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ABSTRACT
Background. Typing analysis has become a popular approach to categorize individual
differences in studies of animal gut microbial communities. However, previous
definitions of gut microbial types weremore understood as a passive reaction process to
different external interferences, asmost studies involve diverse environmental variables.
We wondered whether distinct gut microbial types can also occur in animals under the
same external environment. Moreover, the role of host sex in shaping gut microbiota
has been widely reported; thus, the current study preliminarily explores the effects of
sex on potential different microbial types.
Methods. Here, adult striped hamsters Cricetulus barabensis of different sexes were
housed under the same controlled laboratory conditions, and their fecal samples were
collected after two months to assess the gut microbiota by 16S rRNA sequencing.
Results. The gut microbiota of captive striped hamsters naturally separated into two
types at the amplicon sequence variant (ASV) level. There was a significant difference
in the Shannon index among these two types. A receiver operating characteristic
(ROC) curve showed that the top 30 ASVs could effectively distinguish each type.
Linear discriminant analysis of effect size (LEfSe) showed enrichment of the genera
Lactobacillus, Treponema and Pygmaiobacter in one gut microbial type and enrichment
of the genera Turicibacter and Ruminiclostridium in the other. The former type had
higher carbohydrate metabolism ability, while the latter harbored a more complex
co-occurrence network and higher amino acid metabolism ability. The gut microbial
types were not associated with sex; however, we did find sex differences in the relative
abundances of certain bacterial taxa, including some type-specific sex variations.
Conclusions. Although captive animals live in a unified environment, their gut bacteria
can still differentiate into distinct types, but the sex of the hosts may not play an
important role in the typing process of small-scale captive animal communities. The
relevant driving factors as well as other potential types need to be further investigated
to better understand host-microbe interactions.

Subjects Ecology, Microbiology, Veterinary Medicine, Zoology
Keywords Gut microbiota, Rodent, 16S rRNA, Typing analysis, Sex

INTRODUCTION
Trillions of microbes inhabit the guts of animals and perform vital functions for their hosts
(Voigt et al., 2015; Bo et al., 2019). Studies on population stratification have indicated that
considerable variation in gut microbial composition is very common among individuals
of the same population (David et al., 2014; Maurice et al., 2015). To better generalize the
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individual differences in symbiotic microbiota, typing analysis has been widely applied in
relevant studies (Willis et al., 2018; Cheng & Ning, 2019; Liu et al., 2022; Hu et al., 2023).
Researchers first clustered the human gut microbiome into different types, which have
been described as ‘‘densely populated areas in a multidimensional space of microbial
community composition’’ (Arumugam et al., 2011; Ding & Schloss, 2014). Subsequently,
gut microbial types have been found in several species, such as mice, gorillas, rats, pikas and
bees (Hildebrand et al., 2013; Moeller et al., 2015; Zhang et al., 2019; Yu, Li & Li, 2022; Hu
et al., 2023). These typing analyses divide the gut microbial community into substructures
at the genus or operational taxonomic unit (OTU) level and label them enterotypes,
community types or enterotype-like clusters to represent the states of symbiotic bacterial
composition and different local optima in gut community effectiveness.

However, differences in gutmicrobiota can be largely determined by the living conditions
of the hosts. Therefore, the gut microbial types occurring in humans and wild animals are
more likely driven by external factors and can be regarded as the adaptive characteristics of
gut microbiota to different environments. For example, the Bacteroides-dominant type in
humans is strongly associated with a diet rich in animal proteins and saturated fats, whereas
the Prevotella-dominant type is typical of a fiber-rich diet (Arumugam et al., 2011; David
et al., 2014). Studies on wild mice and Tibetan wild asses (Equus kiang ) also provided
strong evidence that food resources highly contribute to the presence of gut microbial
types (Wang et al., 2014; Liu et al., 2022), while the two gut microbial types of wild plateau
pikas (Ochotona curzoniae) had visibly altitude-associated distributions (Yu, Li & Li, 2022).
Gut microbial types presented under the experimental environments were also likely to
be adaptive variations to stresses, as they were grouping-specific and shaped by disease
model, medication or other special treatments (Hildebrand et al., 2013; Zhang et al., 2019).
Therefore, can different gut microbial types also occur in animal hosts under the same
living conditions?

The effect of host sex on shaping gut bacteria has become the focus of microbial
studies (Sisk-Hackworth, Kelley & Thackray, 2023). Sex bias of the composition of the gut
microbiome in mice has been observed (Org et al., 2016), and similar conclusions have
also been presented in studies of humans and rats (Jaggar et al., 2020; Gu et al., 2021).
The differences in enrichment of bacterial taxa and the separation of male and female
samples are usually related to sexual dimorphism in host physiological traits and are of
great importance to the ‘‘gut-brain’’ axis (Takagi et al., 2019; He et al., 2021; Snigdha et al.,
2022). In addition, sex-specific differences are affected by the host’s living environment;
for example, the compositional and functional variations in the gut microbiota of male
and female red deer (Cervus elaphus) presented inconsistencies among wild and captive
conditions (Sun et al., 2023). It is also worth noting that the gut microbiota of male and
female mammals will have different responses to the same external factors, especially
diet (Bolnick et al., 2014). On this basis, we further wondered whether sex plays a role in
the formation of gut microbial types in captive animals and compared the sex-specific
differences in gut microbiota under the same controlled environment.

The striped hamster (Cricetulus barabensis) is a small mammal widely distributed in the
temperate zone of East Asia, especially in northern China, and is one of the main rodent
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pests in farmland that has high reproductive capacity; thus, it has received much attention
from ecology researchers and rodent control personnel (Xue et al., 2021). Recent studies
on this rodent are still mainly focused on individual physiology (Xue et al., 2021; Xue et
al., 2022), and knowledge regarding its gut microbiome is limited. In this study, striped
hamsters were used as the experimental animals and housed under the same laboratory
conditions. Their feces were collected for high-throughput 16S rRNA gene sequencing to
conduct gut microbial typing analysis.

MATERIALS & METHODS
Sample collection
Twenty-four striped hamsters (male: eight, female: 16) were captured by the live-trap
method from the Qufu region of Shandong Province, China. Then, the experimental
animals were taken to the animal feeding room of Qufu Normal University andmaintained
for twomonths before the sampling date. Each hamsterwas individually reared in an opaque
plastic box to prevent microbial transfer between the animals. A controlled laboratory
environment under natural light with an ambient temperature of 22 ± 2 ◦C and a relative
humidity of 55% ± 5% was provided to hamsters. Water and the same artificial rodent
feed (Qianmin Feed, Shenyang, Liaoning, China) were provided ad libitum. All sampled
individuals were adults with a body weight greater than 20 g. The collection of fecal samples
took place within one day during daylight hours to minimize any potential influence from
the circadian rhythm. Each individual was kept in a cage sterilized beforehand using 75%
alcohol, and fecal sampleswere collected in 2-mL cryogenic vials (Corning, Reynosa, TAMP,
Mexico) within 1 min of defecation. The collected feces were placed in liquid nitrogen and
then stored in a−80 ◦C ultralow temperature freezer (Thermo Fisher Scientific, Waltham,
MA, USA).

All procedures have followed the Laboratory Animal Guidelines for the Ethical Review
of Animal Welfare (GB/T 35892–2018) and have been approved by the Biomedical Ethics
Committee of Qufu Normal University (Permit Number: dwsc2023005).

DNA extraction and sequencing
Microbial genomic DNA was extracted from fecal samples by using the MJ-Feces DNA
Kit (Majorbio, Shanghai, China) according to its manufacturer’s protocol. The quality of
all DNA samples was verified, and their concentration was measured using NanoDrop
2000 spectrophotometers (Thermo Fisher, Wilmington, DE, USA). The hypervariable
region V3-V4 of the bacterial 16S rRNA gene fragments were amplified from the extracted
DNA using common primers 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R
(5′-GGACTACHVGGGTWTCTAAT-3′) (Caporaso et al., 2011). The polymerase chain
reaction (PCR) amplification was performed as follows for 27 cycles: denaturing at 95 ◦C
for 30 s, annealing at 55 ◦C for 30 s, and extension at 72 ◦C for 45 s. The PCR mixtures
contained 5 × TransStart FastPfu buffer (4 µL), 5 µM each primer (0.8 µL), 2.5 mM
deoxynucleoside triphosphates (dNTPs) (2 µL), extracted DNA (10 ng), TransStart
FastPfu DNA Polymerase (0.4 µL), and ddH2O to make the total volume 20 µL. The size of
amplicons was confirmed through the utilization of agarose gel electrophoresis. Amplicons
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were subjected to paired-end sequencing on the IlluminaMiSeq sequencing platform using
PE300 chemical at Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China). The raw
reads have been uploaded to the National Center for Biotechnology Information database
under the accession number PRJNA937404, and sex information can be found in the
Mapping File S1.

Bioinformatics and statistical analysis
The resulting sequences obtained after demultiplexing were merged with FLASH (v1.2.11)
and quality filtered with fastp (v0.19.6) based on these parameters (Magoč & Salzberg,
2011; Chen et al., 2018): (1) the reads were truncated receiving an average quality score
<20 over a 50 bp sliding window, and the truncated reads shorter than 50 bp, as well as
reads containing ambiguous characters, were all filtered; (2) paired reads were merged
when overlapping sequences longer than 10 bp and the maximum mismatch ratio of
the overlap region was 0.2, while reads that could not be assembled were discarded; (3)
samples were distinguished according to the barcode and primers, and the sequence
direction was adjusted, with exact barcode matching and two nucleotide mismatches in
primer matching. The remaining sequences were denoised using the Divisive Amplicon
Denoising Algorithm 2 plugin implemented in QIIME2 software (v2020.2) by filtering out
noise (Callahan et al., 2016), and then the denoised sequences called amplicon sequence
variants (ASVs) were obtained. ASV taxonomic assignment was conducted by the naive
Bayes consensus taxonomy classifier integrated in the QIIME2 pipeline based on the SILVA
bacterial 16S rRNA database (v138). The ASVs belonging to chloroplasts, mitochondria,
and archaea were filtered before performing downstream analysis. To minimize the
influence of different sequencing depths, normalization was performed according to the
minimum value of sequence counts among all fecal samples, and the number of sequences
in every single sample has been rarefied to 15,594, which still had a Good’s coverage of
more than 99.9%. The ASV table has been uploaded as a supplemental material. Alpha
diversity indices calculated by Mothur (v1.30) were used to evaluate gut microbial richness
and diversity. Bacterial function was calculated by PICRUSt2 software against the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database. After obtaining the KO (KEGG
Orthology) information, the abundance tables of functional pathways at three different
levels were obtained by comparing KOs with the KEGG pathway database (Douglas et al.,
2020).

Statistical analysis was mainly performed using integrated R software in the majorbio
cloud platform (https://cloud.majorbio.com/). The optimal number of types was chosen
based on Calinski–Harabasz (CH) values calculated by the R package ‘‘clusterSim’’, and
clustering of the gut microbial types was performed by the partitioning around medoid
(PAM) method based on the Jensen–Shannon dissimilarity of ASVs calculated by the R
package ‘‘cluster’’ (https://enterotype.embl.de/enterotypes.html). The Mann–Whitney U
test was applied to detect differences in the relative abundances of ASVs and alpha diversity
indices. Principal coordinate analysis (PCoA) based on beta diversity and Adonis analysis
(PERMANOVA, permutationalmultivariate analysis of variance) were performed using the
‘‘vegan’’, ‘‘ade4’’ and ‘‘ggplot2’’ packages. Linear discriminant analysis effect size (LEfSe)

Fan et al. (2023), PeerJ, DOI 10.7717/peerj.16365 4/18

https://peerj.com
http://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA937404
http://dx.doi.org/10.7717/peerj.16365#supp-1
https://cloud.majorbio.com/
https://enterotype.embl.de/enterotypes.html
http://dx.doi.org/10.7717/peerj.16365


was used to identify the microbial taxa that most contributed to the differences between
groups. The pairwise correlation test among ASVs was determined by the R package ‘‘stat’’,
and it was performed by screening out significant Spearman’s correlations with absolute
coefficient values greater than 0.6, followed by using Gephi software (v0.9.2) to draw the
co-occurrence networks. Fisher’s exact test was used to analyze the influence of sex on the
classification of gut microbial types. A Venn diagram was used to display the distribution
of ASVs among different types. The receiver operating characteristic (ROC) curve based
on the relative abundances of the top 30 ASVs was calculated by the R package ‘‘pROC’’.
Functional differences in level-2 KEGG pathways were identified and visualized using
STAMP v2.1.3 software.

RESULTS
Typing analysis of the gut microbiota in captive striped hamsters
High-quality sequences of the 16S rRNA gene from all the fecal samples were assigned
into 1946 ASVs after data processing. The rarefaction curves showed that as the number of
sampled reads increased, the number of observed ASVs gradually stabilized, and there was
no further growth or fluctuation (Fig. S1). The highest CH index value was determined to
be two (Fig. S2), and Fig. 1A displays the two gut microbial types. Among the 24 samples,
14 (58.3%) were assigned to Type 1, and 10 (41.7%) were assigned to Type 2. A Venn
diagram showed that there were 523 ASVs unique to Type 1, while 519 ASVs were unique
to Type 2, and 904 ASVs were shared between the two types (Fig. 1B). Although there was
no significant difference in the Sobs index (p = 0.107) and PD index (p = 0.135) between
them (Figs. 1C, 1D), Type 1 had a higher Shannon index (p= 0.009) than Type 2 (Fig. 1E).

Themajor phyla of captive striped hamster gutmicrobiota were Firmicutes, Bacteroidota
and Actinobacteriota, while at the family level, Muribaculaceae, Lactobacillaceae,
Lachnospiraceae, Erysipelotrichaceae and Bacillaceae were the major members (Fig. S3).
LEfSe results (LDA >3, p <0.05) showed that there was a significant enrichment of many
bacterial taxa, such as family Lactobacillaceae, family Spirochaetaceae, genus Lactobacillus,
genus Treponema and genus Pygmaiobacter in Type 1, while the relative abundances of the
order Clostridia_UCG-014, family Hungateiclostridiaceae, and genera Turicibacter and
Ruminiclostridium were higher in Type 2 (Fig. 2A). The area under the ROC curve (AUC
value) based on the top 30 ASVs was 0.74, indicating that differences in these bacteria
could effectively distinguish the gut microbial types (Fig. 2B). Among the top 30 ASVs,
six showed significantly different levels of relative abundance between the two types; Type
1 had a higher relative abundance of ASV1 (genus Lactobacillus) (p = 0.002), ASV616
(class Bacilli) (p < 0.001), ASV140 (species Lactobacillus vaginalis) (p= 0.015) and ASV101
(species Lactobacillus vaginalis) (p= 0.013) than Type 2, while Type 2 had a higher relative
abundance of ASV2 (genus Turicibacter) (p= 0.002) and ASV788 (family Muribaculaceae)
(p = 0.009) than Type 1 (Fig. 2C).
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Figure 1 Identification of gut microbial types in captive striped hamsters. (A) The two gut microbial
types clustered at the ASV level. (B) Venn diagram of ASVs distribution among the two types. (C), (D)
and (E) The Sobs indices, Pd indices and Shannon indices of the two types. Differences were assessed by
Mann–Whitney U tests and are denoted as ∗p< 0.05, ∗∗p< 0.01 and ∗∗∗p< 0.001.

Full-size DOI: 10.7717/peerj.16365/fig-1

Co-occurrence networks and functional differences of the two gut
microbial types
As shown in Fig. 3 and Table S1, by using the relative abundance of the top 30 ASVs to
calculate and display the co-occurrence networks, we found that the numbers of total
links were 25 and 36, and the average degrees were 2.381 and 3.273 in Type 1 and Type 2,
respectively. In addition, the average clustering coefficient and the number of total triangles
in the network of Type 1 (0.397; 8) were all less than those of Type 2 (0.563; 25). Notably,
in Type 1, the node that had the greatest degree belonged to the genus Ruminococcus,
while the nodes with the greatest degree in the network of Type 2 belonged to the genera
Lactobacillus and Bacillus.

Through PCoA based on the Bray–Curtis distances of the KOs, we found that there
was a separation between the two gut microbial types, and a pairwise Adonis test revealed
functional characteristics to be significantly different (R2

= 0.153, p = 0.025) (Fig. 4A).
By using STAMP to verify the significant differences in level-2 KEGG pathways, we found
that the abundances of genes involved in pathways such as xenobiotics biodegradation
and metabolism, membrane transport and carbohydrate metabolism were enriched in
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Type 1, while genes involved in the pathways of amino acid metabolism and metabolism
of cofactors and vitamins were enriched in gut microbial Type 2 (Fig. 4B).

The role of sex in dividing gut microbial types and the sex-specific
differences in bacterial taxa
Among the male individuals, five were assigned to Type 1, while three were assigned to
Type 2; the female individuals harbored nine Type 1 members and seven Type 2 members
(Fig. 5A). Fisher’s exact test showed that the sex of hosts did not influence the classification
of gut microbial types (p = 1.000). The AUC value based on the top 30 ASVs was 0.5,
indicating that these bacteria could not effectively distinguish individuals of different sexes
(Fig. 5B), and there was no significant difference in the relative abundances of these ASVs
between male and female hamsters. Additionally, there were no significant differences in
the Sobs index (p = 0.500), Pd index (p = 0.257) and Shannon index (p = 0.926) between
male and female samples, indicating that the alpha diversity of the gut microbiota in male
and female hamsters was similar (Fig. 5C). Male and female samples were not separated
in PCoA calculated using ASVs based on Bray–Curtis, unweighted UniFrac and weighted
UniFrac distances, and the results of Adonis tests ( R2

= 0.037, p = 0.722; R2
= 0.049, p =

0.218; R2
= 0.041, p = 0.394) also supported this result (Figs. 5D–5F).

Although therewere no significant differences in alpha diversity betweenmale and female
individuals, we did detect differences in the relative abundances of particular taxonomic
groups. LEfSe results (LDA >2) showed that over all the samples, there was a higher relative
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abundance of members of the genera Alistipes and Odoribacter in males compared with
females, while the relative abundances of family Tannerellaceae and genus Parabacteroides
were higher in females (Fig. 6A). Within Type 1 or Type 2, male individuals also had
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Figure 5 The role of sex in the differentiation of gut microbial types. (A) Distribution of male and fe-
male individuals in gut microbial types; differences were assessed by Fisher’s exact test. (B) ROC curve cal-
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ing ASVs.
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higher relative abundances of family Rikenellaceae, genus Alistipes, family Marinifilaceae
and genus Odoribacter (Figs. 6B and 6C). However, there were some bacteria for which the
sex difference in relative abundance was not consistent among the two types. For example,
higher relative abundances of the genera Sphaerochaeta and Adlercreutzia in males and
greater numbers of norank_f__Erysipelotrichaceae and Prevotellaceae_UCG-001 in females
were observed only in Type 1 but not in Type 2 (Figs. 6B and 6C).

DISCUSSION
In this study, two gut microbial types combined with different bacterial compositions
and functions were identified from captive striped hamsters living in the same laboratory
environment. Previous definitions of gut microbial types in wild animals were more
understood as a passive reaction process to different external interferences (Ding & Schloss,
2014; Wang et al., 2014; Yu, Li & Li, 2022; Liu et al., 2022), and these responses will help
hosts better adapt to various environmental characteristics. The significant environmental
variation from wild to captive conditions will greatly alter the animals’ original gut
microbiota, and dietary changes can significantly disrupt the previous clustering state of
the bacterial community (Schmidt, Mykytczuk & Schulte-Hostedde, 2018; Liu et al., 2019).
However, the influence of the wild environment still needs to be considered in gutmicrobial
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typing in this experiment because these communities might be different ecological states
that exist in nature and further developed under captive circumstances. Captivity is stressful
for wild hosts, but the responses to this stress are usually characterized by individual
differences, and the gut microbiota of animals will also be prone to diverge in different
directions under uniform stimuli (Diaz & Reese, 2021), which can be accompanied by
potential impacts of the Anna Karenina effect (Zaneveld, McMinds & Vega Thurber, 2017).
Stochastic processes in community assembly play an important role in shaping animals’
gut microbiota in both wild and captive environments, although their effect is relatively
weaker in controlled environmental conditions (Bittleston et al., 2020; Li et al., 2022). This
could result in the merging or redifferentiation of gut microbiota for forming functionally
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distinct microbial communities, indicating that the two types in captive striped hamsters
were different peaks on an optimization landscape, implying that there should be more
potential types in larger surveys. To clarify the role of the above factors in gut microbial
typing, more complex experimental designs combined with different time points and
control groups are needed in future studies. Biologically speaking, multiple types presented
in the gut microbiota can be beneficial for ensuring population tolerance to potential
complex external stress. As mentioned earlier, the striped hamster is a widely distributed
rodent (Xue et al., 2021), and our results can partly explain its high adaptability to the
environment from the perspective of host-gut microbe interactions.

The number of ASVs that were shared among two gut microbial types was much
greater than that unique to each type, showing variations in the distribution of bacterial
communities between the two types while proving that intraspecific individual differences
are limited to a certain range and usually far less than interspecific differences (Song et
al., 2020). There was a significant difference only in Shannon indices between the two
gut microbial types, indicating that they were characterized by overall similarity but a
distinct bacterial composition, which are all normal modes resulting from differentiation
of gut bacteria. Type 2 may be slightly better in terms of competitiveness, as a higher alpha
diversity of the gut microbiome reflects that the internal ecosystem is more resilient to
perturbations (Lozupone et al., 2012). Furthermore, the complexity and cohesion of the
gut microbial co-occurrence network can affect their responses to environmental stress
(Riera & Baldo, 2020; Hernandez et al., 2021). We predict that the network of Type 1 was
easily changed due to external factors, but it also easily recovered, while a complex network
of Type 2 was more resistant to pressures but did not recover as easily. These results
indicate that the two types of gut microbiota may have different strategies for maintaining
community stability.

Firmicutes and Bacteroidota were identified as the two most dominant phyla in the
gut microbiota of striped hamsters. These two bacterial phyla are usually the major
components of the gut microbial community in mammals, and Firmicutes is vital for the
digestion and fermentation of fiber, while Bacteroidota promotes the digestion of fat and
polysaccharides (Chen et al., 2016). However, the relative abundances of many bacterial
taxa were inconsistent among the two gut microbial types, especially at low classification
levels, and the dominant bacterial taxa of each gut microbial type were also different from
those of humans, rats, and insects (Ding & Schloss, 2014; Li et al., 2015; Zhang et al., 2019).
The genus Lactobacillus belongs to the family Lachnospiraceae and is a potential beneficial
gut bacterial taxon and the main producer of short-chain fatty acids, participating in
various complex metabolic processes (Vacca et al., 2020). The genus Treponema belongs to
the family Spirochaetaceae and is usually associated with the ability to breakdown dietary
fibers (Kawasaki et al., 2020; Zhao et al., 2023). The enrichment of these bacteria led to a
higher carbohydrate metabolism capacity in the Type 1 community. Bacteria of the class
Clostridia (e.g., order Clostridia_UCG-014 and genus Ruminiclostridium) are involved in
protein metabolism (Zhao et al., 2019); thus, Type 2 had a higher amino acid metabolism
capacity. The individuals of different types were significantly separated in PCoA using
the Bray–Curtis distance metric of KOs, proving the variations in gut microbial function
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between the two gut microbial types. Striped hamsters inhabit different farmlands where
various crops are grown, and individuals with a Type 1 gut microbiota may be inclined
to choose high carbohydrate food resources such as corn and wheat, while the Type 2 gut
microbiota may drive its hosts to live in soybean or peanut fields that have rich protein
resources. These differences help prevent excessive concentrations of hamsters in narrow
areas, thereby reducing the pressure of intraspecific competition.

We previously predicted that individuals of the same sex may cluster together and
have a certain consistency with the classification of gut microbial types. However, the
distribution of individuals with different sexes in gut microbial types was not significantly
biased. Moreover, male and female samples were not separated in dimension reduction
sorting. It should be acknowledged that the sample size of hamster participants in this
experiment is relatively small, which may impose certain limitations on the exploration
of sex-specific differences in gut microbiota. This issue was also mentioned in a study of
wild Brandt’s voles (Lasiopodomys brandtii), which found no variation in beta diversity
between females andmales (Xu & Zhang, 2021), while another study involving hundreds of
human volunteers discovered both significant separation of overall gut microbial structure
in PCoA analysis and variations in specific bacterial taxa (Takagi et al., 2019). Since the
gut microbiota was segregated into two distinct types, the potential sex-related difference
might be even harder to detect under a more powerful classification framework. Taxa that
rank high in relative abundance are usually defined as core bacteria and are regarded as
the key to variations in gut microbiota (Cernava et al., 2019; Ren et al., 2021), but there
was no significant difference in the relative abundances of the top 30 ASVs between male
and female striped hamsters, which might be due to the environmental pressure of indoor
breeding. Biological sex can affect gut microbiota through distinct host physiological
indicators such as hormones and by making hosts have different personalities and lifestyles
(Valeri & Endres, 2021), and captivity will hinder the latter to a certain extent by eliminating
environmental interference while making the animals feel pressure after lifestyle disruption
(Diaz & Reese, 2021). Therefore, studies on artificially raised rodents have found similar
results: sex bias of some gut microbial taxa, without the separation of overall structure in
dimension reduction sorting (Org et al., 2016; He et al., 2021). Interestingly, the variations
between male and female hamsters showed inconsistency across the two types, especially
the bacterial taxa enriched in females, such as genera norank_f__Erysipelotrichaceae and
Prevotellaceae_UCG-001, which were found only in Type 1, suggesting that sex could shape
the gut microbiome differently in striped hamsters within the context of the very different
community types.

CONCLUSIONS
In summary, this study found that the gut microbiota of captive striped hamsters was
separated into two distinct types with different compositions and functions: enrichment
of the genera Lactobacillus, Treponema and Pygmaiobacter in one gut microbial type and
enrichment of the genera Turicibacter and Ruminiclostridium in the other. The former type
had higher carbohydrate metabolism ability, while the latter harbored a more complex

Fan et al. (2023), PeerJ, DOI 10.7717/peerj.16365 12/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.16365


co-occurrence network and higher amino acid metabolism ability. This suggests that
gut microbial types are not just the related responses of individuals living in different
environments, as type differentiation can still appear in normal animals’ gut microbiota
under the same conditions. However, the distribution of individuals of different sexes in
gut microbial types was not significantly biased. Sex-specific differences were inconsistent
with intertype differences and had different manifestations in distinct types.
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