This indicates a meaningless effect of null allele frequencies on the estimates of genetic
divergence.

Outlier microsatellite loci
Two loci (KSs7 and CGN1) were under putative divergent selection (a-KSs7 = 1.38,
a-CGN1 = 1.50, adjusted P values using FDR < 0.002). In addition, the locus Sebi2
presented some signatures of putative divergent selection (a = 0.89), but this was not
statistically significant (adjusted FDR P value > 0.08). The FST values among species
calculated from CGN1, KSs7, and Sebi2 were 0.233, 0.215, and 0.15, respectively. The FST
values from these loci were much higher than the mean value of 0.06 in the other seven
microsatellite loci (Table S3).

Genetic clusters and individual admixture analysis
The most likely number of genetic clusters was three (Figs. 3 and 4), as suggested by the
Evanno method (Δk = 795.07) (Fig. S4), the distribution of individuals projected into the
space of principal components (Fig. 4B), and the distribution of BIC scores (Fig. 4C). This
indicates that deviations fromHWE and linkage equilibrium of some loci did not influence
the inference of genetic clusters in this study. The results of STRUCTURE inferring four
genetic clusters, separated the three species, and lumped RW and “Kumano” individuals
into a single cluster (Fig. 3). Meanwhile, clustering analyses, excluding the two loci under

Table 3 Genetic distances (FST) for populations of the three species estimated from allele
frequencies of 10 microsatellite loci.

Population AW HB HR HW KB KR WB WR

AW 0.164 0.113 0.009 0.149 0.122 0.174 0.127

HB 0.167 0.137 0.124 0.036 0.142 0.013 0.139

HR 0.116 0.143 0.100 0.122 0.017 0.133 −0.002

HW 0.010 0.127 0.105 0.111 0.109 0.133 0.114

KB 0.152 0.035 0.125 0.111 0.130 0.018 0.129

KR 0.125 0.148 0.018 0.114 0.133 0.141 0.016

WB 0.176 0.013 0.137 0.134 0.016 0.145 0.135

WR 0.128 0.144 −0.002 0.117 0.131 0.018 0.138

Note:
FST values without correction of null alleles are indicated below the diagonal. FST values with corrected null allele
frequencies using the ENA method in FreeNA are shown above the diagonal. The first and second letter of the
abbreviations of populations indicate the sampling place (A, Akita; H, Hiroshima; K, Kagoshima; W,Wakayama) and the
three species (B, black rockfish; R, red rockfish; W, white rockfish), respectively.
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significant divergent selection, identified two clusters (Δk = 1224.42) (Fig. S5), which only
allowed discrimination of S. ventricosus from the other two species (Fig. 3).

A total of 331 individuals were assigned as genetically distinct (Q-score > 0.90), and 29
as putative genetic hybrids. Among the BW individuals, two, three, and 21 were
categorized as putative hybrids, S. cheni, and S. ventricosus, respectively. The RW group
contained 20 and six individuals that genetically qualified as S. cheni and putative hybrids,
respectively. Among the six “Kumano” individuals, three had admixed ancestry of S. cheni
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Figure 4 Discriminant analysis of principal components (DAPC). (A) Scatterplot of individuals in the
discriminant functions (LD1 and LD2). Individuals are represented by pie charts showing their posterior
probabilities. Colours of the genetic clusters are indicated in the legend. (B) Scatterplots of individuals
projected into the space of principal components (PCs). Individuals were coloured based on their
morphological features. (C) Inferred number of genetic clusters by k-means clustering considering the
“elbow” point in the distribution of the Bayesian information criterion (BIC) scores.

Full-size DOI: 10.7717/peerj.16391/fig-4
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and S. inermis, one was assigned as a putative hybrid of S. inermis and S. ventricosus, one
was categorized as S. cheni, and the last one as S. inermis.

The distribution of the maximum Q-scores from the simulated samples indicated that
putative pure and F1 hybrids could be clearly discriminated; however, putative backcrosses
presented overlapping maximum Q-scores with putative pure and F1 hybrids (Fig. 5).
Indeed, putative F1 hybrids presented maximumQ-scores ranging from 0.5 to 0.8, whereas
those of putative backcrosses varied from 0.5 to 1 (Fig. 5).

Genetic divergences between samples with sympatric occurrence
Genetic divergences between species were estimated only using specimens fromHiroshima
with clear morphological distinction of each species and non-admixed genetic ancestry in
clustering analyses. Using the panel of microsatellite loci, we obtained pairwise FST values
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Figure 5 Distribution of maximum Q-scores calculated in STRUCTURE using the observed and
simulated individuals. Central bold lines in the box plots indicate the medians; box limits represent
the 1st and 3rd quartiles; Q-scores are drawn as black circles. Different colours indicate whether boxplots
are from morphologically distinct or putative pure individuals, putative morphological hybrids, putative
F1 hybrids, or putative backcrosses as represented in the legend above. B: black rockfish (S. ventricosus),
R: red rockfish (S. inermis), W: white rockfish (S. cheni), K: “Kumano” morphotype, BW: black-white
hybrids, BR: black-red hybrids, and RW: red-white hybrids. Putative backcrosses from simulations are
represented with three letters, the first two indicate the putative F1 hybrid parent and the third one the
putative pure parent. Thus, for example BRB: backcrosses from black-red F1 hybrids and pure black
individuals. Full-size DOI: 10.7717/peerj.16391/fig-5
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between species ranging from 0.118 (S. cheni vs. S. inermis) to 0.158 (S. cheni vs.
S. ventricosus) (P values < 0.001) (Table 4). The D-loop alignment contained 616 bp and
was collapsed into 82 haplotypes. All three species and PMH presented haplotype and
nucleotide diversities higher than 0.9 and 0.05, respectively (Table S4). D-loop haplotypes
were not segregated in separate areas within the haplotype network, nor were they in
agreement with the assignment of individuals to their respective origins within a species or
putative hybrid group (Fig. 6A). However, all pairwise K2P distances estimated from
species and PMHwere statistically significant (P values < 0.002), except for the comparison
between S. ventricosus and BW (Table 4). The shortest K2P distance was found between
S. inermis and S. ventricosus (0.119) and the largest between S. cheni and S. ventricosus
(0.358) (Table 4).

The 480-bp alignment of the RH1 gene, including samples from the three species, PMH,
and genetically putative hybrids, was collapsed into four haplotypes. All S. ventricosus
individuals were collapsed into a single haplotype (the main haplotype) highly present in
the S. inermis (60% of haploid sequences), BW (90%), RW (100%), and “Kumano” (50%)
groups (Fig. 6B). Approximately 88% of S. cheni individuals had a haplotype differing from
the main haplotype by a single mutational step, while 40% of the S. inermis individuals
carried a different haplotype with one distinctive mutation from the main one. The fourth
haplotype was exclusively found in “Kumano” specimens and was derived from the
S. inermis haplotype. The alignment of RH1 sequences including other Sebastes helped us
to infer that the three species and the “Kumano” morphotype presented eight common
amino acid replacements (i.e., nonsynonymous mutations) at positions 119, 133, 158, 205,
213, 274, 277, and 286 of the rhodopsin protein, with two of them occurring only in this
species complex (133 and 286) (Table S5). The mutations exclusively present in S. cheni
and some “Kumano” individuals were found to cause amino acid replacements at positions
165 (from serine to alanine) and 217 (from methionine to threonine) of the protein
sequence, respectively. In contrast, the mutation observed in some S. inermis individuals
did not alter the amino acid sequence of the rhodopsin protein in relation to the other
species of the complex (i.e., synonymous replacement).

Table 4 Genetic distances (FST) estimated from D-loop sequences (below diagonal) and 10
microsatellite loci (above diagonal) using individuals with clear morphological and genetic
distinction and putative morphological hybrids collected in Hiroshima.

S. ventricosus S. inermis S. cheni Black-white Red-white

S. ventricosus 0.149 0.158 0.011 0.136

S. inermis 0.119 0.118 0.127 0.138

S. cheni 0.358 0.235 0.111 0.091

Black-white 0.003 0.104 0.254 0.087

Red-white 0.204 0.113 0.187 0.124

Note:
Bold values indicate statistical significance (P value < 0.005).
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DISCUSSION
Divergences within the species complex
Kai & Nakabo (2008) proposed the splitting of S. inermis into three species based on
differences in colouration, meristic counts, body proportions, and significant genetic
divergences estimated from D-loop sequences and AFLP. Our findings support significant
genetic divergences in D-loop sequences estimated from sympatric individuals categorized
as genetically distinct based on analyses of microsatellite loci. Although we did not use
AFLP, the concordant large genetic divergences estimated from D-loop sequences and
microsatellite loci highlight the usefulness of the latter as an additional reference for
species identification. Moreover, the interspecific differences found here align with those
described by Kai, Nakayama & Nakabo (2002) in samples from the Seto Inland Sea, Noto
(Ishikawa Prefecture), and Wakasa Bay (Kyoto Prefecture). The temporal and geographic

A

B

Figure 6 Haplotype networks constructed from partial sequences of the mitochondrial control region (A) and the intron-free rhodopsin gene
(B). Colours indicate individuals assigned to a single species considering morphological and genetic information. BB, RR, and WW designate
individuals identified as S. ventricosus (black rockfish), S. inermis (red rockfish) and S. cheni (white rockfish), respectively. BH, RH, andWH indicate
individuals morphologically identified as black, red, and white rockfish, respectively, but genetically classified as putative hybrids. BW and RW
indicate specimens classified as putative morphological hybrids of black-white and red-white hybrids, respectively. K is designated to individuals
collected in Wakayama Prefecture that display the “Kumano” morphotype. Full-size DOI: 10.7717/peerj.16391/fig-6
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extensions of these interspecific differences highlight the spatio-temporal stability of the
species boundaries delimitated using D-loop sequences, despite the likely incomplete
lineage sorting or introgressive hybridization suggested by these authors, which also occur
in other closely related rockfishes (Hyde & Vetter, 2007; Schwenke, Park & Hauser, 2018).

The large FST values estimated frommicrosatellite loci are concordant with divergences
between other rockfishes with broad sympatric occurrence (Roques, Sévigny & Bernatchez,
2001; Narum et al., 2004). The existence of significantly different allele distributions
between sympatric species (Fig. S3), and the genetic clusters (in both STRUCTURE and
DAPC) concordant with the taxonomic descriptions of the three species suggest that our
dataset of microsatellite loci is sufficiently informative to separate them despite the
confounding effect of high mutation rates and the multi-step mutation model of these
markers, which can possibly lead to congruences in allele sizes (Morales et al., 2021).

Among vertebrates, the maximum absorption spectra (λMAX) of downwelling sunlight
are greatly determined by the type of chromophore bound to the opsin proteins, including
RH1, as well as amino acid combinations at specific spectral tuning sites (Musilova,
Salzburger & Cortesi, 2021). Given the decreasing trend of downwelling sunlight intensity
along the water column, nonsynonymous mutations in RH1 suggest that species inhabit
environments with different levels of downwelling sunlight owing to divergences in depth
distribution (Musilova, Salzburger & Cortesi, 2021). Our alignment of the RH1 sequences,
which includes other Sebastes species, revealed seven amino acid replacements that
coincidentally occurred in our focal species and other species inhabiting shallow
environments (Sivasundar & Palumbi, 2010; Shum et al., 2014). For example, a
replacement of isoleucine with leucine at position 119 of the RH1 protein has been
associated with shifts to shallower environments (Sivasundar & Palumbi, 2010), with
punctual variation at this position occurring in the “deep” (isoleucine) and “shallow”
(valine) groups within the beaked redfish Sebastes mentella Travin, 1951 (Shum et al.,
2014).

The mutations identified in the RH1 gene of our focal species provide insights into their
ecological differences in bathymetric distribution, which is consistent with recent
ecomorphological analyses (Deville et al., 2023). In the case of S. inermis, it shares the same
amino acid sequence with S. ventricosus because the distinctive mutation found in the
former does not cause an amino acid replacement in the RH1 protein. Thus, the adaptation
of S. inermis to deeper environments with lower light intensity is likely manifested through
other mechanisms, such as larger relative eye sizes (Deville et al., 2023), which enables it to
capture more photons (de Busserolles et al., 2020). The congruence in amino acid
sequences in both species may represent a common adaptation to shallow environments
with low light intensity, such as Zostera L. and Sargassum beds, where S. inermis is usually
found (Kai & Nakabo, 2008) and S. ventricosus can occasionally incur (Shoji et al., 2017).
In contrast, S. cheni exhibits a nonsynonymous mutation that leads to an amino acid
replacement from serine to alanine at position 165. This nonsynonymous mutation has not
been reported in any of the 35 Sebastes species with available rhodopsin sequences but has
been observed in certain cichlids with λMAX between 498 and 503 nm that inhabit rocky
environments in shallow waters of Tanganyika Lake (Sugawara et al., 2005). Structural

Deville et al. (2023), PeerJ, DOI 10.7717/peerj.16391 16/27

http://dx.doi.org/10.7717/peerj.16391/supp-8
http://dx.doi.org/10.7717/peerj.16391
https://peerj.com/


analysis of the rhodopsin protein has revealed that position 165 is in the 4th

transmembrane domain (Sivasundar & Palumbi, 2010). Amino acid replacements at this
position can alter the dimerization interface of the functional protein, leading to changes in
the λMAX (Schott et al., 2014; Ito et al., 2022). Thus, it is likely that the amino acid
replacement at position 165 in S. cheni causes changes in its λMAX in response to different
downwelling sunlight intensities compared to the other two species. Although the specific
λMAX ranges for these species would provide a deeper understanding of their visual
adaptations to environments with varying levels of downwelling sunlight, the presence of
an amino acid replacement in S. cheni underscores the significance of selective pressures
that drive ecological diversification within the species complex, adding more evidence to its
previous separation into independent species.

Hybridization within the species complex
Hybridization was inferred from PMH with intermediate morphotypes and population
genetic assessments. A total of 29 putative genetic hybrids were detected in our population
genetic surveys using clustering analyses with a panel of 10 microsatellite loci.
The performance of our STRUCTURE analysis for detecting these putative hybrids relied
on a confidence rate of 90%. This is because our number of loci, genetic divergences
between the parent species (0.10 < FST < 0.17) (Table 3), and the proportion of putative
hybrids in the samples (~8.33%) are close to the ones necessary to attain this rate
considering a Q-score threshold value of 0.9 to classify an individual as genetically putative
pure or hybrid (Vähä & Primmer, 2006; Sanz et al., 2009). Based on Q-scores, 14, 13, and
two individuals were classified as putative genetic hybrids of S. cheni × S. ventricosus,
S. cheni × S. inermis, and S. inermis × S. ventricosus, respectively. It is important to note
that the number of putative hybrids inferred from the clustering analyses may be
underestimated because we could not include a reference population for each species in the
STRUCTURE analysis (Ravagni, Sanchez-Donoso & Vilà, 2021). Hence, some genetically
distinct individuals with intermediate morphotypes may be backcrosses, as indicated by
our simulations (Fig. 5). Considering this and the posterior individual probabilities of
DAPC, 50 potential putative hybrids could be inferred from our samples.

The PMH exhibit intermediate colourations and meristic counts but possess otolith
weight~age relationships resembling that of S. cheni. The presence of intermediate
colourations, along with hybridization events, suggest that colouration patterns alone may
not be sufficient to maintain reproductive isolation among species (Gray & McKinnon,
2007). Other factors, such as specific environmental conditions and assortative mating,
may play a role in determining the relevance of colouration patterns for reproductive
isolation (Schumer et al., 2017; Pires et al., 2019).

The network of D-loop haplotypes did not show any clear pattern of discordance with
the morphological identification of individuals and results from microsatellite loci, not
providing enough evidence to support our expectations of hybridization driven by females.
However, the larger genetic divergences between PMH and S. chenimight suggest that the
former are likely originated frommating pairs wherein a male S. chenimated with a female
S. ventricosus (BW morphotype) or S. inermis (RW and “Kumano” morphotypes). These
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mating pairs are consistent with in situ observations indicating that females tend to
copulate with larger males (Shinomiya & Ezaki, 1991), and higher growth rates of S. cheni
(Kamimura et al., 2014). The larger sizes of the PMH can provide a selective advantage
during reproductive seasons, as larger males establish larger territories, engage in agonistic
behaviour, patrol their territories, and perform courtship when encountering females, in
contrast to smaller males (Shinomiya & Ezaki, 1991). Hence, the size-assortative mating
led by females and selection are important for the persistence of the PMH.

All genetically putative hybrids detected from PMH had the same RH1 haplotype as that
of S. ventricosus. This observation may indicate introgression of the RH1 haplotypes
between species with positive frequency-dependent selection in favour of the haplotype
found in S. ventricosus (Sinervo & Calsbeek, 2006). Considering that hybridization is
mediated by females and that the two RW morphotypes slightly differing in colouration
(Fig. 2) were only found in two specific sampling sites (Osaki-Shimozima East and Etajima
Islands) off Hiroshima, this selection process may be particularly influential in the
perception of male colouration by females in dim-light environments such as seagrass
beds, in which S. inermis and S. cheni engage in foraging activities (Shoji et al., 2017).
In these environments, the persistence of RW individuals is not only explained through
assortative mating but also through their higher fitness at foraging and performing
defensive responses against predators, as a red-brown colouration may be more difficult to
detect within seagrass beds than the red colouration of S. inermis (Deville et al., 2023).

The behaviour of males during reproductive seasons indicates that they allocate
reproductive effort to mating activities rather than to sperm production (Fujita & Kohda,
1996). However, the single-brood reproductive strategy (Plaza, Katayama & Omori, 2004)
and the cases of polygamy reported in the species complex (Shinomiya & Ezaki, 1991;
Blanco Gonzalez et al., 2009) suggest that prezygotic isolating barriers, such as sperm
competition, can be important for maintaining the reproductive isolation of species.
Noteworthy is the reinforcement of reproductive isolation because of the potential fitness
disadvantage of S. inermis × S. ventricosus hybrids (Bank, Hermisson & Kirkpatrick, 2012;
Servedio & Hermisson, 2020), which are expected to have lower growth rates and
reproductive success than the other hybrids described here. Further assessment of
assortative mating and hybrid fitness within the species complex could deepen our
knowledge of the mechanisms to maintain or reinforce reproductive isolation, especially
considering that the release of thousands of juveniles with known ancestry can represent
an opportunity to study hybridization in situ.

Speciation-with-gene-flow in the species complex
The patterns of divergence and hybridization observed in these species indicate that they
fall into the second and third stages of speciation described byWu (2001). At these stages,
parent species can hybridize to form hybrid swarms (i.e., fertile hybrids with intermediate
morphotypes), and their independent evolution in sympatry is maintained through
competitive exclusion. In this scenario of speciation-with-gene-flow, introgression does
not occur in genomic regions crucial for maintaining species boundaries (Nosil, Funk &
Ortiz-Barrientos, 2009). The lack of introgression in these regions causes anomalously high
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interspecific divergences, such as those observed in the KSs7 and CGN1 loci (FST > 021),
leading to the inference that these loci are under putative directional selection (Nosil, Funk
& Ortiz-Barrientos, 2009). The anomalously high interspecific divergences of these loci,
along with low diversity values within each species and deviations fromHWE (especially in
the CGN1 locus) (Table S2), further support the occurrence of an ecologically selective
sweep (Schlötterer, 2002, 2003; Buonaccorsi et al., 2011). This type of selective sweep occurs
when the variation in a genomic region is reduced or eliminated owing to its proximity to a
new beneficial mutation that is increasing in frequency through recent adaptation
(Hermisson & Pennings, 2017). Another finding suggestive of an ecologically selective
sweep is the absence of FST outliers at locus KSs7 in other rockfishes closely related to the
S. inermis species complex that inhabit the same area (An et al., 2009). This is because new
advantageous mutations causing adaptive divergence and linked to the KSs7 locus may
have appeared more recently. Similar cases of selective sweeps have been observed in
closely related rockfishes with different depth distributions (Buonaccorsi et al., 2011;
Behrens et al., 2021; Olivares-Zambrano et al., 2022) and depth-related ecotypes within a
single species (Saha et al., 2021). The occurrence of ecologically selective sweeps across
Sebastes rockfishes indicates that recent adaptation to new environments contributes to the
ongoing diversification of species. Therefore, further characterization of the genomic
variations surrounding the KSs7 and CGN1 loci is necessary to determine the conditions
that promote diversification within the S. inermis complex.

The “Kumano” morphotype
The combination of morphological features of “Kumano” explains why local fishermen
consider this morphotype as a "big variant" of the red-coloured rockfish S. inermis.
Although genetic divergences were not estimated due to the low number of individuals, the
D-loop haplotypes indicate that the “Kumano” specimens are part of the species complex.
Analysis of the Sebi1 locus, used by Deville et al. (2023) to discriminate S. ventricosus,
suggested that this morphotype does not possess the typical alleles of S. ventricosus (>160
bp) (Fig. S3). In terms of the two loci under putative divergent selection, the “Kumano”
specimens carried the most frequent allele of S. inermis at the CGN1 locus and some
exclusive alleles at the KSs7 locus (Fig. S3). STRUCTURE analysis suggested a possible
hybrid origin for the “Kumano” specimens, with approximately 75–82% of their ancestry
corresponding to S. inermis, along with 10–16% ancestry of S. cheni in three individuals,
and 16% of S. ventricosus in one specimen. However, when four genetic clusters were
inferred using STRUCTURE analysis, “Kumano” specimens and the RW morphotype
were grouped together in a separate category with high Q-scores (Fig. 3). Additionally, a
punctual amino acid replacement was observed at position 217 in some individuals,
resulting in an amino acid replacement from threonine to methionine regarding the three
species of the complex (Table S5). In other rockfishes, this amino acid replacement has
been associated with shifts in shallower waters (Sivasundar & Palumbi, 2010). The position
217 falls under the 5th transmembrane domain, and possible changes in this position are
related to modifications in the λMAX, which is related to visual sensitivity (Schott et al.,
2014). These findings suggest that the endemic “Kumano” morphotype might have
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exclusive alleles at loci responsible for maintaining species divergence in the presence of
gene flow within the species complex. Considering this evidence, the hypothetical hybrid
origin of the “Kumano” morphotype aligns with theoretical models predicting that
hybridization, combined with intermediate assortative mating and low variation in
reproductive success, could act as a potential mechanism for rapid evolution in specific
environments (Baskett & Gomulkiewicz, 2011). The first condition, intermediate
assortative mating, is fulfilled in this species complex, whereas the second depends on the
level of preference of females for the “Kumano”morphotype, which is considered “rare”. A
comprehensive morphological and genetic characterization of more individuals is
necessary to deeply assess this hypothetical hybrid origin and support the emergence of
“Kumano” as an incipient species resulting from the ongoing process of speciation-with-
gene-flow within the S. inermis complex.

CONCLUSIONS
The dynamics of divergence and hybridization within the Sebastes inermis complex
(Sebastes cheni, viz. Sebastes inermis, Sebastes ventricosus, and their putative morphological
hybrids (PMH)) was assessed using sequences of the mitochondrial control region (D-
loop), the intron-free rhodopsin (RH1) gene, and 10 microsatellite loci. We anticipated
that each species would maintain its genetic divergence even in the presence of
hybridization, and that the PMH would exhibit genetic admixed ancestry of the parent
species. We found large genetic divergences in D-loop, distinctive mutations in the RH1
gene, and three genetic clusters obtained from microsatellite loci, which are concordant
with the morphological description of each species. These findings can be used as
additional information to facilitate species identification. S. cheni is the only species with a
nonsynonymous mutation in the RH1 gene, which suggests differential adaptations of this
species to dim-light environments. Two microsatellite loci under putative divergent
selection suggest that they are possibly linked to genomic regions, wherein interspecific
gene flow is typically restricted because they are crucial for maintaining species boundaries.
Further characterization of the genomic regions surrounding these loci is underway. A
total of 29 putative genetic hybrids were detected using microsatellite loci. The higher
growth rates of the PMH, genetic divergences between species and the PMH using D-loop,
and mating behaviour of females and males during reproductive seasons suggest that the
PMH can present higher fitness than the parent species in certain environments.
The genetic admixed ancestry and nonsynonymous mutation in the RH1 gene of the PMH
known as “Kumano”, provide support for the potential contribution of hybridization in
generating novelties within the Sebastes inermis complex. Overall, this study indicates that
the genetic divergence of each species within the complex is maintained in the presence of
hybridization.
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