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The Cambrian Radiation represents one of the largest diversification events in Earth
history. While the resulting taxonomic diversity is exceptional, relatively few of these novel
species can be traced outside the boundaries of a single palaeocontinent. Those species
with cosmopolitan distributions were likely active swimmers, presenting opportunity and
means to conquer new areas, but this would not have been the case for sessile organisms.
Herpetogaster is a genus of sessile, stalked, filter-feeding deuterostomes with two species,
H. collinsi and H. haiyanensis, known from the lower to middle Cambrian (Series
2–Miaolingian, Stage 3–Wuliuan) of Laurentia and Gondwana. Here, we expand the
distribution of H. collinsi to Gondwana with newly discovered specimens from the Balang
Formation of Hunan, China. This discovery raises questions on the origin of the genus and
how sessile organisms were able to disperse over such a broad distance in the lower
Cambrian.
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32 Abstract

33

34 The Cambrian Radiation represents one of the largest diversification events in Earth history. While 

35 the resulting taxonomic diversity is exceptional, relatively few of these novel species can be traced 

36 outside the boundaries of a single palaeocontinent. Those species with cosmopolitan distributions 

37 were likely active swimmers, presenting opportunity and means to conquer new areas, but this 

38 would not have been the case for sessile organisms. Herpetogaster is a genus of sessile, stalked, 

39 filter-feeding deuterostomes with two species, H. collinsi and H. haiyanensis, known from the 

40 lower to middle Cambrian (Series 2�Miaolingian, Stage 3�Wuliuan) of Laurentia and Gondwana. 

41 Here, we expand the distribution of H. collinsi to Gondwana with newly discovered specimens 

42 from the Balang Formation of Hunan, China. This discovery raises questions on the origin of the 

43 genus and how sessile organisms were able to disperse over such a broad distance in the lower 

44 Cambrian. 

45

46 Subjects Biodiversity, Developmental Biology, Ecosystem Science, Paleontology, Taxonomy

47

48 Keywords Deuterostomia, Ambulacraria, Herpetogaster, Lifestyle, Dispersal, Cambrian Stage 4, 

49 Exceptional preservation, Larvae, Palaeoecology, Palaeogeography

50

51 Introduction

52

53 During the Cambrian Radiation, hundreds of metazoan species, representing nearly all known 

54 modern phyla, appear in the fossil record and can be found throughout rich fossil deposits around 
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55 the world (Paterson et al., 2016; Fu et al., 2019; Harper et al., 2019; Kimmig et al., 2019; Nanglu, 

56 Caron & Gaines, 2020; Yang et al., 2021). While there is an excellent record of soft-bodied fossils 

57 from globally distributed Burgess Shale-type Lagerstätten as early as Cambrian Stage 3 (~521�

58 514 Ma, not formally ratified), few species can be found crossing palaeocontinental boundaries 

59 (Paterson et al., 2016; Fu et al., 2019; Harper et al., 2019; Kimmig et al., 2019; Nanglu, Caron & 

60 Gaines, 2020; Yang et al., 2021). This pattern of species distribution not only begs important 

61 questions about modes of reproduction and broader-scale mobility or migration of species in the 

62 early Cambrian, but also how the few species with cosmopolitan distributions were able to 

63 accomplish this feat. Based on newly discovered fossils presented herein, one species that had 

64 successfully trekked and established a foothold on multiple palaeocontinents is Herpetogaster 

65 collinsi Caron et al. 2010.

66 Herpetogaster, one of the earliest-known representatives of the invertebrate deuterostomes, 

67 is a stalked filter feeder grouped with the informal cambroernid clade. The genus is represented by 

68 two species found in the lower to middle Cambrian (Series 2�Miaolingian, Stage 3�Wuliuan) of 

69 Gondwana and Laurentia (Caron, Conway Morris & Shu, 2010; Kimmig, Meyer & Lieberman, 

70 2019; Yang et al., 2020; Nanglu et al., 2022; Pari, Briggs & Gaines, 2022). To date, its two species 

71 have been observed to be restricted to their respective palaeocontinents: H. haiyanensis to Series 

72 2 deposits in Gondwana and H. collinsi to generally younger Miaolingian deposits in Laurentia 

73 (with the exception of the Series 2 Pioche Formation). From all known fossils of the genus, 

74 Herpetogaster appears to have been a sessile organism, with a stolon and a basal discoidal holdfast. 

75 While the stolon may have been contractible, its likely function was to anchor the organism in 

76 place within the sediment. Neither of the two species preserve swimming appendages, and thus 

77 the presumed mechanism of expanding its distribution would have been through passive transport 
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78 by ocean currents. Recent flume experiments have shown that soft-bodied animals can 

79 hypothetically be transported over tens of kilometers by current flow (Bath Enright et al., 2021), 

80 but this is an improbable explanation for the occurrence of the same species separated by thousands 

81 of kilometers and within deposits of different ages. With specimens of H. collinsi reported here 

82 from the Balang Formation, Hunan, China, along with possible larval fossils, we propose that these 

83 organisms possessed a motile larval stage that provided the means for broad dispersal and 

84 migration.

85 Thus far, we have collected more than 60 new specimens of H. collinsi from the lower 

86 Cambrian (Series 2, Stage 4) Balang Formation. Here, we provide detail of 19 of the best-preserved 

87 new specimens, explore the distribution of the genus in time and space, and postulate mechanisms 

88 that might have led to its success. 

89

90 Materials & Methods

91

92 The 19 new specimens of Herpetogaster collinsi described here are reposited in the collections of 

93 the Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming, China (YKLP), 

94 with specimen numbers YKLP 14570�14588. Specimens with the prefix ROM are housed in the 

95 Royal Ontario Museum, Ontario, Canada, with the prefix KUMIP at the Division of Invertebrate 

96 Paleontology, Biodiversity Institute, University of Kansas, and with the prefix YPM at the Yale 

97 Peabody Museum of Natural History.

98

99 Imaging

PeerJ reviewing PDF | (2023:07:88004:0:0:NEW 3 Jul 2023)

Manuscript to be reviewed



100 The specimens were photographed using a Canon EOS 5D digital SLR camera with a Canon 50 

101 mm macro lens and cross-polarized lighting. Close-ups were captured using a Leica DFC 500 

102 digital camera mounted on a Leica M205-C stereoscope. All specimens were submerged in alcohol 

103 to increase contrast. The contrast, colour space, and brightness were adjusted using Adobe 

104 Photoshop CC.

105

106 Scanning electron microscopy and energy-dispersive X-ray spectroscopy analyses. 

107 The backscattered electron (BSE) imaging and energy-dispersive X-ray spectroscopy (EDS) of 

108 uncoated specimens was conducted with a FEI Quanta 650 FEG field emission scanning electron 

109 microscope (SEM) at the Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, 

110 Yunnan University, Kunming, China (YKLP). All imaging analyses were conducted with the 

111 following operating conditions: 14 mm ± 1 mm working distance (minor differences to allow for 

112 variation in sample thickness or topography) for basic imaging and EDS, 20 keV beam accelerating 

113 voltage, 10 nA beam current, 20 Pa chamber pressure (low vacuum), 50 µm aperture for imaging, 

114 and 40 µm aperture for EDS analysis.

115

116 Geological setting

117

118 The specimens described herein were collected from the lower part of the Balang Formation in 

119 northwestern Hunan, China (Fig. 1A�D). The Balang Formation is part of a conformable lower 

120 Cambrian sequence, positioned between the Niutitang Formation below and the Chinghsutung 

121 Formation above (Fig. 1E). The presence of the trilobite Oryctocarella duyunensis confirms that 

122 the collection interval is positioned within Series 2, Stage 4 of the Cambrian System (Peng et al., 
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123 2017; National Commission on Stratigraphy of China, 2018; Zhao et al., 2019; Dai et al., 2021). 

124 In the context of other well-known Chinese Cambrian Lagerstätten, the Balang biota is situated in 

125 age between the slightly older Chengjiang biota (Series 2, Stage 3) and younger Kaili biota 

126 (Miaolingian, Wuliuan). The sampled outcrop, located approximately 32 km south-west of 

127 Huayuan town, is composed of finely laminated dark grey calcareous mudstone intervals, 

128 interbedded with silty mudstone and silty shale (Fig. 1B).

129

130 Results

131

132 Systematic paleontology 

133

134 Superphylum: Deuterostomia Grobben, 1908

135 Clade: Ambulacraria Metschnikoff 1881

136 Unranked stem-group: Cambroernida Caron, Conway Morris & Shu, 2010

137

138 Genus Herpetogaster Caron, Conway Morris & Shu, 2010

139

140 Herpetogaster collinsi Caron, Conway Morris & Shu, 2010

141

142 Holotype. ROM 58051 

143

144 New Material. YKLP 14570�14588

145
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146 Provenance. Balang Formation, lower Cambrian (Series 2, Stage 4), Oryctocarella duyunensis 

147 biozone, Mozi village, Paiwu township, approximately 32 km south-west of Huayuan town, Hunan 

148 Province, China. Pioche Formation, Comet Shale Member; lower Cambrian (Series 2, Stage 4), 

149 Nephrolenellus multinodus biozone; Ruin Wash, NW ¼ SW ¼ sec. 15, R65E T2S, 17 km west of 

150 Panaca, Lincoln County, Nevada (see Palmer 1998, and Lieberman, 2003 for greater discussion of 

151 the locality). Burgess Shale and Stephen Shale Formations; middle Cambrian (Miaolingian, 

152 Wuliuan); Yoho and Kootenay National Parks, British Columbia, Canada.

153

154 Diagnosis. Segmented body, coiled dextrally. Short head bearing prominent bilateral anterior 

155 dendritic tentacles of sub-equal length and in two-by-two arrangement with pharyngeal structures, 

156 possibly lateral pores. Trunk subcylindrical, divided into two subsections, narrowing posteriorly. 

157 Ventral and contractile adhesive stolon, sometimes with terminal disc. Digestive tract with anterior 

158 mouth, pharynx, voluminous stomach, and narrow intestine with terminal anus. Stomach and 

159 intestine of sub-equal lengths, un-looped, with triangular mesenterial insertions (from Caron, 

160 Conway Morris & Shu 2010). 

161

162 Description. Most of the specimens are complete and range in length from 8.4 to 53.6 mm and 

163 from 2.3 mm to 7.9 mm in width. The body is curved, some specimens show fine segmentation 

164 along the trunk (Figs. 2E,J and 3C,F), and ends in an anus (Figs. 2D�H and 3C,D,F�H). 

165 The head has a maximum width of 7.4 mm and a maximum length of 3.9 mm. The pharynx 

166 is visible in 9 specimens. Two tentacles emerge from the corners of the head, they reach up to 14.3 

167 mm in length, bifurcate at 0.6 to 5 mm and preserve between 10 and 11 branches. 
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168 The trunk ranges from 4.8 to 36.1 mm in length, which equates to about three-quarters of 

169 the total body length of the animal. The other quarter represents the pharynx, 0.7 to 3.6 mm in 

170 length. Some specimens (n = 9; Figs. 2E,I,J and 3A�C,E,F,I) preserve a darker internal structure, 

171 which is interpreted as the stomach and digestive tract as it reaches the anus in YXLP 14574 and 

172 YKLP14610 (Fig. 2E,J). The soft-tissue surrounding the stomach and intestine preserves fine 

173 segmentation (Figs. 2E,G,J and 3C,F), separating the trunk into 13 segments. 

174 The stolon extends from the final third of the trunk, around the ninth or tenth segment (Figs. 

175 2E,J and 3C,F), and varies in length (1.5 to 14.3 mm) and width (0.4 to 1.8 mm). This suggests 

176 that the stolon may have been contractible. Some specimens preserve a terminal disk at the end of 

177 the stolon, interpreted as the holdfast (Figs. 2G,I and 3C,H,I).

178 The Balang specimens appear to have been gregarious or living in close proximity; up to 

179 six specimens have been found on a single slab (Fig. 3C,F).

180

181 Preservation. Balang Formation specimens are usually regarded as carbonaceous compressions 

182 preserved within carbonaceous mudstones, similar to those of other Cambrian Burgess Shale-type 

183 deposits (e.g., Wen et al. 2019). Two specimens of Herpetogaster collinsi were analysed using 

184 SEM-EDS (Fig. 4). The first specimen (YKLP 14583) has a distinctive, if not continuous carbon 

185 signature (Fig. 4L), whereas the other specimen (YKLP 14573) did not provide a strong carbon 

186 signature, but a more continuous film (Fig. 4E). The analyses also show enrichment of iron and 

187 phosphate in the host rock, though neither elemental signature appears to be associated with the 

188 fossils themselves. This suggests that that diagenesis played a vital role in the preservation of 

189 carbon in the Balang Formation, but also suggests that all the Herpetogaster specimens underwent 

190 the same taphonomic process. The carbon signature in YKLP 14573 correlates spatially with 
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191 calcium (Fig. 4C), suggesting that some of the signal is likely derived from the host rock; however, 

192 these elemental signatures do not correlate in YKLP 14583. A similar observation to YKLP 14573 

193 has been made with fossils from the Marjum Formation of Utah (Broce & Schiffbauer, 2017; 

194 Leibach et al., 2021). These studies inferred that the higher carbon concentration observed locally 

195 stemmed from accumulation of carbonaceous material within interstitial spaces between grains of 

196 the host rock. The absence of detectable carbonaceous films or local enrichments of carbon in 

197 YKLP 14573 might indicate a few possible taphonomic scenarios involving the complete removal 

198 of organic carbon. For example, given their infaunal nature, the organisms likely died within the 

199 uppermost oxic- to sub-oxic layers of sediment, allowing for efficient decay by oxygenic microbes. 

200 Burial occurred rapidly after death, as indicated by their mostly complete preservation and the 

201 presence of preserved labile structures (e.g., tentacles, stolon, gut). Organic carbon 

202 removal/dispersion could have continued through diagenesis as well.

203 An interesting feature of the Balang specimens is that several have a relatively uniform 

204 preservational coloration (Figs. 2A,C,D and 3G,H) as compared to representatives of the genus in 

205 other deposits. This may be a result of additional decomposition of the specimens after burial, 

206 leading to decay of the internal organs, and a generally more homogeneous, black-film appearance. 

207 Additionally, rather than all dendritic in form, the tentacles are preserved in different 

208 morphologies, as opposed to the Burgess Shale and Pioche Formation specimens (Fig. 5). 

209 Enhanced decomposition may again be the culprit for this lack of dendritic detail; overlapping 

210 tentacles may also reduce the appearance of finer details, though this is not expected to be the case 

211 in all the examined Balang specimens.  

212
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213 Remarks. The Balang Formation specimens are assigned to H. collinsi. Though there are 

214 taphonomic differences as described above, these specimens appear to be nearly morphologically 

215 identical to those described from the Burgess Shale (Caron, Conway Morris & Shu 2010) and the 

216 Pioche Formation (Kimmig, Meyer & Lieberman 2019), preserving the dextrally coiled body, 

217 anterior dendritic tentacles, pharyngeal structures, stolon, terminal disc, and digestive tract. 

218 Segmentation is also prominent in some of the Balang specimens (Figs. 2D,E;,G,H,J and 

219 3A,C,E,F), with segmentation lines visible in 9 of 19 closely examined specimens. 

220 These Balang specimens visibly differ from H. haiyanensis, which has over one hundred 

221 branches per tentacle, a single layered stolon, and preserved inner and outer layers (Yang et al., 

222 2020)�none of which can be explained by taphonomic differentiation though were plausibly 

223 beneficial adaptations to the deltaic environment which they occupied (Peng 2009; Saleh et al. 

224 2022).

225

226 Discussion

227

228 The oldest-known occurrence of the Herpetogaster genus is from the lower Cambrian (Series 2, 

229 Stage 3) Chengjiang biota of China (Yang et al., 2020, 2021). The Chengjiang specimens, 

230 however, belong to H. haiyanensis, which were found in the Haiyan Lagerstätte. From the Haiyan 

231 locality, a total of eight specimens, including a juvenile specimen, were described (Yang et al., 

232 2020). The subsequent occurrences are all representatives of H. collinsi, and include specimens 

233 from the Comet Shale, Nevada (Kimmig, Meyer & Lieberman, 2019), a possible specimen from 

234 the Parker Quarry, Vermont (Pari, Briggs & Gaines 2022), and now the specimens reported herein 

235 from the Balang Formation (Fig. 5). The youngest representatives known to-date are also 
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236 specimens of H. collinsi, recovered from the Burgess Shale (Caron, Conway Morris & Shu 2010). 

237 While this is likely not yet a complete picture of the distribution and diversity of Herpetogaster 

238 through time and space, it suggests that the genus might have originated in Gondwana sometime 

239 around Cambrian Stage 3 and had likely spread globally, at least in the equatorial range (Fig. 1F), 

240 by Cambrian Stage 4. The current fossil record, with the oldest representatives from the 

241 Chengjiang biota (Yang et al., 2020, 2021), support the origin of the genus in Gondwana; however, 

242 the addition of the new specimens from the Balang biota also suggest that H. collinsi originated in 

243 Gondwana. Li et al. (2023) suggested Herpetogaster is the earliest-diverging cambroernid, and 

244 phylogenetically positioned at the base of the Ambulacraria, which aligns well with the origin of 

245 the genus on the timeline observed. 

246 This discovery of H. collinsi in Laurentia and Gondwana around the same time (Cambrian 

247 Stage 4) implores consideration of how these sessile organisms, with no known swimming 

248 appendages or mechanisms for motility over broad distances, managed to establish themselves on 

249 the shelf of two palaeocontinents separated by thousands of kilometers of open ocean (Fig. 1F). 

250 There are many challenges that must have been overcome for this migration to have taken place, 

251 not least including the distance, but also predation, and changing water temperatures and 

252 oxygenation. 

253 Even with an expansive fossil record and a wealth of soft-bodied organisms from the global 

254 distribution of Konservat-Lagerstätten known in the Cambrian (Muscente et al., 2017), it is rare 

255 that the same species is found in both Gondwana and Laurentia. In most cases when a Laurentian 

256 species has been proposed to occur in a Gondwanan deposit, or vice versa, it has later been revised 

257 and given a new species name, or even a new genus (Yang et al., 2021; Hou et al., 2017). However, 

258 most of the genera that are shared between the Gondwanan (e.g., Balang, Chengjiang, Emu Bay, 
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259 Guanshan, and Kaili) and the Laurentian (e.g., Burgess Shale, Parker Quarry, Pioche Formation, 

260 Rockslide Formation, Sirius Passet, Spence Shale, Wheeler Formation, Marjum Formation, and 

261 Weeks Formation) biotas are arthropods. Many of these arthropods were pelagic and motile 

262 swimmers, and could have been actively seeking new habitats with new or greater resources (Legg 

263 & Vannier, 2013; Kimmig & Pratt, 2015; Robison, Babcock & Gunther, 2015; Foster & Gaines, 

264 2016; Paterson et al., 2016; Hou et al., 2017; Lerosey-Aubril et al., 2018, 2020; Fu et al., 2019; 

265 Harper et al., 2019; Kimmig et al., 2019; 2023; Ma et al., 2020; Nanglu, Caron & Gaines, 2020; 

266 Yang et al., 2021). However, Herpetogaster, as a substrate-anchored deuterostome, requires 

267 fundamentally different considerations. 

268 An equally plausible alternative for the palaeogeographic distribution of arthropods 

269 considers their larvae; the small size and zooplankton-like habit of the post-embryonic nauplius 

270 larval stages of arthropods could have traversed long distances by ocean currents (Müller & 

271 Walossek, 1986; Zhang & Pratt, 1993; Waloszek & Dunlop, 2002). Therefore, it follows that we 

272 should also consider the life cycle of Herpetogaster, or at least what we can infer from modern 

273 analogues. Though we have numerous fossils of the genus, much remains unknown about its 

274 ontogenesis. We can make some assumptions from modern ambulacrarian species; for example, 

275 most reproduce sexually, and many develop through a ciliated, free-swimming and feeding larval 

276 stage before settling and attachment. Depending on taxon, this motile larval form goes by 

277 numerous names, for example, tornaria for enteropneusts, pluteus for echinoids, auricularia for 

278 holothurians, and doliolaria for crinoids. These larvae bear little anatomical resemblance to the 

279 adult forms, undergoing considerable morphological change before entering their respective adult 

280 life stages (Ettensohn, Wessel & Wray 2004). One could suggest from the close affinity of 

281 Herpetogaster to modern invertebrate deuterostomes (Caron, Conway Morris & Shu 2010; Nanglu 
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282 et al., 2022) that it might have also had a planktonic larval stage. Some evidence for the presence 

283 of planktonic larvae has been found in acorn worms from the Chengjiang biota (Yang et al., 2022), 

284 thus making this a tantalizing hypothesis. As Herpetogaster has been recovered at the base of the 

285 Ambulacrarian tree in recent phylogenies (Li et al., 2023), it suggests that the last common ancestor 

286 of the clade might have already had a planktonic larval stage, or alternatively that it developed 

287 several times within the Ambulacraria.

288 In addition to suggestions from phylogenetic affinity, another indication of plausible larval 

289 dispersal in Herpetogaster may come from their gregarious life habit. As noted, we observed some 

290 of the H. collinsi specimens from the Balang Formation found together on a single slab (Fig. 3C,F), 

291 which lends support to former suggestions of a gregarious lifestyle (Caron, Conway Morris & Shu 

292 2010; Kimmig, Meyer & Lieberman, 2019). A planktonic larval stage is common in many other 

293 modern gregarious marine invertebrates (Pechenik, 1999; Toonen & Pawlik, 2001), with dispersal 

294 and global connectivity well-modeled from broadcast spawning of corals (Wood et al., 2014), and 

295 has been hypothesized for more ancient gregarious taxa as well (Cortijo et al., 2015; Schiffbauer 

296 et al., 2016). The gregarious lifestyle of H. collinsi may indicate that it, too, was a broadcast 

297 spawner, where fertilization and development of the offspring happened externally, promoting 

298 wide dispersal of embryos and larvae and resulting in a broad distribution of offspring. While more 

299 evidence is necessary to confirm our interpretation, we observed a single millimetric ovoid 

300 structure in close proximity to an adult Herpetogaster specimen (Fig. 3A). From hints of a lateral 

301 band extending around this ovoid, we offer a tentative suggestion that it may be a possible larva 

302 (Fig. 3B), as it is comparable in size and form to those of modern acorn worms or other 

303 echinoderms (e.g., Yang et al., 2022). This potential larva is understandably speculative, as it does 

304 not preserve enough details to be definitively identified, and other examples within this deposit 
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305 have not yet been identified. However, previous authors have argued that larvae (sensu Hickmann, 

306 1999; Haug, 2018) were likely the key to the worldwide distribution of deuterostomes from 

307 Burgess Shale-type biotas (e.g., Han, Zhang & Liu, 2008; Yang et al., 2022), and larvae are already 

308 known to play a vital role in Cambrian arthropod development and dispersal (e.g., Liu et al. 2016; 

309 Lerosey-Aubril & Laibl, 2021)�both of which urge the continued search for more possible larval 

310 fossils from the Balang.

311 We suggest that Herpetogaster having a planktonic larval stage and reproduction through 

312 broadcast spawning would have permitted dispersal of this genus over long distances, enabling 

313 them to establish a foothold in both Laurentia and Gondwana and providing a logical explanation 

314 for the sum of our observations. The question that remains is whether planktonic larvae were 

315 shared across the Herpetogaster genus, or if they developed later in H. collinsi. Testing this 

316 hypothesis, however, will require further discoveries of H. haiyanensis outside of the Chengjiang 

317 region or additional species elsewhere in the Cambrian. Continued investigation of the Balang 

318 biota is necessary to confirm or adapt our provisional inferences based on the presence of the 

319 tentative but promising tornaria-like larva.

320

321 Conclusions

322

323 The discovery of H. collinsi from the Balang Formation of China represents the first 

324 report of this species from Gondwana. Most specimens are complete and the detailed 

325 preservation, which required exceptional depositional circumstances, makes an assignment to the 

326 species unquestionable. However, the presence of the same sessile species in Laurentia and 

327 Gondwana poses the question as to how these organisms managed to colonize two distant parts 
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328 of the world. We suggest that the most likely scenario sees Herpetogaster with a planktonic 

329 larval stage and reproduction through broadcast spawning, which would have permitted dispersal 

330 over long distances and enabled H. collinsi to establish a foothold in both Laurentia and 

331 Gondwana. As Herpetogaster is already known from Cambrian Stage 3 in Gondwana, it would 

332 suggest a possible origination of the genus there, but the limited record of the genus at that time 

333 does not yet allow for a definite conclusion. 
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569 Figures

570

571 Figure 1: Distribution of Herpetogaster.

572 (A) Location of the studied section of the Balang Formation located approximately 32 km south-

573 west of Huayuan town, Hunan Province, South China. (B) Generalized stratigraphy of the Balang 

574 Formation at this location. (C) Palaeogeographical distribution of Herpetogaster during Cambrian 

575 Stages 3�4 and during the Wuliuan (modified from Streng and Geyer 2019). 1. H. hanyanensis 

576 (Chengjiang biota, China, Stage 3), 2. H. collinsi (Balang biota, China, Stage 4), 3. H. collinsi 

577 (Burgess Shale, Canada, Wuliuan), 4. H. collinsi (Pioche Formation, Nevada, USA, Stage 4), 5. 

578 H. sp. (Parker Formation, Vermont, USA, Stage 4). Abbreviations: Ni., Niutitang Formation; Chi, 

579 Chinghsutung Formation.

580

581 Figure 2: Complete specimens of Herpetogaster collinsi Caron et al. 2010 from the Balang 

582 Formation of China.

583 (A) YKLP 14570 a small, likely juvenile specimen, preserving showing slim paired tentacles and 

584 the extended stolon. (B�C) YKLP 14571 and YKLP 14572 part and counterpart of a likely sub-

585 adult specimen, the trunk is almost completely preserved as a black carbonaceous film, with the 

586 detail of dendritic symmetrical tentacle and a stolon. (D) YKLP 14573, a large adult specimen, 

587 with the showing the branching tentacles. Co-occurring with a relative individual. (E) YKLP 

588 14574, adult specimen with prominent segments and segment boundaries (indicated by arrows). 

589 (F) YKLP 14575, adult specimen coiled with stolon. (G) YKLP 14576, adult specimen with well-

590 preserved anus and terminal disc. (H) YKLP 14577, adult specimen with both tentacles and well-

591 preserved anus. (I) YKLP 14578, sub-adult specimen with well-preserved branching tentacle. (J) 

PeerJ reviewing PDF | (2023:07:88004:0:0:NEW 3 Jul 2023)

Manuscript to be reviewed



592 YKLP 14610, adult specimen with showing segments and segment boundaries. Scale bars: (A) 

593 2mm; (B�J) 5mm. Abbreviations: an, anus; in, intestine; p?, putative pharyngeal pores; ph, 

594 pharynx; seg, segment boundary?; st, stolon; stom, stomach; td, terminal disc; te, tentacle.

595

596 Figure 3: Gregarious specimens of Herpetogaster collinsi from the Balang Formation of 

597 China. 

598 (A) YKLP 14580, large adult specimen is found co-occurring with associated plankton, possibly 

599 larvae. (B) YKLP 14581, close-up of the associated tonaria-like structure, which shows similarities 

600 to extant early stage ambrulacarian larvae. (C) YKLP 14582, at least six specimens of H. collinsi 

601 on a single slab. (D) YKLP 14584, two adult specimens with almost complete paired tentacles. (E) 

602 YKLP 14585, two adult specimens. (F) YKLP 14583, counterpart of (C). (G) YKLP 14586, two 

603 complete adult specimens. (H) YKLP 14587, three specimens with almost complete paired 

604 tentacles, one preserving the stolon and terminal disc. (I) YKLP 14588, at least two adult 

605 specimens. Scale bars: (B) 1mm; (A, C�I) 5mm. Abbreviations: an, anusph, pharynx; seg, segment 

606 boundary?; st, stolon; td, terminal disc; te, tentacle.

607

608 Figure 4: SEM micrograph and SEM-EDS elemental maps of Herpetogaster collinsi from the 

609 Balang Formation of China.

610 (A�G) YKLP 14573. (A) Picture of the specimen indicating the analyzed area (dashed rectangle). 

611 (B) Detailed view of the analyzed area. (C�G) SEM-EDS elemental maps of Ca, Fe, C, P, S, 

612 respectively. (H�N) YKLP 14583. (H) Picture of the specimen indicating the analyzed area 

613 (dashed rectangle). (I) Detailed view of the analyzed area. (J�N) SEM-EDS elemental maps of Ca, 

614 Fe, C, P, S, respectively. Scale bars: (A, H) 5mm; (C�G, J�N) 1mm.
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615

616 Figure 5: All known Herpetogaster species from Gondwana and Laurentia. 

617 (A) YKLP 14404, holotype of Herpetogaster haiyanensis from the Chengjiang biota (Cambrian; 

618 Series 2; Stage 3) of Yunnan, China; (B) YPM IP 239054, ?Herpetogaster sp. from the Parker 

619 Formation (Cambrian; Series 2; Stage 4) of Vermont, USA; (C) YKLP 14576, Herpetogaster 

620 collinsi from the Balang Formation (Cambrian; Series 2; Stage 4) of China; (D) KUMIP 482878, 

621 Herpetogaster collinsi from the Pioche Formation (Cambrian; Series 2; Stage 4) of Nevada, USA; 

622 (E) ROM 58051, holotype of Herpetogaster collinsi from the Burgess Shale (Cambrian; 

623 Miaolingian; Wuliuan) of British Columbia, Canada. Scale bars: 5mm. 
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624 Tables

625

626 Supplementary Table 1. Measurements of the Balang Formation specimens

627
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Figure 1
Distribution of Herpetogaster.
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Figure 2
Complete specimens of Herpetogaster collinsi Caron et al. 2010 from the Balang
Formation of China.
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Figure 3
Gregarious specimens of Herpetogaster collinsi from the Balang Formation of China.
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Figure 4
SEM micrograph and SEM-EDS elemental maps of Herpetogaster collinsi from the
Balang Formation of China.
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Figure 5
All known Herpetogaster species from Gondwana and Laurentia.

PeerJ reviewing PDF | (2023:07:88004:0:0:NEW 3 Jul 2023)

Manuscript to be reviewed


