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ABSTRACT
Background. Cell therapy using neural progenitor cells (NPCs) is a promising approach
for ischemic stroke treatment according to the results of multiple preclinical studies
in animal stroke models. In the vast majority of conducted animal studies, the
therapeutic efficacy of NPCswas estimated after intracerebral transplantation, while the
information of the effectiveness of systemic administration is limited.Nowadays, several
clinical trials aimed to estimate the safety and efficacy of NPCs transplantation in stroke
patients were also conducted. In these studies, NPCs were transplanted intracerebrally
in the subacute/chronic phase of stroke. The results of clinical trials confirmed the safety
of the approach, however, the degree of functional improvement (the primary efficacy
endpoint) was not sufficient in the majority of the studies. Therefore, more studies are
needed in order to investigate the optimal transplantation parameters, especially the
timing of cell transplantation after the stroke onset. This study aimed to evaluate the
therapeutic effects of intra-arterial (IA) and intravenous (IV) administration of NPCs
derived from induced pluripotent stem cells (iNPCs) in the acute phase of experimental
stroke in rats. Induced pluripotent stem cells were chosen as the source of NPCs
as this technology is perspective, has no ethical concerns and provides the access to
personalized medicine.
Methods. Human iNPCs were transplanted IA or IV intomaleWistar rats 24 h after the
middle cerebral artery occlusion stroke modeling. Therapeutic efficacy was monitored
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for 14 days and evaluated in comparison with the cell transplantation-free control
group. Additionally, cell distribution in the brain was assessed.
Results. The obtained results show that both routes of systemic transplantation (IV
and IA) significantly reduced the mortality and improved the neurological deficit of
experimental animals compared to the control group. At the same time, according
to the MRI data, only IA administration led to faster and prominent reduction of
the stroke volume. After IA administration, iNPCs transiently trapped in the brain
and were not detected on day 7 after the transplantation. In case of IV injection,
transplanted cells were not visualized in the brain. The obtained data demonstrated
that the systemic transplantation of human iNPCs in the acute phase of ischemic stroke
can be a promising therapeutic strategy.

Subjects Biochemistry, Cell Biology, Neuroscience, Histology
Keywords Neural progenitor cells, Human induced pluripotent stem cells, Cell therapy, Intra-
arterial transplantation, Intravenous transplantation, MCAO, Experimental stroke

INTRODUCTION
The importance of the search for new therapeutic strategies of ischemic stroke treatment is
beyond doubt (Campbell et al., 2019; Kim et al., 2020; Cherkashova et al., 2023). In animal
models of stroke, multiple preclinical studies have demonstrated remarkable therapeutic
efficacy of the transplantation of various types of stem cells along with enhanced recovery
of the affected animals (Namestnikova et al., 2020; Zhang et al., 2021; Gao et al., 2022).
Mesenchymal stem cells (MSCs), bone marrow-derived mononuclear cells (BMMCs) and
NPCs are probably the most safe, effective and qualified for clinical applications among all
the studied cell types (Chrostek et al., 2019; Singh et al., 2020; Rascón-Ramírez et al., 2021).

Currently, the optimal cell type has not been defined yet, but in the vast majority of
clinical trials, MSCs and BMMCs were used due to their availability, immunomodulation
properties and the possibility of obtaining from many sources without ethical concerns
(Andrzejewska, Lukomska & Janowski, 2019; Kawabori et al., 2020; Lehnerer et al., 2022;
Fauzi et al., 2023). The results of conducted clinical studies demonstrated safety and
feasibility of MSCs and BMMCs transplantation and a trend toward the enhancement of
functional recovery after stroke (Fauzi et al., 2023), though in a part of trials the primary
efficacy endpoints were non-significant (Clark et al., 2017; Savitz et al., 2019; Song et al.,
2022).

Transplantation of NPCs as monotherapy (Baker, Kinder & West, 2019) or in
combination with the other cell types (Namestnikova et al., 2020) is another tested
therapeutic approach. NPCs are multipotent cells that can give all specialized cells of the
nervous system (of both glial and neuronal lineages), making them attractive candidates
for use in stroke cell therapy (Hamblin et al., 2021). NPCs can be isolated from the central
nervous system of developing embryos, fetal, neonatal and adult brain, or derived in vitro
from embryonic stem cells and induced pluripotent stem cells, as well as from somatic
cells by direct transdifferentiation (Tang, Yu & Cheng, 2017). Transplantation of NPCs of
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different origin in preclinical studies resulted in better functional outcomes for animals
with experimental stroke (Kokaia & Darsalia, 2018; Zhang et al., 2022). Despite that the
exact mechanism of NPCs therapeutic action remains not fully understood, it was shown
that transplanted cells are able to reduce inflammation and blood brain barrier damage,
increase neurogenesis, angiogenesis, neuroplasticity and even act as a cell replacement
(Baker, Kinder & West, 2019; Hamblin et al., 2021).

Based on the success of preclinical studies, several clinical trials involving NPCs
administration were initiated and finalized, and one (PISCES III) is still ongoing (Kalladka
et al., 2016; Chrostek et al., 2019; He, Sussman & Steinberg, 2020). The number of studies
of the NPCs transplantation is much lower compared to MSC cell therapy trials (Fauzi et
al., 2023). This may be partially explained by ethical and safety concerns associated with
the sources of NPCs, since in most clinical studies the fetal NPCs, immortalized NPC line
or even carcinoma-derived neurons (NT2N cells) were administrated (Pollock et al., 2006;
He, Sussman & Steinberg, 2020; Kondziolka et al., 2000). Transplantation of NPCs obtained
from non-human sources (xenogeneic fetal porcine cells) was also tested. However, the
trial was terminated due to the significant adverse events (Dinsmore et al., 2005). In all
conducted studies, NPCs were transplanted intracerebrally in the subacute or chronic
phase of stroke (Kawabori et al., 2020; He, Sussman & Steinberg, 2020). Summarizing the
results of these clinical trials, it can be concluded that intracerebral transplantation of
human NPCs was generally safe and caused minimal adverse events in non-acute stroke
patients. In all studies, the authors reported about the tendency towards the improvement
of the neurological deficit of stroke patients, however, as in the case of MSCs and BMMCs
transplantation, the primary efficacy endpoint (the pre-determined and sufficient level of
functional outcome) was not achieved in the majority of trials (He, Sussman & Steinberg,
2020). The reason for the insufficient effectiveness of NPCs therapy in randomized control
clinical trials is debatable and may be related to suboptimal protocol of cell transplantation
(cell dose, delivery route, time window, frequency of administration and others) and to
not fully understood mechanism of action. More studies are needed in order to investigate
the optimal transplantation parameters and among them, the most crucial one could
be the timing of cell transplantation after the stroke onset (Permana et al., 2022). Many
preclinical studies have demonstrated that transplantation of stem/progenitor cells could
cause more prominent therapeutic effect when transplanted in the acute period of stroke
(24–72 h) (Yang et al., 2011;Wang et al., 2014; Toyoshima et al., 2015). Despite the fact that
intracerebral NPCs administration have proven to be relatively safe and well tolerated by
patients in the subacute/chronic period of stroke, stereotaxic surgery and general anesthesia
in the acute stroke patients may be associated with the elevated risk of complications
(Janowski, Wagner & Boltze, 2015;Muir et al., 2020; Fauzi et al., 2023). Thereby, in cases of
cell transplantation in the acute stroke, systemic (IA and IV) administration seems to be
the most appropriate. It is worth noting that the data on systemic administration of NPCs
to stroke patients is limited.

Since the access to the embryonic and fetal tissues is limited or even unacceptable
in some countries (Matthews & Moralí, 2020; Fernandez-Muñoz et al., 2021), alternative
sources of NPCs were found. The method of induced pluripotent stem cells (iPSCs)
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induction introduced by Takahashi & Yamanaka (2006) provided the opportunity to
obtain NPCs without ethical concerns and opened an era of personalized medicine.
According to the results of conducted preclinical studies, the use of iNPC-based cell therapy
demonstrated enhanced functional recovery after cell transplantation in preclinical rodent
and pig stroke models (Baker, Kinder & West, 2019). In the majority of studies, iNPCs
were transplanted intracerebrally/intrathecally while data on the systemic administration
of this cells are limited (Song et al., 2022). Although basic animal studies showed that
transplantation of iNPCs can be safe and efficacious, currently there is no published
clinical study testing iNPCs in stroke patients (Fernandez-Muñoz et al., 2021). The main
reason of the restriction of clinical application of iPSC-derived cells is the awareness of
potential risk of tumorigenicity (Volarevic et al., 2018). However, the results of the first
clinical trial for other severe diseases (leukemia, lymphoma, ataxia-telangiectasia, and
others) indicated that carefully controlled iPSC-derived biomedical products can be safe
in clinical settings (Garitaonandia et al., 2016; Fernandez-Muñoz et al., 2021) and several
clinical studies applying iPSC-derived cells are ongoing and the results are expected soon
(Volarevic et al., 2018). Further studies are needed in order to investigate the effectiveness
of iNPCs therapy for ischemic stroke, especially in the acute phase.

Therefore, further preclinical and clinical studies are needed in order to investigate the
effectiveness of the systemic iNPCs transplantation in ischemic stroke, especially in the
acute phase. The present work was aimed to study the therapeutic effects of the IA and IV
administration of iNPCs in the acute phase of experimental ischemic stroke in rats.

MATERIALS & METHODS
Cell culture
iPSCs were derived according to the protocol described previously (Salikhova et al., 2020).
Donor skin biopsy collection was approved by the Institutional Ethics Committee of the
Research Centre for Medical Genetics (Protocol No. 2019-2/3 from October 13, 2020). All
patients given written informed consent for using the tissue for research purposes. CTS
CytoTune-iPS 2.1 Sendai reprogramming kit (Invitrogen, Carlsbad, CA, USA) were used
for fibroblast reprogramming. Obtained iPSCs were cultivated in Essential E8 Medium
(Gibco, Waltham, MA, USA) using Petri dishes covered by recombinant vitronectin
(10 µg/mL, Gibco, Waltham, MA, USA). iPSCs were detached upon reaching a culture of
80% confluency by incubation in Versen solution (PanEco, Berg am Irchel, Switzerland)
for 5 min at 37 ◦C. The cell suspension was centrifuged at 800 rpm for 5 min and the pellet
was transferred to new Petri dishes with the addition of ROCK inhibitor (5 µM, Merck
Millipore, Rahway, NJ, USA) to the culture medium for 24 h.

The pluripotent status of the iPSCs was confirmed, as previously described (Salikhova et
al., 2021), by their ability to differentiate into cells belonging to all three germ layers, to form
embryoid bodies, and to express the pluripotent markers Oct4, Nanog, SSEA4, TRA-1-81.
iPSCs were transferred as colony fragments to 24-well Ultra Low Adhesion Plates (Corning,
Corning, NY, USA) and cultured in DMEM/F12 medium supplemented 20% FBS, 2
mM glutamine, 1% mixture of essential amino acids, 100 mg/L penicillin-streptomycin
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(Paneko, Moscow, Russia) for formation of embryoid bodies. The formed embryoid bodies
were transferred to Petri dishes coated with 0.1% gelatin (Paneko, Moscow, Russia) for
observation of cell migration after 2–3 weeks of cultivation. The obtained extensive areas
of differentiated cells were fixed and immunocytochemical analysis was performed for
markers of three germ layers using primary antibodies against pan-cytokeratin (ectoderm
marker, ab7753, Abcam, Boston, MA, USA), vimentin (mesoderm marker, ab92547,
Abcam, Boston, MA, USA), α-fetoprotein (endodermal marker, ab3980, Abcam, Boston,
MA, USA). To confirm the phenotype of iPSCs, the immunocytochemical analysis on
markers of pluripotency was performed using primary antibodies to NANOG, SSEA4,
OCT4, TRA-1-81 (StemLight Pluripotency Antibody Kit, Cell Signaling Technology, San
Antonio, TX, USA).

iNPCs were derived from iPSCs using the mix of small molecules: 10 µM SB431542
(Tocris, USA), 2 µM Dorsomorphine (Sigma Algrich, St. Louis, MO, USA), and 200
nM LDN193189 (Sigma Algrich, St. Louis, MO, USA) which were TGF-β and BMP
signaling inhibitors. The differentiation lasted for 2 weeks on Petri dishes covered by
Matrigel (Corning, Corning, NY, USA). The formed radially organized cellular structures
(also called neural rosette) were subcultured with Versen solution for 5 min at 37 ◦C.
The cell suspension was centrifuged at 1,200 rpm for 5 min. The obtained pellet of the
iNPCs was cultivated in the DMEM/F12 medium (PanEco, Berg am Irchel, Switzerland)
supplemented by 2% of the B27 (Gibco, Waltham, MA, USA), 2 mM glutamine (PanEco,
Berg am Irchel, Switzerland), 100 mg/L penicillin-streptomycin (PanEco, Berg am Irchel,
Switzerland), and 10 ng/ml FGF-2 (ProSpec, UK) using Matrigel substrate. The phenotype
of the obtained iNPCs confirmed immunocytochemically using primary antibodies against
Nestin (ab105389, Abcam), PAX6 (ab5790, Abcam, Boston,MA, USA), and Sox2 (ab79351,
Abcam, Boston, MA, USA).

Immunocytochemistry
iPSCs and their derivate cultureswere fixed in 4%paraformaldehyde solution (PanEco, Berg
am Irchel, Switzerland) for 10min at room temperature; washedwith PBS; pre-incubated in
0.25% Triton X-100 and 1% BSA in PBS for 30min; and incubated with primary antibodies
for 60 min in the dark. Secondary antibodies (anti-mouse IgG conjugated to Alexa Fluor
555 (A-21422, Invitrogen, Carlsbad, CA) or anti-rabbit IgG conjugated to Alexa Fluor
488 (A-11008, Invitrogen, Carlsbad, CA) was applied for 60 min in the dark. The nuclei
was counterstained with DAPI (Sigma-Aldrich, , St. Louis, MO, USA) solution (1 µg/mL
in PBS). The images were recorded with an Axio Observer.D1 inverted fluorescence
microscope equipped with Axio-Cam HRc camera (Carl Zeiss, Jena, Germany).

Cell labeling
The transplanted iNPCs were pre-labeled with the GFP protein using the LVT-TagGFP
lentiviral vector (Evrogen, Moscow, Russia) for visualization. The virus suspension was
added to the culture medium with 4 µg/ml polybrene (Sigma-Aldrich, St. Louis, MO,
USA) according to the manufacturer’s instructions. The cells were washed twice with
the phosphate-buffered saline (PanEco, Moscow, Russia) after 12 h incubation and the

Cherkashova et al. (2023), PeerJ, DOI 10.7717/peerj.16358 5/25

https://peerj.com
http://dx.doi.org/10.7717/peerj.16358


maintenance culture medium was added. The iNPCs were additionally labeled with the
PKH26 Red Fluorescent Cell Linker kit (Sigma-Aldrich, USA) following the instructions
of the manufacturer. Briefly, the cells were harvested using Versen solution (PanEco,
Moscow, Russia), centrifuged at 1,200 rpm for 5 min, washed with Hank’s Balanced Salt
Solution (HBSS), and re-suspended in 1 ml of the Diluent C reagent. The cell suspension
was mixed with an equal volume of the labelling solution (4 nM PKH26), and incubated
at room temperature for 5 min. The staining process was stopped by the addition of
2 ml of fetal bovine serum. Cells were washed twice with HBSS, and re-suspended in
the phosphate-buffered saline (PanEco, Moscow, Russia). The obtained suspension was
analyzed 72 h post-transfection using a CyFlow ML flow cytometer (Partec, München
Germany), and the number of labeled cells was counted using the FloMax software.

Animals
Adult male Wistar rats weighing 250–300 g (n= 69) were purchased from ‘‘SMK STESAR’’
(Vladimir, Russian Federation). The experimental animals were housed 4 to 5 per cage
under standard housing conditions (12-h/12-h light/dark cycle, room temperature
22 ± 2 ◦C, humidity 45–65%) with free access to standard rodent chow and water.
Enrichment based on no risk to the animals (i.e., cause injuries or excessive aggression), to
the humans (i.e., jeopardize the health and safety of the animal staff), or to the experiments
(i.e., cause undesirable interference or an excessive increase in the number of animals
used). All animal experiments were carried out in accordance with the guidelines of
the Declaration of Helsinki and the Directive 2010/63/EU on the protection of animals
used for scientific purposes of the European Parliament and the Council of European
Union dated 22 September 2010 and were approved by the Pirogov Russian National
Research Medical University Animal Care and Use Commission (protocol code No
24/2021 from 10 December 2021). In vivo studies are reported according to the ARRIVE
guidelines (v. 2.0). Surgery was performed under inhalation anesthesia with the mixture
of 2,5–3% isoflurane (Aerrane, Baxter HealthCare Corporation, Deerfield, IL, USA)
and of 97–98,5% atmospheric air using an animal anesthesia system (E-Z-7000 Classic
System, E-Z-Anesthesia® Systems, Palmer, PA, USA). After the stroke modeling using
endovascular middle cerebral artery occlusion method, the animals were kept separately
in a cage with a 37 ◦C heating pad to avoid additional injury and for better recovery after
surgery. The animals were intraperitoneally administered with 2 ml of saline solution in
order to avoid hypovolemia in the first hours after surgery, when the mobility of the animal
would be limited due to the severity of the condition. At the end of the observation period
(14 days after cell transplantation) and for histological examination (2 h, 3 and 7 days after
transplantation) the experimental animals were euthanized by inhalation anesthesia with
a lethal dose of isoflurane and by injection of a lethal dose of Zoletil.

Animal study design
The experimental ischemic stroke was induced in rats (n= 69) using the model of transient
middle cerebral artery occlusion (MCAO). The animals were tested using the Modified
Neurological Severity Scores (mNSS) 24 h after strokemodeling, before cell administration,
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and MRI study was performed in order to assess the severity of the rats’ condition, the
volume of brain damage, and the exclusion of complications of the model. Rats with
hemorrhagic complications were removed from the experiment in order to objectify
the evaluation of the data. Then animals were randomly divided into three groups:
control group—rats without cell therapy (n= 21); iNPCs IA—rats with intra-arterial
transplantation of iNPCs (n= 22, 11 for evaluation of the therapeutic efficiency and 11
for the study of cell distribution); iNPCs IV—rats with intravenous transplantation of
iNPCs (n= 26, 15 for evaluation of the therapeutic efficiency and 11 for the study of cell
distribution). Only the person responsible for the administration knew the classification
of the groups.

The therapeutic efficiency of iNPCs transplantation was estimated by the survival rate,
neurological deficit and stroke volume of animals within a 14 days period. The cells’
distribution was evaluated by histological examination of the rat brain. For histochemical
studies, rats were sacrificed at 2 h, 3 and 7 days after iNPCs transplantation using the
method described above. All manipulations (tests, cell administration and histological
examination) were assessed for all groups at the same time of the day to minimize potential
confounders, such as the order of treatments and measurements or animal/cage location
and treatment groups.

Stroke modeling
The experimental ischemic stroke was induced using endovascular transient (90 min)
MCAO developed by Koizumi (1986) and modified by Longa (Longa et al., 1989) as was
described in detail previously (Gubskiy et al., 2018). The accuracy of the MCAO and
possible complications were monitored by MRI guidance. The endovascular occlusion of
the middle cerebral artery was carried out by a blunt-ended silicon coating monofilament
(Doccol Corporation, Sharon, MA, USA; diameter of filament was 0.19 mm, length 30mm,
diameter of the tip 0.37+0.02 mm, length of the tip 3–4 mm). After removing the filament
and suturing the surgical wound the animals were injected 2 ml of saline intraperitoneally
and 0.2 ml of gentamicin intramuscularly and placed in a heated cage to recover from
anesthesia.

Cell transplantation
IA and IV cell transplantation was performed 24 h after stroke modeling as previously
described (Gubskiy et al., 2022). For the IA administration, the bifurcation of the right
common carotid artery was isolated and the pterygopalatine artery was ligated. A
microcatheter (rodent tail vein catheter with 1F (1/3 mm) diameter and 28 cm length,
Braintree Scientific, Inc., Braintree, MA, USA) filled with saline was inserted through the
stump of the external carotid artery into the lumen of the common carotid artery for
5–6 mm in the direction opposite to the blood flow. The transplantation of iNPCs was
performed through the microcatheter with the use of microinjector (Leica Microsystems
GmbH, Braintree, MA, Germany) at the speed of 100 µl/min. Importantly, the blood flow
in the common and internal carotid arteries was maintained during the transplantation to
avoid cerebral embolism. For the IV cell transplantation, the right femoral vein was exposed
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and amicrocatheter (rodent tail vein catheter with 1F (1/3 mm) diameter and 28 cm length,
Braintree Scientific, Inc., Braintree, MA, USA) was inserted. The transplantation of iNPCs
was performed at the speed of 250 µl/min to avoid pulmonary embolism. The density of
cell suspensions for IA and IV transplantations was 7 × 105 and 2 × 106 of iNPCs in 1 ml
of phosphate-buffered saline respectively. For the rats from the groups for the evaluation
of the therapeutic efficiency unlabeled iNPCs were administrated in order to avoid the
potential influence of the labels to the cells’ effect. Labeled cells were transplanted only into
the rats for the histological study for evaluation of cell distribution.

Neurological outcomes
The neurological deficit was estimated using the Modified Neurological Severity Scores
(mNSS) for animals with stroke on the 1st, 7th and 14th day after transplantation. The
mNSS combines a set of tests and allows to evaluate motor and sensory functions, reflexes
and balance (Schaar, Brenneman & Savitz, 2010). In each test one point is given for failure
and no points for success. The severity of stroke is estimated by the sum of points scored.
According to the mNSS scale the maximum number of points is 18, which corresponds to
themost severe neurological deficit, 12–18 points estimated as severe stroke, 8–12–moderate
stroke, 1–7–mild stroke.

MRI
The magnetic resonance imaging (MRI) was carried out using a 7T ClinScan system for
small animals (Bruker BioSpin, USA) under isoflurane inhalation anesthesia (3.5–4%
isoflurane mixed with pure oxygen). To perform stroke volume morphometry, T2-
weighted imaging was carried out at the 1st, 7th and 14th day after transplantation. MRI
morphometry was performed using ImageJ software (Rasband, W.S., ImageJ, National
Institutes of Health, Bethesda, Maryland, USA). The volume of the stroke (V) was analyzed
based on T2-weighted images by the summation of volumes measured in adjacent cross
sections according to the following formula: V= (S1 + . . .+ Sn)× (h + d), where S1, . . . ,Sn
is area measured on slice, h is the slice thickness, and d is the gap interval between slices.

Immunohistochemistry
Animals were sacrificed at 2 h, 3 and 7 days after the IA or IV transplantation of iNPCs by
inhalation anesthesia with a lethal dose of isoflurane and additional injection of a lethal
dose of Zoletil. After transcardial perfusion using 4% paraformaldehyde (PFA), the brains
were removed and post-fixed at 4 ◦C overnight in the same fixative, washed with PBS
and cryoprotected in the 30% sucrose solution. The coronal sections (40 µm thick) were
obtained at a cryostat microtome (Leica CM1900, Munich, Germany). The sections were
collected and stored for subsequent immunohistochemistry. The sections were incubated
in a mixture of 5% normal goat serum (Sigma-Aldrich, St. Louis, MO, USA), 0.3%
Triton x-100 (Sigma-Aldrich, St. Louis, MO, USA) and primary antibodies anti-RECA (rat
endothelial cell of the blood–brain barrier antibody) (1:200, ab264524, Abcam, Cambridge,
UK) or anti-EBA (endothelial cells of the blood–brain barrier antibody) (1:100, Biolegend,
San Diego, USA) in 0.01 M PBS (pH 7.4) at 4 ◦C overnight. Then sections were rinsed
with PBS and incubated with secondary antibodies (1:500, anti-mouse IgG Alexa fluor
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647, Invitrogen, USA) for 2 h at room temperature. Nuclei were counterstained with
DAPI solution (2 µg/mL, Sigma-Aldrich, St. Louis, MO, USA). Fluorescence confocal
micrographs were taken with the Nikon A1R MP laser scanning confocal microscope
(Nikon Instruments Inc., Tokyo, Japan). For the group of rats with IA iNPCs administration
the morphometric analysis of obtained images was carried out. The percentage of double-
labeled cells was calculated on the assumption of the total number of cells (cell nuclei) in the
histological section. The percentage of GFP+ and PKH26+ cells was calculated according
to the following formula: (labeled cells/total number of cells) × 100%.

Statistical analysis
Statistical analysis and data visualization were performed using Python 3.10 (Van Rossum &
Drake, 2009) in Jupyter Notebook (Kluyver et al., 2016). The normality of distribution was
evaluated by Shapiro–Wilk’s test. Animal survivalwas assessed by theKaplan–Meiermethod
using the Log Rank test (Davidson-Pilon, 2019). Two-way ANOVA was used to evaluate the
dynamics changes of the neurological deficit and stroke volume of experimental animals.
The values of mNSS score and stroke volume obtained on day 7 and 14 were normalized
based on the data obtained on day 1. The pairwise comparison of the groups with the
FDR correction with Benjamini–Hochberg method was performed. The final results are
presented after the pairwise comparison. The significance level was set at 0.05.

The sample size for the animal experiments was estimated based on the results of
our previous study of the therapeutic effects (mNSS) of neural precursor cells after IA
transplantation in MCAO rats (Namestnikova et al., 2021). The sample size was initially
estimated on the assumption of power = 0.8 and significance level p= 0.05 for three
groups with three measurements, and the calculations showed that the number of rats
in each group should be at least n= 6. Originally, the number of rats in each group was
planned to be n= 12 (two times more than calculated sample size), however, considering
the high mortality of rats from the control group (rats with experimental stroke without
any treatment) and the necessity to withdrawal rats for histological examination from the
groups with iNPCs transplantation, the number of rats in each group was increased and
was 21, 22 and 26 for the control group, IA and IV group respectively.

RESULTS
Cell culture characterization
Human iPSCs formed smooth edged colonies morphologically similar to embryonic stem
cells (ESCs). The colonies consisted of tightly packed cells with high nucleus-cytoplasm
ratio, immunopositive for the following pluripotency markers: TRA-1-81, SSEA4, Oct4,
Nanog (Fig. 1A). The cells had the ability to form embryoid bodies, and spontaneously
differentiate into the derivatives of three germ layers –mesoderm (vimentin+ cells),
ectoderm (pan-cytokeratin+ cells), and endoderm (α-fetoprotein+ cells) (Fig. 1B). Neural
differentiation of iPSCs was induced by dual SMAD inhibition that led to formation
of neural rosettes. The obtained iNPCs were immunopositive for neural markers Pax6,
Nestin, and Sox2 (Fig. 1C). For the in vivo cell tracking, iNPCs were transduced by
lentiviral vector expressing the GFP and additionally stained by the lipophilic dye PKH26.
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Figure 1 Characterization of the iPSCs and iNPCs cultures. (A) Immunocytochemical analysis of the
iPSCs for the pluripotency markers Oct4, Nanog, TRA-1-81, and SSEA4. The nuclei were counterstained
with DAPI. (B) iPSCs derived embryoid bodies (phase-contrast microscopy) and their differentiation into
the three germ layers derivatives –mesoderm (vimentine+ cells), ectoderm (pan-cytokeratin+ cells), and
endoderm (α-fetoprotein+ cells). (C) Characterization of iNPCs: phase-contrast microscopy, immunocy-
tochemical analysis for neuronal markers Pax6, Nestin, and Sox2. Scale bar, 100 µm. (D) Flow cytometry
analysis of GFP+ and PKH26+ cells, the efficiency of double cell labeling was 75.3± 5%.

Full-size DOI: 10.7717/peerj.16358/fig-1

The efficiency of transduction and cell labeling were determined by flow cytometry. The
fluorescence intensity of transduced (GFP+) cells presented on the abscissa (FL1 channel),
and PKH26+ labeled cells on the ordinate (FL2 channel). Accordingly, the efficiency of
iNPCs transduction was 79.3 ± 4% (gates QA2 and QA4), and efficiency of PKH26+
labeling cells was 91 ± 6% (gates QA1 and QA2). The percentage of double-labeled cells
was 75.3 ± 5% (gate QA2) (Fig. 1D).

Therapeutic efficiency of the iNPCs transplantation
The survival of animals after iNPCs transplantation was estimated over the period of 14
days. The Kaplan–Meier survival curves are presented at Fig. 2A. According to the results
of statistical analysis, the survival rate of animals from therapy groups was significantly
higher compared to the control group. No significant differences were found between
groups with different routes of iNPCs transplantation. Both IA and IV administration of
iNPCs improved animal survival rate (p≤ 0.05) compared to the control group.

The neurological outcomes were evaluated using the mNSS on the 1st, 7th and 14th day
post-transplantation. As seen from Fig. 2B, the dynamics of changes of the neurological
deficit in rats getting the IA or IV iNPCs transplantation differed significantly from that
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Figure 2 The therapeutic efficiency of iNPCs transplantation. (A) Kaplan–Meier survival curves for
experimental groups during a 14 days observation period. Both IV and IA iNPCs administration signif-
icantly improves the survival of experimental animals. (B) The dynamics of changes of the neurological
deficit according to mNSS in the experimental groups. The mNSS score was estimated on the 1st, 7th and
14th day after transplantation. The groups with IA and IV iNPCs administration did not differ signifi-
cantly between each other, but differed significantly from the control group. (C) The dynamics of changes
of the stroke volume estimated by the T2WI MRI during the 14 days period. The group with IA iNPCs
transplantation differed significantly from the iNPCs IV and control groups. The data are presented as
mean± SD. Asterisks (*) indicate significant differences (p≤ 0.05). Hashes (#) indicate significant differ-
ences (p≤ 0.05) between intra-arterial and intravenous transplantation.

Full-size DOI: 10.7717/peerj.16358/fig-2

in the control group (p≤ 0.05). However, no significant difference was revealed between
groups with different ways of iNPCs transplantation. Therefore, both routes of the systemic
administration of iNPCs seem equally effective.

The stroke volume was evaluated by MRI on the 1st, 7th and 14th day after
transplantation of iNPCs or vehicle (Fig. 2C). Only IA iNPCs transplantation led to
significantly faster and pronounced reduction of the stroke volume compared to the
control group during the observation period (p≤ 0.05). No significant difference in
the dynamics of stroke volume changes was found between the group with IV iNPCs
administration and the control group.
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Figure 3 Visualization of iNPCs in the brain 2 h after the IA transplantation. (A) The T2-weighted
brain MRI demonstrated the presence of the ischemic lesion (hyperintense zone in the right hemisphere).
(B) Confocal fluorescence images of rat brain from the area marked on (A). iNPCs double labeled with
PKH26+ (orange) and GFP + (green) cells visualized in the cerebral blood vessels (immunohistochemi-
cally stained in red colour by the anti-rat endothelial cell antibody (RECA)). Nuclei contrasted with DAPI
(blue). Scale bar, 50 µm. Bottom right insert: 3D-reconstruction of z-stacks demonstrated the iNPCs in-
side cerebral vessels. Double labeled cells are marked with the white arrow heads on merge images.

Full-size DOI: 10.7717/peerj.16358/fig-3

Cell distribution
In case of the IA administration of iNPCs, labeled cells were detected inside cerebral blood
vessels 2 h after transplantation (Fig. 3). Transplanted cells were distributed in the right
hemisphere in the infarct area and the peri-infarct zone.

Transplanted cells were found 2 h after IA administration in all experimental animals
(n= 3). The percentage of such cells was 2.2± 0.3% per histological section of the rat brain.
Subsequently, 72 h after IA administration just single cells remained inside the cerebral
blood vessels and were detected only in one rat from the experimental group (the total
number n= 4). Therefore, it can be concluded that the number of transplanted labeled cells
decreased over time (the example is given in Fig. 4). As can be seen from Fig. 4A 2 h after IA
administration the transplanted iNPCs were detected in several blood vessels, whereas after
72 h (Fig. 4B) only single labelled cells were observed. Remarkably, within 72 h after cell
administration human iNPCs were visualized inside cerebral blood vessels in contact with
their inner wall (vessel were immunostained for the endothelial barrier antigen (EBA)) and
the migration of transplanted cells through the structure of the blood–brain barrier into
the brain parenchyma were not observed. After 7 days post-transplantation labeled iNPCs
were not detected in the brain in all experimental animals (n= 4).
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Figure 4 The reduction of the number of transplanted iNPCs in the rat brain 72 h after IA adminis-
tration. Confocal fluorescence images of rat brain 2 h (A) and 72 h (B) after the IA transplantation are
presented. iNPCs double labeled with PKH26+ (orange) and GFP+ (green) were detected inside cere-
bral blood vessels (immunohistochemically positive for the endothelial brain antigen (EBA)). Nuclei con-
trasted with DAPI (blue). Scale bar, 50 µm.

Full-size DOI: 10.7717/peerj.16358/fig-4

Figure 5 Histological images andMRI of the rat brain with experimental ischemic stroke 2 h after iN-
PCs IV transplantation. (A–E) Confocal fluorescence images of the brain slices. GFP + (C) and PKH26+

(D) cells were not detected in the brain parenchyma and inside cerebral vessels stained with endothelial
barrier antigen, EBA (E). Scale bar, 2,000 µm. (F) - T2-weighted MRI, the red dotted line indicates the is-
chemic lesion.

Full-size DOI: 10.7717/peerj.16358/fig-5

In the case of IV administration of iNPCs, labeled cells (GFP+ and PKH26+) were not
detected in the brain 2 h (n= 4) after injection, as well as on the 3rd (n= 4) and 7th day
(n= 3) after transplantation (Fig. 5).
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DISCUSSION
In this study, systemic (IA and IV) transplantation of iNPCs into rats 24 h after experimental
ischemic stroke modeling were performed. Both IA and IV administration of iNPCs in
the acute phase of ischemic stroke reduced the mortality of experimental animals and
contributed to the improvement of neurological deficit. Therefore, the obtained results
have confirmed the effectiveness of iNPCs systemic administration. Although there was
no significant difference between the groups with IA and IV cell administration in the
dynamics of the neurological deficit reduction, at the day 14 post-transplantation there was
a tendency towards a more pronounced effect after IA cell transplantation. The revealed
trendmakes it relevant to conduct further studies with larger samples and a large number of
tests to clarify this issue. At the same time, according to the MRI data the IA administration
was more efficient and led to faster and more prominent reduction of the stroke volume.

In the vast majority of studies, the therapeutic efficacy of NPCs was estimated after
intracerebral transplantation, while the information of the effectiveness of systemic
administration is limited (Kokaia & Darsalia, 2018; Baker, Kinder & West, 2019; Surugiu et
al., 2019; Zhang et al., 2022; Yang et al., 2022). The intracerebral stereotaxic administration
of NPCs in the acute phase of stroke may be challenging, while systemic administration
seems more appropriate. This assumption is supported by the results of Doeppner et al.
(2015), who tested six different routes of NPCs delivery and concluded that systemic,
especially IV transplantation, is an attractive and effective strategy for stroke therapy. IV
transplantation of iNPCs was used in several other studies. In the study of Watanabe et
al. (2016), human iNPCs were intravenously transplanted into rats 6 h after MCAO. The
authors observed better functional recovery of animals and neuroprotective effects, which
they attributed to better regulation of early inflammatory events in the cerebral ischemia
condition. Doeppner et al. (2014) also demonstrated the improvement of post-stroke
functional recovery after IV transplantation of murine adult subventricular zone-derived
NPCs in the acute periods of stroke. The authors explained the positive therapeutic effects
by the stabilization of the blood brain barrier and the modulation of immune response. In
this study, the impact of IV iNPCs transplantation on the rate of the reduction of stroke
volume was not revealed. At the same time Cheng et al. (2015) showed better neurological
outcome without the reduction of cerebral infarct volume after IV administration of a
mouse-derived cell line of NPCs after transient ischemic stroke in adult rats, which is in
accordance with the results of the current study. The reason for different effects of NPCs
transplantation on the stroke volume reported by various authors remains unclear.

In our study, IV transplantation of iNPCs significantly improved the survival rate and
neurological deficit of the experimental animals compared to the control group. Despite
the significant therapeutic effects after IV iNPCs administration, transplanted cells were
not detected in the brain within the observation period (14 days). The absent or poor cell
engraftment in the brain has been demonstrated for different types of stem/progenitor cells
after IV administration and may be partially explained by the entrapment of transplanted
cells in peripheral organs (Lappalainen et al., 2008; Fischer et al., 2009; Sanchez-Diaz et al.,
2021; Nose et al., 2021; Cherkashova et al., 2023). Interestingly, there are evidences that
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transplanted cells may mediate their therapeutic effects targeting internal organs, for
instance lungs (De Witte et al., 2018) or spleen (Acosta et al., 2015; Wang et al., 2019; Xu et
al., 2019). Moreover, NPCs are capable of releasing of many different soluble factors into
the bloodstream (paracrine effect), which can mediate post-stroke recovery (Willis et al.,
2020). There are many potential mechanisms of paracrine cells’ action and among them
the neuroprotection, angiogenesis, and immunomodulation are the most feasible (Andres
et al., 2008). Notably, all these mechanisms are based on the assumption that transplanted
cells through releasing of different factors and molecules (for instance vascular endothelial
growth factor (VEGF), brain-derived neurotrophic factor (BDNF), nerve growth factor
(NGF), epidermal growth factor (EGF), insulin-like growth factor (IGF)) act on the
surviving of neurons of the host brain tissue, as well as on the glial and immune cells.
Some experiments have shown, that IV administration of NPCs reduced inflammation and
tissue injury without reaching the brain, and provided a peripheral immunosuppression by
bystander inhibitory effect on T cell activation and proliferation in lymph nodes (Ben-Hur,
2008; Hermann et al., 2014; Kokaia, Llorente & Carmichael, 2018). In another study the
authors discovered the ability of NPCs to interact with the organs of the immune system
that led to the reduction of neurologic deficit and brain edema after IVNPCs administration
in a rat model of hemorrhagic stroke (Lee et al., 2008). They screened inflammatory
cytokine levels in spleen and lymph nodes, and found that NPCs attenuated the splenic
inflammatory activations including TNF-α, IL-6, and NF-κB. NPCs also decreased the
number of TNF-α-expressing macrophages in spleen. Thus, authors suggested, that IV
NPCs administration can attenuate systemic inflammatory response after stroke and protect
the brain by indirect mechanism (Lee et al., 2008). Some studies demonstrated NPCs -
induced neuroprotection and angiogenesis. The neuroprotective effects accompanied by
increased in vivo bioavailability of neurotrophins such as nerve growth factor (NGF),
brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), and glial-
derived neurotrophic factor (GDNF) by IV transplanted NPCs. Induced the proliferation
of existing vascular endothelial cells (angiogenesis) and mobilization and homing of
endogenous endothelial progenitors (vasculogenesis) by increasing the levels of angiogenic
factors, such as vascular endothelial growth factor (VEGF), fibroblast growth factor-2
(FGF-2), and chemoattractant stromal cell-derived factor - 1 (SDF-1) (Andres et al., 2008;
Hamblin et al., 2021).

Targeted cell delivery to the brain circulation can be achieved by IA transplantation
(Malysz-Cymborska et al., 2021; Guzman, Janowski & Walczak, 2018; Namestnikova et al.,
2021). Nowadays, this route of administration may be successfully translated to the clinical
settings due to the widespread use of endovascular treatment of acute ischemic stroke
(Griauzde et al., 2019; Powers et al., 2019; Berge et al., 2021). It should be noted that the IA
cell infusion may lead to cerebral embolism and requires precise selection of the infusion
parameters (Boltze et al., 2015; Guzman, Janowski & Walczak, 2018). The most important
determinants of the safety of stem cell transplantation are the cell size and speed of cell
infusion (Janowski et al., 2013). For example, it was shown that the IA transplantation of
MSCs due to their large size (up to 25 µm) requires very precise selection of infusion
parameters in order to prevent overdosing and cerebral cell embolism, while IA infusion
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of glial progenitor cells is considered to be more safe as the cell size is relativity small (up to
10 µm) (Janowski et al., 2013; Porterfield, 2020). The iNPCs assessed in this study have the
same cell diameter as the glial progenitor cells. Nevertheless, the particular attention was
paid on the safety of cell transplantation and therefore the infusion parameters that were
selected based on the literature data (Guzman, Janowski & Walczak, 2018) and the results
of our previous works (Namestnikova et al., 2017; Namestnikova et al., 2021; Gubskiy et al.,
2022). Moreover, in the current study, the safety of the IA administration was controlled by
performing DWIMRI before and after cell infusion, and no embolic strokes were detected.

In our study, transplanted cells were distributed in the right hemisphere in the infarct
area and the peri-infarct zone after IA administration. Despite the rapid elimination
(within 7 days) of transplanted cells from cerebral vessels, the prolonged therapeutic effects
were observed, as in the case of IV administration. The obtained data are in accordance
with our previous research where was tested the influence of intra-arterially injected
NPCs obtained from human MSCs in rat MCAO model (Namestnikova et al., 2021). In
that study, short-term (2 days) presence of transplanted cells was also observed inside
cerebral blood vessels which resulted in pronounced functional recovery together with the
significant reduction of the infarct volume. Recently, another study of Zhai et al. (2022)
was demonstrated that IA injection of native and pretreated with neuregulin 1β NPCs
derived from human MSCs improved neurological outcome in MCAO rats. However,
only administration of pretreated with neuregulin 1β NPCs led to significant reduction of
infarct volume and the extent of the cerebral cortical neuron injuries and mitochondrial
damage. Besides neuregulin 1β several other ways to improve the therapeutic efficacy of the
intra-arterially transplanted NPCs have been made. Among them magnetic cell targeting
(Song et al., 2015), BDNF pretreatment of injected NPCs (Rosenblum et al., 2015), and cell
sorting for isolation of CD49d-positive NPCs (Guzman et al., 2008) resulted in higher
cell engraftment and greater functional recovery when compared to unmodified NPCs.
Nevertheless, in the present study IA transplantation of unmodified NPCs derived from
iPSCs demonstrated pronounced therapeutic efficacy.

In the present study, any side effects of human iNPCs transplantation were not observed,
including clinical signs of immunological rejection and teratoma formation, however,
further investigations with a long-term follow-up period are needed in order to translate
this technology into clinical practice.

CONCLUSIONS
IA and IV iNPCs transplantation 24 h after stroke modeling resulted in equal degree of
the improvement of function outcomes in experimental animals. However, the IA iNPCs
delivery resulted in faster reduction of the stroke volume. After IA administration we
observed transient trapping of iNPCs in the brain, while after IV injection no transplanted
cells were found within the brain. Obtained data demonstrate that long-term presence
of transplanted iNPCs in the brain is not necessary for maintaining continued functional
recovery after stroke. Thus, it can be concluded that systemic transplantation of human
iPSC-derived NPCs in the acute phase of ischemic stroke can be a promising therapeutic

Cherkashova et al. (2023), PeerJ, DOI 10.7717/peerj.16358 16/25

https://peerj.com
http://dx.doi.org/10.7717/peerj.16358


strategy. Further studies are required in order to provide the translation of this approach
into clinical practice, including assessment of mechanisms of iNPCs action within a longer
observation period.
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