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ABSTRACT

Protein kinase activity forms the backbone of cellular information transfer, acting both
individually and as part of a broader network, the kinome. Their central role in signaling
leads to kinome dysfunction being a common driver of disease, and in particular cancer,
where numerous kinases have been identified as having a causal or modulating role in
tumor development and progression. As a result, the development of therapies targeting
kinases has rapidly grown, with over 70 kinase inhibitors approved for use in the clinic
and over double this number currently in clinical trials. Understanding the relationship
between kinase inhibitor treatment and their effects on downstream cellular phenotype
is thus of clear importance for understanding treatment mechanisms and streamlining
compound screening in therapy development. In this work, we combine two large-scale
kinome profiling data sets and use them to link inhibitor-kinome interactions with cell
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INTRODUCTION

Computational drug screening has recently emerged as a powerful approach to integrate
vast amounts of cancer cell line multi-omics data into predictive models, with the goal
of predicting downstream phenotypic responses such as growth and viability. Advancing
rapidly with recent developments in machine learning, these methods have the potential
to predict outcomes for large drug libraries with minimal experimental cost, reducing
the number of drug candidates fed into downstream validation efforts. Most current
approaches to the prediction of drug response use baseline cell-line multi-omics data (e.g.,
mutation status, gene expression, copy number variation, efc.) and quantitative structure-
activity relationships (QSAR) to map drug structure characteristics onto their biological
phenotypes. However, information describing drug-target interactions, especially at the
protein level, remains underutilized due to the unique nature of associated data acquisition
methods. For example, the recent DREAM challenge (Costello et al., 2014) hosted by the
National Cancer Institute (NCI) for drug-response predictions saw the winning team utilize
high throughput drug screening data along with baseline gene expression features (Gonen
¢ Margolin, 2014) and achieved at most 80% accuracy in predicting cell line responses in
a binary, yes/no fashion.

As a central component of cellular information transfer, protein kinases are enzymes that
have also shown (Gambacorti-Passerini et al., 2011) promise as therapeutic targets, with
initial success being found through the development of Imatinib (Gleevec). Drugs that
inhibit kinases (“kinase inhibitors”) are now one of the fastest growing clinical drug classes
(74 FDA approved as of 2022), but around 1/3rd of all known kinases still have relatively
unknown function and few chemical tools exist to interrogate and expand this knowledge.
To explore the potential of the kinome as a therapeutic target, recent work has focused on
profiling the full breadth of targets for kinase inhibitors, especially since many inhibitors
have significant off target effects as a result of targeting the conserved ATP-binding pocket.
Continued improvements in high-throughput assays such as Kinobead/MS (Reinecke et
al., 2019), KINOMEscan ((©)DiscoverX), and KiNativ (Patricelli et al., 2011) now enable
measurement of a given inhibitor’s interactions across 250-500 kinases, providing a
snapshot of its effect on the physiological kinome. We refer to this kinome-wide profiling
data as the “kinome inhibition state” of a given inhibitor. This ability to generate drug-target
interaction data on a large scale for a compound class is relatively unique, providing a novel
means to leverage knowledge of off-target effects for drug response prediction.

The DepMap portal database (Corsello et al., 2020) contains thorough multi-omic
characterization of ~1,000 cancer cell lines of all types, and corresponding cell viability
measurements for about ~1,500 repurposed compounds, ~250 of which are kinase
inhibitors. Using this data, we can connect kinase inhibitor phenotypes of cell viability
to their “kinome inhibition states” and build models to predict the cellular responses to
treatment with different kinase inhibitors. We have previously shown that these kinome
states obtained solely through the kinobeads assay for clinical inhibitors are highly predictive
of cancer cell viability, and also validated these predictions experimentally (Berginski et
al., 2022). However, the kinobeads assay is unique and requires dedicated lab personnel
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to run, restricting its use to relatively few labs. In contrast, the KINOMEscan assay is a
popular and easily accessible commercial alternative that assays a panel of ~500 native and
mutant kinases recombinantly. Large amounts of KINOMEscan data have been deposited
online by various groups (Koleti et al., 2018; Wells et al., 2021), including data for inhibitors
developed against understudied kinases. These altogether account for four times as many
inhibitors profiled (~800) when compared to the data available from the kinobeads assay,
representing a massive expansion of publicly available inhibitor state data. However, due to
the uncharacterized nature of the inhibitors in the large KINOMEscan data set, only a small
number of them (~40) have been tested in the DepMap screening database, compared to
~200 inhibitors from the kinobeads set.

In this work, we describe a framework to create an integrated kinome inhibition state
data set by combining kinobeads and KINOMEscan data, and then leverage the entirety of
this data into predictive models. This combined set contains single-dose inhibitor profiling
data for a total of ~800 kinases and kinase interacting proteins, spanning almost 1,000
kinase inhibitors that target a diverse section of the overall kinome space. When leveraged
within a machine learning framework, and supplemented with baseline gene expression
data, we are able to predict the sensitivity of ~450 cancer cell lines in the DepMap
screening dataset, with a reasonable R? of ~0.7. Using this model, we were able to generate
sensitivity predictions for 1.2 million inhibitor-cell line combinations, many of them
targeted towards understudied kinases. We then experimentally validated these predictions
in well characterized breast cancer cell lines seen by the model, as well as primary derived
pancreatic cancer cell lines. We find reasonable agreement between predicted and observed
outcomes in most compounds, seeing an expected drop in performance for understudied
compounds and unique patient-derived cell lines. Together, these results show that there
is a strong and predictive relationship between the state of the kinome (its “kinotype”)
and downstream cellular phenotypes, while further suggesting potential opportunities for
leveraging computational models in inhibitor therapy design.

METHODS

Portions of this text were previously published as part of a preprint (https:/www.biorxiv.
org/content/10.1101/2022.12.06.519165v1).

Data sources
The primary data sources we used can be split into two categories: the integrated kinome
profiling data set and the cancer cell line set:
The following were downloaded from the respective Supplementary Materials to create
the integrated set of kinome profiling data:
1. Kinome profiling data from the kinobeads assay
a. Klaegeretal. (2017)
2. Kinome profiling data from KINOMEscan assay
a. LINCS: kinome profiling datasets for individual compounds downloaded
programmatically from http:/lincs.hms.harvard.edu/db/datasets/(Koleti et al., 2018)
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b. Kinome profiling data for the PKIS drug set was downloaded from the
Supplementary Data of https:/journals.plos.org/plosone/article?id=10.1371journal.
pone.0181585 (Drewry et al., 2017)

c. Kinome profiling data for the KCGS drug set was downloaded from the
Supplementary Data of https:/www.mdpi.com/1422-0067/22/2/566 (Wells et al.,
2021) and from internal data provided by SGC-UNC.

The following were downloaded from the DepMap portal (https:/depmap.org/portal/
download/ll)) to create the set of cancer cell line sensitivities and their gene expression
characteristics:

1. DepMap secondary repurposing screen (‘“‘secondary-screen-dose—response-curve-
parameters.csv’)
2. CCLE gene expression set (“CCLE_expression.csv’”)

The high-throughput screening data gathered in PDAC patient-derived cell lines was

gathered from Lipner et al. (2020) with methods as described in Berginski et al. (2021a).

Data preprocessing
The scripts implementing these descriptions are all available through github.

Klaeger et al. Kinobead Kinase Inhibition Profiles: As previously described (Berginski et
al., 2022), we read the values from the Supplemental Data table into R and produced a
filtered list of kinase and kinase interactor relative intensity values. We imputed missing
values with the default “no interaction” value of 1, and truncated likely outlier values to
the 99.99 percentile (3.43).

KINOMEscan Inhibition Profiles: We read in the three datasets mentioned above into R
and concatenated them into a single combined data set. All the individual data sets contain
identical protein lists because of the same assay type. Values are reported as “Percent
Control”, a ratio of protein pulled down in experimental condition (with inhibitor) vs
control condition (without inhibitor). These were divided by 100 to convert the scale to
0—1 to match the Kinobeads relative intensity data.

Creating the Combined Kinome Inhibition Profiling Set: We took the kinobeads dataset
and the KINOMEscan dataset and concatenated them into one large set containing
inhibitor-kinase interaction states for ~800 total kinases and kinase interactors. We left out
assays that included recombinantly mutated kinases but left those with naturally occurring
post-translational modifications. The vast majority (99.95%) of the inhibitor-kinase pairs
represented was unique for either assay type, but for the 0.05% inhibitor-kinase pairs, we
took the mean value of the measurements across the two assay types. Additionally, any
missing values were imputed with the default “no interaction” value of 1. In the end we
were left with kinome inhibition states for ~1,000 kinase inhibitors.

Dataset of Cancer Cell Line Sensitivity to Drugs from DepMap: The DepMap repurposing
dataset contains cell viability measurements across multiple doses, but since our dataset
of kinome states is restricted to single-dose measurements, we extracted single summary
statistics of cell line sensitivity to kinase inhibitors: Dose-response area under the curve
(AUC) and half-maximal inhibitory concentration (ICsy). We extracted these by reading
in the “secondary-screen-dose—response-curve-parameters” dataset into R, which contains
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curve parameters for a log—logisitic curve fit to the cell viability dose response curve and
filtered it down to cell line name, ICsy, AUC and other associated metadata.

Matching of Kinase Inhibitors between Profiling Dataset and Cell-Line Sensitivity Dataset :
The compound names from each dataset were read into R, and the package Webchem (Szics
et al., 2020) was used to retrieve PubChem compound IDs. The two sets of compound
names were then matched based on these reference IDs. There were 252 matches between
the two sets, forming a final set of ~70,000 inhibitor-cell line combinations.

Baseline Gene Expression: As described before (Berginski et al., 2022) the RNAseq data
provided in the “CCLE_expression.csv” file needed no modifications while preprocessing.
Our only modification was to add identifiers to each gene label (“exp_"), to ensure that
kinome inhibition data and expression data related to the same gene weren’t accidentally
combined.

String: The STRING database (Szklarczyk et al., 2021) was processed as described
previously (Berginski et al., 2022) to annotate kinases and kinase interacting genes.

Modeling techniques
To assess our models we used a random 10-fold cross validation strategy. The number
of features was varied as specified by the feature selection scheme described in the results
section. We compared the performance of three model types using this strategy: LASSO
(Least Absolute Shrinkage and Selection Operator) regression using the glmnet engine
(Friedman, Hastie ¢ Tibshirani, 2010), random forest using the ranger engine (Wright ¢
Ziegler, 2017) and gradient boosting using the XGBoost (eXtreme Gradient Boosting)
engine (Chen ¢~ Guestrin, 2016). Model performance was assessed by the R? value between
predicted and actual outcome within the cross-validation scheme. For each model type, we
tuned sets of 30 hyperparameters to find the best possible performer as follows:
1. LASSO

a. Penalty (1IE—10-0.9)
2. Random Forest

a. Trees (100-2000)
3. XGBoost

a. Trees (100-1000)

b. Tree Depth (4-30)

After final model selection, we fit the model on the entire dataset and then made

predictions on inhibitor-cell line pairs not found in the original DepMap screening data.

Compound testing

BT-474, HCC1806, SUM-159 and SKBR-3 cells were assayed as described previously
(Berginski et al., 2022). Briefly, cells were grown in ATCC recommended media and seeded
in triplicate at 4000, 2000, 4000 and 500 cells per well respectively. 24 h after seeding, cells
were treated with inhibitors at 30 WM, 3 uM, 1 uM, 300 nM, 100 nM, 30 nM, 10 nM, and
3 nM, along with the appropriate DMSO controls. seeded at, in white flat-bottom 96-well
plates (Corning). Seventy-two hours post-treatment, cells were lysed with CellTiter-Glo
(Promega) and luminescence was read using the PHERAstar FS microplate reader (BMG
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Labtech) and gain adjustments were conducted for each cell line. Notably, we used a 3-day
treatment period instead of the 5-day treatment period used in the highly multiplexed
PRISM assay, since we saw over-confluence in our 96-well plate assay in times longer than
3 days. However, it is likely that summary measures of trends in response like IC50 and
AUC are minimally affected by the small difference in treatment times. Data were averaged
over replicates normalized row-wise to the DMSO-only (0.1% on cells) control samples on
each plate to calculate relative viability. Quality checks were performed to look at the data
distribution and the presence of spatial bias on a plate. A quality control metric of <120%
of DMSO was applied to all rows analyzed. The full file of cell viability curves is available
in Table S1.

The functions “ComputeAUC” and “ComputelC50” from the R package dr4pl
(Gadagkar ¢ Call, 2015) was used to fit a four-parameter log—logistic curve to the cell
viability data, and extract AUC and ICs; values from the 9-point cell viability curves.

RESULTS

Creating an integrated set of kinome profiling data across a wide
chemical space

Kinase inhibitors have been profiled using a number of assays, but for this study

we have focused on a specific subset of kinase inhibitors that have been assayed
using the kinobead/MS-based method (Klaeger et al., 2017) or the KINOMEscan(®)
(DiscoverX) method. These methods assess their specific kinase targets as well as the
magnitude of inhibition of each kinase in response to different inhibitor concentrations
(Klaeger et al., 2017). We combined kinome profiling datasets from Klaeger et al. (2017)
(Kinobeads), LINCS (Koleti et al., 2018) (KINOMEscan), and UNC (Drewry et al., 2017)
(KINOMEscan), filtering down to profiles measured only at 1uM. For the small amount
of overlap between datasets, the mean inhibition value was taken across drug-kinase
combinations. Given that both assays measure the engagement of inhibitors to kinases,
most of the proteins that appear in assay results are either known kinases or closely
associated proteins. Specifically, kinase inhibitor profiles include measurements on all
wild-type and phosphorylated kinases (~500), along with a set of associated proteins
(~300). As such, we will refer to this data as “kinase inhibition states”, and the profile of
each individual drug as its “kinome inhibition state” (Fig. 1A).

After integration, we were left with a final set of ~1,000 compounds with corresponding
information on their inhibitor-induced kinome states, describing changes in ~800 kinases
and kinase interactors. To summarize the relationship between inhibition states induced
by all inhibitors, we performed a UMAP dimensionality reduction (McInnes et al., 2018)
on the dataset, only using kinases profiled in both assays for visualization (Fig. 1B). The
UMAP coordinates represent the aggregate effect of each inhibitor on the kinome, i.e., it
is a representation of the uniqueness of its kinome inhibition state. Inhibitors that have
similar effects on the kinome will have similar coordinates, while disparate inhibitors will
have coordinates that are far apart. Using this, we can examine the diversity of kinome
space targeting in our dataset, based on the origin of kinome profiling data. Our analysis
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shows that integrating KINOMEscan data for 800 inhibitors vastly increases the kinome
space targeted (Fig. 1B), compared to kinobeads alone.

However, it is important to note that despite the similarity in the assay readouts, the
KINOMEscan and kinobeads assays are very different molecularly, and care needs to be
taken while integrating these assay types. To assess the degree of difference between the
two assay types, we retained all kinases captured by both assays (~250) and measured

Pearson’s correlation of inhibition states for the same compound between both assays. We

found a reasonable degree of correlation (Pearson’s R ~0.5) across all data. In addition,
we additionally found a much higher degree of agreement between data types (90%) when
both assays were cut off at 80% inhibition (a “strong” hit in either assay) (Fig. S1). As a
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result, keeping in mind the advantages of integrating both assay types, we moved forward
with connecting these integrated kinome inhibition states to cell line responses.

Connecting inhibited kinome states to cancer cell line sensitivities
from the DepMap repurposing screen

To connect these kinase inhibitors and their induced inhibition states with their
corresponding phenotypes in cancer cell lines, we make use of the DepMap repurposing
screen, which uses the PRISM assay (Y et al., 2016) to run highly multiplexed cell viability
assays. This dataset contains cell viability measurements for over 1,500 drugs profiled

in 450 cell lines. From within this data, we found ~200 drugs for which we also have
corresponding profiling data as described above.

The DepMap repurposing dataset provides cell viability measurements across multiple
drug doses. However, since our dataset of kinome states is restricted to single-dose
measurements, we extracted two single summary statistics for describing cell line sensitivity
to kinase inhibitors (Fig. 1C): Dose-response area under the curve (AUC) and half-maximal
inhibitory concentration (ICs). These properties are highly correlated with each other,
having a Pearson’s correlation coefficient ~0.9 (Fig. 1D). We extracted these properties
from DepMap and matched them to our kinome states. The final integrated dataset
has ~250 drugs tested across ~450 cell lines, representing ~70,000 inhibitor-cell line
combinations representing nearly all cancer types.

Examining bivariate association of features to cell line sensitivities
provides a means for feature selection

The 450 cell lines tested in the DepMap dataset also have accompanying baseline RNAseq
gene expression data, so we integrated the ~20,000 TPM values for each cell line into
the kinome-state and cell line sensitivity dataset. This adds baseline cell line-specific gene
expression information to our cell line agnostic inhibitor-induced kinome states.

To identify which features were most correlated with drug sensitivity, we examined
bivariate associations of each of the ~21,000 features (kinome inhibition states, baseline
gene expression, gene essentiality, protein expression and copy number variation) were
compared individually to the outcome of cell line sensitivities (dose response AUC
and ICsp), and their Pearson’s R correlation was calculated. We additionally calculated
Spearman’s correlation coefficients, and ensured all correlated features were significant at
the 0.5 level. The full table of feature correlations with significance values is attached in
Table S2. We found that the most correlated feature is the drug-induced kinase inhibition
state of TP53RK with a correlation coefficient R ~0.3, while the most correlated baseline
gene expression value was OGFRL1 with a correlation coefficient R ~0.05. Overall,
inhibitor-induced kinome states showed stronger correlation with cell line sensitivity
metrics (Fig. 2A) despite there being 40x more baseline gene expression features than
kinome states. However, it is important to note that this large difference in overall
correlation may be partly due to the sample imbalance in abundance of kinome inhibition
states (~200 per cell line) compared to baseline gene expression (one per cell line).

After exploring the relationship between features and cell line sensitivity, we sought to
use machine learning models to integrate these features into predictive models of cell line
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sensitivity to kinase inhibitor treatment. To create a feature selection metric, all features
were ranked by the absolute value of their Pearson’s correlation to the cell sensitivity
outcomes. Features were incorporated into models based on this ranking, i.e., including
only a top-ranked subset of best-correlated features. Seeking models with the best balance
of predictive power and feature number, we tested model performance with different
numbers of features, again selected starting from the most informative feature. We tested
models with 100, 200, 300, 400, 500, 1,000, 2,000, 3,000, 4,000, and 5,000 features to see
how adding more and more lower ranked features affected model performance. Figure 2B
shows the ranking for all the feature sets, and the order they are added into the model.

Machine learning models predict cancer cell line sensitivity from a
combination of kinome inhibition states and baseline transcriptomics
To build machine learning models to predict cancer cell line AUC and ICs in response to
treatment with kinase inhibitors, the highest ranked 100-5000 features were selected from
the dataset linking drug-induced kinome states to cancer cell line responses (Fig. 2B). We
compared three model types: LASSO regression, random forest and XGBoost. All models
were trained with 10-fold random cross validation to minimize overfitting on the training
data. Here, 10% of the dataset was randomly sampled and held out for testing, with the
remaining 90% used for training. This was repeated ten times, and model performance was
averaged across all the ten folds. This ensures comparable accuracy of the model predictions
on new kinase inhibitors and cell lines. For each “batch” of feature numbers modelled
from 100-5,000 we tuned sets of 30 hyperparameters for all model types (Fig. 3A). The R?
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tegrating single-dose kinome profiling data. (A) Model performance metrics (R?) for LASSO (orange
dot), Random Forest (green triangle) and XGBoost (blue square). (B) Scatterplot of predicted ICs, values
from the best-performing model vs actual ICs values. The red line indicated a smooth fit through the data
points. (C) Horizontal bar plot showing model importance of individual kinase inhibition states by shap-
ley values. (D) Horizontal bar plot showing model importance of individual baseline gene expression by

shapley values.
Full-size & DOI: 10.7717/peerj.16342/fig-3

value between predicted and actual value was utilized as the metric for model comparison.
Overall, the 5000 feature XGBoost model performed the best with a cross-validation R? of
~0.7 (Fig. 3B).

Since tree-based machine learning models like XGBoost offer in-built explainability, it
is possible to interrogate and explain which features were most important in predicting
the outcome of cell line sensitivities. These importances generated via Shapley values
(Rozemberczki et al., 2022) show kinase inhibition states to be overwhelmingly more
important for predicting cell line responses when compared to baseline gene expression.
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Kinases involved in cell cycle and proliferation are overrepresented in the top 25 features
(Fig. 3C) (MAP2K, MEK2, CDKLS5 etc.), and we further annotated each kinase with
whether they are considered by current NIH guidelines as understudied (“Dark”) or well-
characterized (“Light”) (Berginski et al., 2021b; Oprea et al., 2018). Interestingly four kinase
interactor proteins are included as well, suggesting that interactions between inhibitors
and non-kinases (off-target effects) have important consequences for cell viability. Baseline
gene expression features show much lower model importances (Fig. 3D), but 40% of the
top 25 genes have known interactions with kinases whose inhibition states are used in the
model.

Inclusion of various multi-omics data with kinome inhibition states
and gene expression did not improve model predictive performance
In addition to the baseline gene expression data, all the cell lines in the DepMap database
have three other profiling data types available: copy number variation, gene essentiality from
CRISPR/KO, and baseline proteomics. To see if inclusion of these data into models would
improve predictions, we integrated these with the modeling dataset of kinome inhibition
states and gene expression and used identical modeling strategies described above to select
correlated features, build, and evaluate LASSO, random forest, and XGBoost models
(Fig. S2). We found that adding in the various multi-omic data types did not significantly
outperform the models limited to kinase inhibition states combined with baseline gene
expression (R? of ~0.69 for predicting ICsy).

Experimental validation of model predictions were successful in
characterized and novel cell lines

After fitting the model on 70,000 cell line-drug combinations, predictions were made on 1.2
million unseen (not previously seen by the model) drug-cell line combinations (Fig. 4A).
Approximately 90% of the untested inhibitors were associated with KINOMEscan datasets.
As an initial validation, we tested a subset of the predictions in well-characterized breast
cancer cell lines, two unseen by the models and two previously seen (HER2 positive: SK-
BR-3, BT-474 and two triple negative: SUM159, HCC1806). We analyzed the performance
of the model on experimental data for unseen drug-cell line combinations, arriving at an R
value ~0.6 for all but one (SKBR3) breast cancer cell line (Fig. 4B). Notably, all the drugs
tested had kinome profiling data from the Kinobeads assay.

We then further validated the model by predicting inhibitor effects from collected
RNAseq data in tumor (two samples) and stroma (one sample) derived cell lines from
PDAC patients (Lipner et al., 20205 Berginski et al., 2021a). Importantly, these patient-
derived cell lines were profiled for baseline gene expression in-house and represent a
challenging and highly heterogeneous transcriptional landscape which the model has not
seen before. Dose-response AUC predictions were made by the model for 58 drugs with
kinome profiling data from the Kinobeads assay and 18 drugs with kinome profiling data
from the KINOMEscan assay. The model predicted AUCs were compared to experimentally
generated AUCs, revealing an average R ~0.5 for drugs with kinome profiling data from
the Kinobeads assay tested in patient stroma-derived cell lines (Fig. 4C), and R ~0.4 for
drugs with kinome profiling data from the KINOMEscan assay. On the other hand, in
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Figure 4 Experimental validation of model in breast cancer cell and patient-derived PDAC cell lines.
(A) Visualization of the space of compound (Y -axis) and cell line (X -axis) combinations that have been
tested (white) and not tested (black) with colors denoting the origin of the drug kinome profiling data as
Kinobeads (Pink) and KINOMEscan (blue). (B) Scatter plot showing relationship between AUC’s pre-
dicted by model and experimentally generated AUC’s for drugs not yet tested by PRISM in breast can-

cer cell lines (C) Scatter plot showing relationship between AUC’s predicted by model and experimentally
generated AUC’s for drugs from Kinobeads and KINOMEscan tested in primary-tumor and stroma PDAC

cell lines.
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patient tumor-derived cell lines, drugs from kinobeads had model accuracy R ~0.49, and
drugs from KINOMEscan had R ~0.3 (Fig. 4C).

DISCUSSION

Kinase inhibitors are one of the fastest growing classes of targeted cancer therapies, but
only a small fraction of the druggable kinome has been explored to date (Laufer ¢ Bajorath,
2022). We have previously used data describing kinobeads-derived kinome inhibition states
to predict cell viability in cancer cell lines in response to clinical kinase inhibitors and shown
high prediction accuracy. However, public databases of kinome inhibition states derived
through the more accessible KINOMEscan assay cover many uncharacterized compounds
and vastly widen the kinome space that can be targeted. In this work, we created a large
integrated set of inhibitor-altered kinome states characterized by the kinobeads and
KINOMEscan assays, representing a broad space of kinome targets and including a host
of tool compounds targeting understudied kinases. We linked these kinome inhibition
states to cancer cell line responses to kinase inhibitors (dose response AUC and 1Csg)
and then built machine learning models that integrate these kinome states with cell line
baseline gene expression values to predict cell line responses to kinase inhibitors. Finally,
we predicted cell line sensitivity to previously untested kinase inhibitors in breast cancer
and patient-derived PDAC cell lines and validated them experimentally.

Prediction of therapy response for cancer cell lines has been demonstrated through
various methods, mostly utilizing chemical structure information, baseline gene expression
and gene mutation status. Drug-target interaction data is relatively under-utilized for
phenotype prediction, but offers opportunities for biological hypothesis building, especially
for compounds with uncharacterized mechanisms of action. Kinome profiling data provides
an exciting opportunity to use a wide array of functionally relevant drug-target interactions,
and is almost unique (except for GPCR inhibitors and HDAC inhibitors) in terms of ability
to assay potential off target interactions. While we have previously shown that kinome
profiling data generated from the kinobeads assay is informative for cell viability prediction,
KINOMEscan data is more readily accessible, publicly available for many uncharacterized
compounds, and easier to generate. In addition, integration of this data vastly broadens
the kinome space capable of being targeted and increases the number of inhibitors that can
be virtually screened as potential therapeutics.

It is important to note that this model linking kinome inhibition states to cell line
response is generalizable to any human cancer sample, provided the sample has baseline
transcriptomic data available. We have shown in this work and previously that models
can reasonably extrapolate to kinase inhibitors that have not been tested before in well-
characterized cell lines. Significantly, in this work we have extended the scope of the model
by using novel RNAseq data from patient-derived PDAC cell lines, and testing kinase
inhibitors against both tumor and stroma cell lines and achieving reasonable prediction
accuracy.

Using tree-based models like gradient boosting lends us the ability to explain to
some degree which features most influenced cell viability. Shapley importance values
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generated from the best-performing model show that the inhibition states of kinases had
overwhelmingly more predictive power compared to baseline gene expression values,
with FLT3 as the most important feature. FLT3 mutations are observed in 30% of acute
myeloid leukemia (AML) patients, and various FLT3 inhibitors are commonly prescribed
for treatment (Antar et al., 2020). However, the study dataset contains a majority of cell
lines from non-small cell lung cancer (NSCLC), and FLT3 inhibitors have recently shown
promise in preclinical studies by abrogating DNA damage (Ryu et al., 2019). Although
the baseline gene expression features had considerably lower predictive power in the
model, it is important to note that they provided crucial cell line specific context to the
model, essentially “tuning” the model for specific cellular contexts. Interestingly, 40% of
all the top 50 gene expression features were annotated as known kinase interactors in the
STRING database. An additional strength of modeling cancer response from kinase-drug
interactions is the generation of new hypotheses for understudied kinases. For example,
the understudied (Essegian et al., 2020) “Dark” kinases PIP4K2C and CSNK2A2 appear in
the top 25 features of the best-performing model, suggesting possible functional roles in
cancer cell viability. Interestingly, PIP4K2C expression has been associated with outcomes
in Acute Myeloid Leukemia (AML) (Lima et al., 2019), while CSNK2A2 has been associated
significantly with prognoses of 14 different cancer types (Strum, Gyenis ¢ Litchfield, 2022).

There are still many limitations to the results reported in this study. The creation of a
combined kinome profiling dataset involves gluing together results from different assay
types. Although the assays produce the same output (ratio of kinase in treatment sample
to kinase in control), there may be numerous methodological artifacts that add noise to
the data. We have attempted to address this by analyzing model performance on each
assay type individually, and we can see that responses to inhibitors with data originating
from KINOMEscan are noisier and more difficult to predict than inhibitors with data
from kinobeads. This discrepancy is potentially due to the imbalance in training data
availability for the KINOMEscan inhibitors, with only 15 inhibitors having annotated
cell line sensitivity data available. In the future, as more cell line sensitivity testing is
performed for compounds in the KINOMEscan dataset, model performance for this assay
may improve. Additionally, model performance also decreases when shifting from using
gene expression data obtained from well-characterized cancer cell lines to using in-house
gene expression of novel patient-derived cell lines. This is potentially due to the innate
and significant heterogeneity that exists in such samples and because the models have been
trained on baseline transcriptomics set of the given ~450 cell lines.

Additionally, there are important limitations to our initial analysis of correlations to
cell line responses. While we observe higher correlations overall for kinome inhibition
states, these are complicated by the sample imbalance in our abundance of drug-specific
inhibition states (~200 per cell line) to gene expression values (one per cell line). This
imbalance, characterized by the ratio of drug-specific kinome inhibition states to cell-line
specific baseline gene expressions, is not only inherent to our study design but also
reflective of the clinical scenario we aim to model. In a real-world setting, a patient is
likely to have a single point of genomic profiling, most plausibly from a pre-treatment
biopsy. Subsequent acquisition of multiple “cell-induced” genomic signatures in response
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to a variety of treatments is not only challenging but also often impractical in a clinical
setting. This underscores the importance and value of drug-specific descriptors, like the
kinome inhibition states in our study, which can be obtained from high-throughput assays
such as kinobeads and kinomescan. Consequently, while the imbalance does complicate
interpretation, it also reinforces the relevance and applicability of our approach. We caution
that the observed higher correlation for kinome inhibition states may be partly due to this
sample ratio imbalance. Nonetheless, our primary measure of the relative importance of
the data types is through the described multivariate machine learning analyses. We believe
that these methods, which leverage the full complexity of the data, provide a more robust
and comprehensive assessment of the information contained in each data type.

It should be possible to extend these models to incorporate multiple kinase inhibitors
in combination. This is significant, given the frequency of resistance to targeted cancer
monotherapies (Lovly ¢ Shaw, 2014) and the potential to escape the resistance acquisition
from dynamic kinome reprogramming through multi-inhibitor combinations (Yesilkanal
et al., 2021). Thus, another area of future work is to combine the kinome inhibition states of
multiple inhibitors to gain an understanding of their dual effect on the kinome, connecting
them to biological phenotypes that arise in response to inhibitor combinations to eventually
build models and predict effective kinome-targeting combination therapies.

While targeted therapies such as kinase inhibitors have had significant clinical impact,
much work remains to better understand how modulation of the kinome leads to both
desirable and undesirable phenotypic effects. The results presented here provide an example
of one approach where knowledge of the inhibition state of the kinome can be linked to
downstream phenotypes through predictive models, greatly enhancing our ability to predict
the effects of existing inhibitor treatments as well as facilitating the design of novel targeted
therapies in the future.
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