A novel metabolism-related gene signature in patients with hepatocellular carcinoma

View article
Bioinformatics and Genomics

Introduction

The incidence of liver cancer is increasing worldwide (Llovet et al., 2021; Villanueva, 2019). Liver cancer is the sixth most common malignancy and the third leading cause of cancer-related death globally. According to the latest statistics, there are 41,210 new cases of liver cancer and 29,380 deaths due to liver cancer in the United States in 2022 (Siegel et al., 2023). Hepatocellular carcinoma (HCC) patients account for more than 90% of liver cancer cases, and with the implementation of targeted and immunotherapy, the life expectancy of patients with hepatocellular carcinoma has increased (Llovet et al., 2018; Zucman-Rossi et al., 2015; Schulze et al., 2015). These treatments have a good therapeutic effect in patients with early-stage hepatocellular carcinoma. Due to chemotherapy tolerance and insensitivity to radiotherapy, the choice of effective treatments for patients with advanced hepatocellular carcinoma is seriously affected, resulting in poor prognosis (Llovet, Burroughs & Bruix, 2003). In the United States, the 5-year survival of patients with HCC is only 18% (Jemal et al., 2017). Traditional prognosis prediction systems for cancer patients, such as TNM staging, are increasingly difficult to cover the diversity of clinical features of HCC patients (Shao et al., 2016). The development of new prognostic models at multiple levels will help to better distinguish between different types of HCC patients (Shibata, 2021). Recent studies have demonstrated favorable outcomes in discriminating between HCC and predicting HCC prognosis, through the creation of multiple test-based indicators (Luo et al., 2022; Xie et al., 2022). This facilitates better extraction of features from different types of patients to facilitate more effective treatment of different types of patients.

Abnormal metabolism is one of the characteristics of HCC (Hanahan & Weinberg, 2011). During the malignant transformation of cells, metabolism usually undergoes drastic changes. Tumor cells regulate metabolism, promoting energy production and accumulation (Cheng et al., 2018). Hepatocellular carcinoma cells have elevated levels of metabolism to maintain their high metabolic levels for plasma membrane synthesis and energy production (Sangineto et al., 2020). Oncogenic signaling pathways, including B-Raf kinase (BRAF) and epidermal growth factor receptor (EGFR), drive dysregulation of fatty acid metabolism, affecting membrane composition and saturation to regulate tolerance to reactive oxygen species (ROS) and cancer cell survival (Talebi et al., 2018; Gimple et al., 2019; Bi et al., 2019). In addition, recent studies have shown that alterations in metabolism in tumor cells are able to promote tumor invasion and metastasis, regulate oxidative stress, and provide energy under various cellular stress situations (Pascual et al., 2017; Rohrig & Schulze, 2016; Ladanyi et al., 2018). Given that metabolism abnormalities play an important role in tumor progression, it has not been explored whether metabolism genes can be analyzed to build a prognostic model for HCC patients.

The role of metabolism in the regulation of immune cells has recently attracted widespread attention. Research evidence in several types of solid tumors shows the importance of metabolic reprogramming of immune cells in tumors, suggesting a new strategy for the treatment of HCC patients (Zhang et al., 2018). The function of immune cells in the HCC tumor microenvironment is closely related to abnormal metabolism (Hu et al., 2020). However, whether the expression level of MRGs in HCC patients affects immune cell infiltration in the tumor microenvironment remains to be explored.

In our research, we developed a novel prognostic prediction model based on MRGs, which is named “Metabolism-Related Risk Score” (MRRS), to predict the prognosis and survival of HCC patients. The immune-related components of different risk groups were analyzed, and the results showed that there were significant differences in the tumor immune microenvironment between the two groups. The evaluation of our predictive typing model shows great potential to guide the classification and treatment of HCC patients, demonstrating its clinical value and significance. Currently, a variety of genes and proteins that regulate metabolism have been identified, including GOT2, which has been reported to be involved in metabolism (Liu et al., 2022). However, the effect of this metabolism-related gene on the development and progression of hepatocellular carcinoma is unclear. Our study preliminarily explored the relationship between GOT2 and the prognosis of patients with hepatocellular carcinoma and preliminarily explored its effect on the migration ability of hepatocellular carcinoma.

Methods

Collection and processing of gene expression data and clinical information in HCC patients

Gene expression data and corresponding clinical information of 374 tumor tissues and 50 normal tissues of 374 patients with hepatocellular carcinoma as of March 03, 2022, were obtained from TCGA (https://portal.gdc.cancer.gov/repository). Of these, 44 patients were removed due to incomplete clinical data. Therefore, tissue gene expression data and complete follow-up information from the remaining patients (n = 330) were incorporated into our training dataset for further analysis. The test dataset used for validation was gene expression data and clinical information from an additional 231 tumor samples obtained from the ICGC portal (https://dcc.icgc.org/projects/LIRI-JP). These samples were mainly from Japan (Fujimoto et al., 2016). Since this data is all available online and comes with permission to use it, no additional ethical approval is required. The current study follows the TCGA and ICGC data access policies and publication guidelines. The flowchart of this research is shown in Fig. 1.

Flow chart of data collection and analysis in the present study.

Figure 1: Flow chart of data collection and analysis in the present study.

Construction and validation of metabolism-related risk scores

Utilize the “limma” R package to determine the DEGs associated with metabolism between tumor and normal tissues, the false discovery rate (FDR) in the TCGA cohort < 0.05. Univariate Cox analysis of overall survival (OS) to screen for prognostically relevant MRGs, and visualize it with a forest plot. The intersection of metabolism-related DEGs with prognostic genes is demonstrated by a Venn diagram and visualized by a heatmap. An interactive network for generating prognostic DEGs from the Search Tool for the Retrieval of Interacting Genes (STRING) database (https://string-db.org). We use the LASSO Cox regression analysis to build a prognostic model that minimizes the risk of overfitting by performing the “glmnet” function of the R package. The penalty parameter (λ) of the model is determined by tenfold cross-validation following the minimum criterion (i.e., the λ value corresponding to the lowest partial likelihood bias). Subsequently, the patient’s risk score is calculated based on gene expression and the corresponding Cox regression coefficient as follows: score = sum (expression of each gene × corresponding coefficient) (Table S1). Patients were then divided into high-risk and low-risk groups based on median risk score values. Based on the expression of gene signatures, PCA is performed using the “prcomp” function of the “stats” R package. T-SNE and PCA analysis using the prcomp function in the “Rtsne” package and the “stats” package to explore the distribution of high- and low-risk groups. Kaplan–Meier survival curve and time-dependent ROC curve analysis were applied to compare survival between the above two groups to assess the predictive accuracy of gene signatures.

Functional enrichment analysis of HCC patients classified based on MRRS

Classification of HCC patients based on MRRS. Patients between high- and low-risk groups were analyzed for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways using the “clusterProfiler” R package in the high- and low-risk groups (29,31). The GO term and KEGG pathway with a p-value of <0.05 were statistically significant.

Cell culture

The human hepatocellular carcinoma cell lines Huh7 and MHCC97H were purchased from the American Type Culture Collection (Rockville, MD, USA). Cell lines were all maintained at 5% CO2 at 37 °C and cultured in DMEM medium (Gibco, Waltham, MA, USA) supplemented with 10% and 13% FBS (Gibco, Waltham, MA, USA).

Small interfering (siRNA) transfection

Tsingke biological technology offers GOT2 small interference RNA (siGOT2-1#, siGOT2-2#, siGOT2-3#) and non-target small interference RNA (siNC). The siGOT2 sequence was designed by Tsingke Biologics. Follow the manufacturer’s instructions for transfection in Opti-MEM medium (Gibco, Waltham, MA, USA) using RNAiMax Transfection Reagent (Invitrogen, Carlsbad, CA, USA). After stable transcription, collect cells for the next step of the experiment.

RNA extraction and qRT-PCR

Total RNA was isolated and extracted from HEK293 cells using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and detected using a NanoDrop 2000 spectrophotometer. qRT-PCR was performed using SYBR-Green PCR kits (Takara, Shiga, Japan) and 7500 Fast Real-Time PCR System (Life Technologies, Carlsbad, CA, USA). The primers were synthesized by Tsingke biological technology. The expression level of the gene is compared with that of the housekeeping gene GAPDH. The following primers were used for RT-qPCR analysis: GAPDH, 5-ACAACTTTGGTATCGTGGAAAG-3; 5-GCCATCACGCCACAGTTTC-3 and GOT2,5′-AAGAGGGACACCATAGCAAAAAAA-3′; 5′-GCAGAACGTAAGGCTTTCCAT-3′. All experiments were performed using three complex wells.

Scratch wound assay

5 × 105 cells (three replicates per set) were seeded into a 6-well plate and incubated to reach confluence. Scratch the monolayer of cells using a tip and wash with serum-free medium to remove isolated cells. The cells are then cultured in complete medium containing 3% FBS. Huh7 and MHCC97H were shot after 0 h and 12 h. The wound closure area was calculated as follows: relative migration ratio (%) = (0 h wound area in experimental group - 12 h wound area in experimental group)/(0 h wound area in control group - 12 h wound area in control group) ×100.

Statistical analysis

The Perl language is used for the data matrix and all data processing. Data analysis and visualization are performed in R (version 3.6.3) and the following packages are used for data analysis: “limma”, “survival”, “venn”, “pheatmap”, “igraph”, “reshape2”, “glmnet”, “survminer”, “Rtsne”, “ggplot2”, “clusterProfiler”, “org. Hs.eg.db” and “enrichplot”. The student t-test was used to identify MRGs that were differentially expressed between tumor tissues and normal tissues. When performing prognostic analysis of HCC patients, HCC patients in the training dataset were divided into two subgroups based on the optimal cut-off value for the marker determined by the “survminer” package in R. The ratio of high-risk patients to low-risk patients in the training dataset is then applied to the validation dataset. A two-tailed p-value < 0.05 was considered statistically significant (*p < 0.05, **p < 0.01, ***p < 0.001).

Result

Identify differentially expressed genes in HCC tumor tissues

374 HCC tissues and 50 normal tissues were obtained from TCGA. By comparing the expression levels of the genes, 7,498 DEGs were found (P < 0.01) (Table 1). Compared with normal tissues, most genes were unrestricted in tumor tissues, with 7,104 gene expressions upregulated and 394 gene expressions downregulated in HCC tissues (Figs. 2A2B). Among them, there were 286 metabolism-related DEGs, 228 MRGs were up-regulated, and 58 MRGs were downregulated (Figs. 2C2D). GO analysis showed that the small molecule catabolic process, α-amino acid metabolism process, and nucleoside phosphate biosynthesis process of HCC tumor tissue received significant changes (Fig. 2E). The results of KEGG enrichment analysis showed that the signaling pathways of purine metabolism, nucleotide metabolism, carbon metabolism, and biosynthesis of cofactors were significantly altered in tumor tissues of HCC patients (Fig. 2F). Collectively, these results suggested that the level of metabolism in tumor tissues in HCC patients is significantly different than in normal tissues.

Table 1:
DEGs between HCC tissue and normal tissue.
374 HCC tissues and 50 normal tissues obtained from TCGA. By comparing the expression levels of the genes, 7,498 DEGs were found (P < 0.01).
Gene conMean treatMean logFC pValue fdr
IL4I1 0.408676109 1.900420927 2.217289189 4.63E−08 8.22E−08
AKR1C1 27.5295606 64.19352837 1.221446277 0.000384398 0.000512757
PMM2 0.961974242 1.340717505 0.478935118 0.000139748 0.000194667
SMS 10.69932606 20.11237342 0.910563416 7.48E−17 2.80E−16
DGAT2 26.4610131 19.77988279 −0.419834421 2.00E−05 3.01E−05
IDO1 0.444306793 1.213901216 1.450022921 0.000360873 0.000483084
ACSL4 7.321489016 46.1219159 2.65524345 3.57E−12 9.03E−12
NAGK 2.34741402 3.529596543 0.588430966 4.54E−10 9.44E−10
GSTM4 3.97687114 6.010324011 0.595808951 0.003231848 0.00404651
ARSA 13.84392328 23.18197984 0.743750933 1.06E−09 2.14E−09
ACSL5 31.7718056 31.6335848 −0.006290026 0.000220461 0.000300448
ACSL1 181.0926394 77.88915995 −1.217233445 8.80E−18 3.80E−17
DUT 3.95256818 10.54330863 1.415465421 3.56E−24 5.49E−23
G6PD 1.311714874 13.58214647 3.372185434 6.03E−25 1.26E−23
PCK1 310.8995322 98.70077197 −1.655315172 1.33E−19 7.38E−19
CA13 0.64421103 0.599896967 −0.102818626 0.003296604 0.004120755
ME2 1.285344598 2.315627387 0.84924793 4.85E−09 9.30E−09
PDE3B 2.727241112 2.52907411 −0.108832939 0.033469155 0.038286685
PFKP 0.971925658 4.860376484 2.322150197 1.35E−06 2.23E−06
POLE2 0.325707436 1.639062106 2.331221958 5.74E−23 6.11E−22
NNT 17.79027552 16.39284085 −0.118022962 0.005707158 0.006949846
PAFAH1B1 5.69548084 6.833324791 0.262770054 0.016430951 0.019203356
GK 6.33197458 5.984056725 −0.081531613 0.009607045 0.011531509
ASPA 1.222286356 0.511516308 −1.256730176 1.83E−17 7.57E−17
AMDHD1 41.6883632 23.51702173 −0.825939365 1.15E−12 3.01E−12
ASNS 0.500573577 2.570302345 2.36028403 2.43E−09 4.77E−09
PDE6D 2.1416811 4.452477304 1.055864581 5.61E−23 6.05E−22
FMO5 45.5107514 42.94005501 −0.083883366 0.014548154 0.017082202
SRM 12.1914571 32.5068222 1.414871963 2.34E−23 2.76E−22
HCCS 5.76547254 8.626777767 0.581382935 3.21E−10 6.81E−10
POLR1B 2.287206532 3.072608206 0.425877173 0.000107178 0.000151534
ECI1 28.0101036 36.95316634 0.399750668 0.001444436 0.001845261
PIP5K1A 3.47425607 7.244620632 1.060206053 1.21E−14 3.84E−14
LYPLA1 8.63802894 13.72384588 0.667910775 2.84E−09 5.50E−09
CA4 0.042076729 0.569382669 3.758304113 5.34E−07 8.99E−07
ACY3 17.17975988 15.21388658 −0.175321118 0.001858912 0.002358787
FAH 31.8209192 23.57034487 −0.433002643 1.15E−08 2.12E−08
CYP2A7 31.69290318 25.23152162 −0.328932609 2.65E−11 6.26E−11
MTR 1.27380779 3.363203 1.400688261 2.77E−16 9.85E−16
NANS 4.36062666 7.892830021 0.856007202 7.18E−17 2.70E−16
LPCAT4 0.587157698 1.661035346 1.500262836 1.57E−10 3.47E−10
LPL 0.141580397 1.102972743 2.961703712 1.86E−21 1.42E−20
CYP2B6 126.8640398 29.24442074 −2.11704987 1.14E−20 7.23E−20
AOC3 3.922423082 3.742339892 −0.067804562 0.003389248 0.004229557
WARS2 1.72666976 3.099357597 0.843977038 2.58E−16 9.22E−16
AMPD3 0.254917141 0.543059142 1.091080935 7.02E−05 0.000101288
PCCA 10.22722354 8.319849703 −0.297785167 1.59E−06 2.60E−06
BLVRB 72.1631298 95.84324968 0.409414914 0.009920099 0.011850751
NT5E 12.01055636 10.74436329 −0.16072299 0.000622658 0.000813334
PSPH 1.983490216 9.025365702 2.185944109 3.94E−24 5.83E−23
PIK3C2B 0.775023298 2.386662492 1.622682978 2.26E−18 1.05E−17
LTA4H 4.31542466 7.329835003 0.764278188 1.35E−18 6.39E−18
UGT1A1 27.79325188 16.52163987 −0.750377754 8.92E−09 1.66E−08
CYP2C18 28.99648586 18.82865448 −0.622948161 2.50E−09 4.88E−09
ALDH4A1 101.0099032 72.05610849 −0.487304101 1.35E−08 2.47E−08
CYP2C9 287.583338 118.3820532 −1.280529708 2.02E−17 8.19E−17
SGMS1 3.20430224 4.119475713 0.362450503 0.006877689 0.008321563
IMPA2 7.37347282 9.371278293 0.345901581 0.018040114 0.021051447
GUK1 19.8499378 43.05143148 1.116926722 8.60E−22 7.38E−21
POLE4 7.38593728 10.66305657 0.52976813 0.000190569 0.000261125
DLAT 3.66031604 7.052317534 0.946129215 1.16E−10 2.61E−10
PDHA1 13.28151162 19.02741134 0.518659943 7.54E−11 1.70E−10
CYB5R3 30.237305 43.89137451 0.53760789 2.01E−07 3.47E−07
AGPAT2 87.005614 74.04673086 −0.232672451 3.76E−05 5.54E−05
OXCT1 0.275234787 1.493923329 2.440371378 0.000229146 0.000311721
CDIPT 20.9301402 32.18929631 0.620999063 1.08E−11 2.66E−11
CA5A 2.3876375 2.073194093 −0.20372863 0.006409608 0.007780152
PLA2G12B 27.9585252 35.56349409 0.347108814 0.0050749 0.006189902
CHST11 0.731928728 1.923006546 1.393588597 0.008023001 0.009645487
POLR2G 8.5867008 20.36548606 1.245950419 3.97E−26 1.43E−24
SORD 41.8884452 30.0139334 −0.480919936 2.22E−07 3.83E−07
UROS 3.93219928 6.103738102 0.634356623 8.59E−11 1.94E−10
HAL 26.70119602 23.56047414 −0.180535793 0.001882257 0.002384403
UPRT 1.800134228 2.776221087 0.625017977 1.73E−11 4.18E−11
ENTPD6 4.89225452 13.77275387 1.493245689 7.12E−25 1.41E−23
SPHK1 0.741709572 5.347719945 2.849997622 8.75E−05 0.000124871
CANT1 4.13244666 10.66555898 1.367891476 6.59E−25 1.34E−23
ACADL 4.060608256 2.250819133 −0.851245719 6.55E−12 1.63E−11
MIF 18.5365111 45.69842886 1.301774837 2.78E−13 7.93E−13
UCK1 8.54689772 14.03707748 0.715769834 3.83E−13 1.08E−12
GALT 12.9575935 16.26293456 0.327789803 0.004091075 0.005046996
ACSM1 3.973052599 15.02401635 1.91895074 0.000302397 0.000406969
ALDH1A3 0.565172746 0.487798622 −0.212406216 8.54E−06 1.33E−05
POLR2K 10.2636964 29.85350878 1.540350105 2.97E−28 3.93E−26
PCK2 145.7806962 90.77617087 −0.683414157 6.45E−11 1.47E−10
LPCAT1 1.635662076 6.94731366 2.086580512 1.78E−16 6.50E−16
NAA80 1.86636393 4.187413568 1.165829082 1.23E−18 5.83E−18
ADCY9 2.877553656 4.347904755 0.595477507 3.01E−06 4.85E−06
GMPPA 5.56356326 11.56588251 1.055794274 1.45E−24 2.61E−23
CRLS1 14.10303008 21.11234898 0.58208194 0.000158942 0.000219782
SEPHS1 7.92983666 13.77461218 0.796648647 1.75E−20 1.06E−19
CYP2C19 3.085339415 0.382142328 −3.013247236 3.19E−17 1.25E−16
KDSR 7.4475128 6.084439599 −0.291634307 6.26E−05 9.06E−05
PFKFB2 0.382136054 1.420710904 1.89445473 6.30E−20 3.60E−19
POLR3H 2.7771828 4.797098075 0.788539794 1.59E−16 5.83E−16
CYP4F3 37.5404 30.65832969 −0.292164924 1.27E−05 1.94E−05
UXS1 1.5551954 4.725752008 1.603448067 1.67E−26 7.87E−25
POLA2 0.664501946 2.587714342 1.961333037 8.15E−26 2.28E−24
NT5C 5.03591866 11.91640459 1.242622127 8.44E−19 4.19E−18
BDH1 21.2007566 16.85562386 −0.330885726 0.000126492 0.000176528
LIPC 26.95726792 20.48967436 −0.395777233 3.01E−06 4.85E−06
PLA2G5 1.153261896 0.89094941 −0.372304753 0.000109361 0.000153757
PLA2G6 0.58048134 2.296062017 1.983840014 5.46E−24 7.63E−23
NMNAT1 1.26411244 1.805223587 0.514052741 9.85E−06 1.52E−05
ACO2 12.52959346 20.83091178 0.733386383 3.46E−08 6.20E−08
FTH1 139.0992968 286.4863544 1.042351297 8.93E−17 3.30E−16
ACADS 72.100922 32.05868751 −1.169302346 9.35E−22 7.93E−21
GGT5 7.32869966 4.290134866 −0.772534241 1.15E−12 3.01E−12
ALDH1A1 267.4815334 396.7508063 0.568793862 0.021467023 0.024858286
TPMT 20.16445966 18.52541508 −0.122308879 0.000533541 0.000700562
PDE5A 0.195980374 0.503871718 1.362347291 1.58E−06 2.59E−06
PRIM1 0.936742084 3.706683544 1.984405165 4.14E−21 2.89E−20
HIBCH 7.9563316 6.281329144 −0.341033536 5.63E−06 8.82E−06
RDH10 9.06576346 15.41329115 0.765674524 1.50E−06 2.46E−06
HEMK1 0.65588727 1.173926415 0.8398222 7.25E−21 4.89E−20
LPGAT1 8.05441224 21.31594928 1.404082087 2.17E−17 8.77E−17
TYMS 1.561858024 8.89844653 2.51029018 1.44E−20 8.89E−20
DNMT1 1.168587338 4.380206253 1.906233242 7.50E−21 4.97E−20
PC 48.5013028 37.34714447 −0.37702556 4.28E−06 6.78E−06
POLR1A 0.958182464 2.696126111 1.492515664 3.87E−26 1.43E−24
CAT 172.3659592 98.46953686 −0.807725505 2.28E−14 6.99E−14
CP 186.4100454 97.23571025 −0.938921455 7.95E−13 2.13E−12
DBH 10.78850207 1.804720176 −2.5796475 1.78E−24 3.10E−23
UGT2B10 198.5524482 92.80896422 −1.097184086 9.18E−13 2.45E−12
GNPDA2 0.319322526 0.662430617 1.052755026 1.31E−10 2.91E−10
NME4 16.31808562 24.98593807 0.614644568 0.000109914 0.000154247
MLYCD 2.48341314 1.547413766 −0.682465274 8.55E−15 2.74E−14
PFKFB1 8.5895856 7.825367716 −0.134429985 0.002113498 0.002672849
SULT1A2 9.07027648 6.751247492 −0.42599242 1.14E−05 1.75E−05
GALK1 24.967336 42.45332342 0.765835604 9.54E−05 0.000135645
PHGDH 23.51638218 13.43361449 −0.807818596 2.77E−11 6.48E−11
GPAT2 0.090898479 0.478071167 2.394897342 2.26E−10 4.91E−10
OPLAH 8.82522278 16.89672561 0.937039094 2.09E−10 4.56E−10
IMPDH1 1.350320208 4.233778779 1.648644327 7.85E−07 1.31E−06
NPR2 2.597858634 5.96065675 1.19814837 0.000471399 0.000621127
FMO3 137.9187216 93.88484103 −0.554854168 3.50E−08 6.27E−08
AACS 0.31328518 1.03790029 1.728119422 1.45E−19 7.96E−19
NMRK1 6.37048312 5.351685995 −0.251409317 8.27E−05 0.00011827
ENTPD5 22.40752186 18.09005981 −0.308785926 0.000475759 0.000625781
MPST 34.8617012 45.54922933 0.385783672 0.003609969 0.004497569
MTMR1 1.628000482 3.071386948 0.915789155 1.92E−14 5.94E−14
GLA 3.24193056 11.36254672 1.809361132 1.20E−24 2.21E−23
MGST3 5.56648038 10.14191067 0.865492151 1.91E−17 7.85E−17
EPHX1 524.41677 1035.59981 0.981680879 7.88E−06 1.23E−05
LYPLA2 21.932233 34.59496813 0.657509506 4.98E−13 1.38E−12
CAD 1.068638102 4.256222464 1.993800198 5.58E−26 1.76E−24
NEU3 0.572362622 1.294232685 1.177095651 1.28E−17 5.36E−17
EHHADH 68.1731674 41.91216309 −0.701835033 2.39E−10 5.18E−10
CTPS2 1.630246474 3.255587356 0.997827751 8.08E−18 3.53E−17
MTHFD2 0.687717227 1.248735294 0.860580299 0.006481558 0.007854858
SMPD3 0.70683542 0.332301761 −1.088880396 4.31E−17 1.65E−16
RDH16 121.453585 43.35288581 −1.48620514 1.45E−19 7.96E−19
DGKZ 1.274013736 3.212991644 1.334536397 1.11E−23 1.47E−22
TPI1 83.9320608 139.4822363 0.73278749 5.71E−14 1.69E−13
LCMT2 0.797014992 1.12892053 0.502265164 4.15E−07 7.04E−07
TAT 265.3094254 154.2425759 −0.782474879 2.12E−09 4.19E−09
HEXA 3.18901968 6.698987527 1.070830065 1.23E−18 5.83E−18
ARG1 240.2322 166.3619414 −0.530104112 1.68E−08 3.06E−08
CPT1C 0.112497877 0.356503529 1.664018582 1.18E−13 3.43E−13
MTHFD2L 1.241255578 0.761231939 −0.705392202 5.19E−10 1.08E−09
MTAP 1.15203675 1.583067801 0.458536306 2.94E−06 4.75E−06
RDH5 4.71202044 2.420467525 −0.961060059 6.15E−15 1.98E−14
DNMT3L 0.424289348 0.291648168 −0.540819449 2.06E−05 3.08E−05
HPRT1 14.17009836 18.06220948 0.35012461 0.009675838 0.011577274
ASS1 584.625332 252.8417532 −1.209277619 1.11E−18 5.38E−18
ACHE 0.686224915 1.858858895 1.437663848 0.032860592 0.037762172
BUD23 4.074106 8.36906785 1.038583427 1.30E−25 3.27E−24
GMPPB 1.87040842 4.208787714 1.170051414 8.29E−23 8.57E−22
PLCD4 0.125425913 0.438557777 1.805931481 1.23E−18 5.83E−18
PTDSS1 6.74127936 12.91530242 0.937987108 5.06E−15 1.64E−14
CS 5.37878536 13.8183489 1.361232919 1.45E−22 1.42E−21
PIKFYVE 1.39647462 1.870835031 0.421892995 0.004941202 0.006046366
POLD3 0.842582454 2.064203063 1.292695122 2.33E−19 1.24E−18
AOX1 221.5975442 121.9637437 −0.861489553 1.55E−11 3.77E−11
HMGCS2 664.916598 435.8643833 −0.609294073 5.83E−10 1.21E−09
FPGT 1.601297378 2.672968881 0.739201785 9.43E−13 2.51E−12
POLR2A 8.00200448 10.08390693 0.333621366 0.026768153 0.030902072
SGPP1 6.7100943 6.026959952 −0.154902563 0.004352827 0.005352418
POLD2 19.6641202 29.83523623 0.60145156 7.12E−09 1.33E−08
DGAT1 11.44228732 19.98911916 0.804839423 2.18E−09 4.30E−09
PNP 9.04160578 7.688707168 −0.233837983 0.000414134 0.000550477
ACADSB 72.1887034 32.77565001 −1.139148699 1.46E−18 6.86E−18
UGT2B11 0.932454448 13.38406332 3.843339116 1.32E−12 3.46E−12
HK3 1.755092942 1.065993519 −0.719348764 1.59E−10 3.50E−10
UCK2 0.97723134 4.97742167 2.348626575 2.02E−28 3.82E−26
NPL 2.542158828 4.829610362 0.925852632 0.012594123 0.014833951
B4GALT6 0.297784155 0.661726029 1.151967038 2.51E−07 4.30E−07
PLCB3 1.634257378 3.846683794 1.234980031 1.86E−21 1.42E−20
DLD 11.88321106 14.92935626 0.329227228 0.002449057 0.003086875
POLR1E 7.44986644 6.602367032 −0.17423122 0.003118202 0.003917209
POLR3K 2.48922156 5.518207323 1.148505014 2.44E−21 1.81E−20
OGDHL 26.5042672 14.50832449 −0.869343735 4.39E−13 1.23E−12
ALAS1 159.56769 100.1414548 −0.672129238 1.81E−09 3.59E−09
POLR3D 0.963096128 1.733721133 0.848120154 5.64E−08 9.99E−08
INMT 9.65272184 2.507403196 −1.944741802 7.33E−21 4.90E−20
GUSB 30.392177 38.53529635 0.342480467 0.002655896 0.003342003
CPS1 205.3781916 136.0158919 −0.594507771 2.45E−07 4.19E−07
METTL6 0.430309778 1.185576642 1.462141401 6.71E−28 5.07E−26
GOT2 87.1599586 65.06480682 −0.421788102 2.46E−09 4.82E−09
PTGES 0.297396069 3.200945654 3.428040699 0.014797686 0.017348219
AGPS 3.7115833 5.295453451 0.51271948 2.80E−05 4.14E−05
POLR1D 4.90762592 8.660998203 0.819508024 2.72E−18 1.25E−17
ACSL3 6.99338192 11.86570804 0.76273599 6.24E−09 1.17E−08
DHRS4 12.25678654 11.53249242 −0.087876441 0.020310735 0.023555461
HYI 3.01594442 5.084056814 0.753370311 2.55E−11 6.04E−11
GLUD1 180.0245172 133.4265423 −0.43214771 8.27E−10 1.69E−09
POLD4 8.05781742 12.54161247 0.638261825 5.34E−09 1.01E−08
PPOX 1.196744276 4.192724463 1.808773117 1.44E−29 6.98E−27
ADA 0.943392724 2.67245149 1.502233382 1.19E−17 5.01E−17
HMOX1 45.83893488 27.73183896 −0.725030234 9.52E−09 1.77E−08
DMGDH 31.7591144 15.47932348 −1.036828263 5.46E−16 1.88E−15
AHCY 44.0853498 69.89104425 0.664808295 2.94E−08 5.30E−08
PRIM2 0.502543684 1.859031108 1.887229998 4.42E−27 2.57E−25
ACADM 31.879362 20.11711322 −0.664199462 2.07E−11 4.96E−11
PIK3CB 1.966956368 3.395752372 0.787766302 5.26E−13 1.44E−12
PRUNE1 3.4628476 9.611363235 1.472782175 5.02E−23 5.49E−22
CHKB 0.422492212 1.182076973 1.484327329 9.12E−19 4.50E−18
MGLL 13.76947858 12.46297017 −0.143825997 0.009675841 0.011577274
OCRL 1.958109446 5.65422446 1.529867751 1.85E−24 3.10E−23
LDHD 55.065139 32.56811545 −0.757679016 6.24E−13 1.70E−12
HMBS 2.84492594 6.077665142 1.095126093 4.39E−23 4.87E−22
DPYD 9.11150098 7.318402323 −0.316160007 6.13E−05 8.89E−05
ABAT 53.955323 26.73360559 −1.013110868 3.57E−16 1.26E−15
ADH6 89.808434 46.97759442 −0.934878097 6.33E−14 1.86E−13
PDE7B 0.930007826 0.456690251 −1.026026862 1.31E−15 4.37E−15
PISD 2.83145052 4.389637725 0.632560561 7.78E−10 1.60E−09
PIP5K1C 1.467138022 3.719134168 1.341962194 3.88E−23 4.44E−22
ALDH3A1 0.752936723 44.07999412 5.871451597 0.000343499 0.000460643
GBA 5.56522966 22.70087955 2.028235066 3.64E−28 3.93E−26
GALK2 1.588663302 2.448799751 0.624261408 4.17E−08 7.43E−08
MAOB 92.0239682 75.53398313 −0.284883802 2.02E−06 3.29E−06
ACAT1 82.9427028 47.2412729 −0.812067222 2.12E−16 7.66E−16
UGDH 22.73636822 41.03832833 0.85197014 0.000206002 0.00028176
EPHX2 46.3273598 24.00327051 −0.948633475 3.57E−17 1.37E−16
CERK 5.53242282 11.22309283 1.02048698 1.28E−14 4.03E−14
TAZ 1.723546396 5.52082373 1.679503404 7.52E−29 1.89E−26
PGD 20.44094368 39.89972749 0.964917092 3.83E−09 7.38E−09
ACO1 20.96810206 19.6283929 −0.095254226 0.00010772 0.000151732
AMDHD2 2.031742526 4.730317108 1.219219314 1.28E−20 7.99E−20
PDE6G 0.86451153 0.639854258 −0.434141871 5.70E−05 8.28E−05
CYP4A22 60.5277696 19.74899941 −1.61581763 1.17E−20 7.34E−20
SDS 194.0116684 163.218774 −0.249336412 4.38E−06 6.93E−06
FMO4 10.20612596 9.414288939 −0.116511315 0.003193554 0.004005204
GPAT3 5.552175014 4.162315257 −0.415666805 0.012249465 0.014473155
PFKL 12.61516374 19.37322019 0.618904845 2.04E−10 4.46E−10
HAO1 172.769988 92.22580563 −0.905610236 3.35E−17 1.30E−16
CYP4F2 60.3235252 29.46836538 −1.033553704 6.21E−15 1.99E−14
FTCD 155.5260496 86.5196214 −0.846056985 6.71E−13 1.81E−12
HPD 605.159282 532.9277054 −0.183375083 0.000107178 0.000151534
PDE4B 1.062459026 0.963981326 −0.1403301 0.0009672 0.00125686
PRDX6 171.8414344 221.4824048 0.36611415 0.001355076 0.001736982
SUCLG1 21.1592364 27.17118061 0.360789689 0.000143973 0.000200183
PIK3C2G 2.247678282 1.473184304 −0.609497621 2.52E−08 4.56E−08
PGM3 4.06042848 5.511269867 0.440752795 0.00140208 0.001794187
GPAT4 5.23151944 9.836442457 0.910906608 1.77E−12 4.55E−12
CHDH 7.9646379 11.15826518 0.486432065 9.46E−06 1.46E−05
BLVRA 3.276705816 12.07960422 1.882255129 5.93E−14 1.75E−13
MARS2 1.96582365 2.821305799 0.52122914 4.85E−05 7.09E−05
PSAT1 58.4287532 37.24670641 −0.649565645 3.01E−10 6.41E−10
ALDH5A1 25.002095 21.66769979 −0.20650298 0.00010772 0.000151732
GGT7 3.07695892 5.573133026 0.856983407 2.99E−11 6.94E−11
AGPAT4 0.136465682 0.57271225 2.069272273 9.51E−10 1.93E−09
ALDH9A1 48.6317048 40.3139759 −0.270617093 2.24E−06 3.64E−06
PI4KB 4.0879725 11.41793196 1.481843974 1.67E−26 7.87E−25
GALE 10.83432624 18.55155752 0.775930877 2.02E−11 4.85E−11
PLD1 2.33434292 2.279957658 −0.03400948 0.026683904 0.030851987
CYP2U1 1.250805474 1.14419921 −0.128519184 0.012594123 0.014833951
ENOPH1 5.50486998 11.72488047 1.090792821 2.78E−21 2.03E−20
AGXT 394.753526 250.6042388 −0.655541335 4.40E−10 9.18E−10
PLCB2 1.160730889 1.104038541 −0.072242991 0.040462466 0.046007774
CYP1B1 1.337915968 5.94969667 2.152828612 0.006928705 0.008369875
NT5C2 1.540448554 2.299890391 0.578214605 0.001724337 0.002195404
NME6 1.050427416 2.501002343 1.251529933 3.81E−27 2.40E−25
HMGCL 40.4827466 24.59046419 −0.719208206 2.52E−16 9.07E−16
SAT1 121.6407268 113.7395081 −0.096892871 0.033469155 0.038286685
SUCLG2 54.220537 39.39971703 −0.460654133 3.94E−10 8.24E−10
ADH1A 388.209718 164.8505374 −1.235677643 5.65E−17 2.13E−16
CTH 37.1185504 29.77105419 −0.318230061 1.40E−08 2.56E−08
CYP3A4 765.778506 344.3796666 −1.152927204 1.69E−15 5.61E−15
ECHS1 468.98201 301.2351756 −0.638642337 5.40E−13 1.48E−12
PGM1 59.3355864 38.43717944 −0.626395144 1.11E−13 3.24E−13
POLD1 1.184827396 4.730074491 1.997185999 1.56E−26 7.87E−25
NAMPT 30.29449552 16.41230958 −0.884277408 2.28E−07 3.92E−07
PFKM 0.866943006 2.25856606 1.381398054 3.07E−06 4.93E−06
SCLY 0.20643543 0.46320077 1.165947056 1.86E−14 5.79E−14
CHKA 3.36662532 11.5937026 1.78396631 5.27E−22 4.74E−21
GDA 6.26289082 5.902956593 −0.085390996 0.003981116 0.004927447
GPX2 106.9847132 267.7036539 1.323232162 0.010097916 0.012044118
PAPSS2 20.1801266 15.74261221 −0.358260274 1.30E−05 1.98E−05
PLCG1 1.260780372 3.995510695 1.664062936 1.77E−21 1.39E−20
PIP4K2C 4.43018188 8.973248829 1.018264488 9.69E−18 4.13E−17
EARS2 3.1501315 5.085392201 0.690946989 1.33E−11 3.27E−11
GSS 17.1787072 29.50461679 0.780319251 4.06E−18 1.85E−17
AK3 31.4693146 24.77009647 −0.34534627 3.86E−08 6.90E−08
APRT 28.6023808 54.41106794 0.927764906 3.86E−14 1.16E−13
FMO1 0.209436746 1.621167947 2.952447066 0.003981116 0.004927447
DHRS4L2 11.34542994 10.55728929 −0.103871829 0.00698006 0.008405017
AKR1C3 17.68298576 83.41396337 2.237927015 1.18E−23 1.54E−22
GNPAT 8.1486725 23.37881262 1.520564705 1.98E−27 1.36E−25
UROD 21.544076 30.24876272 0.489584908 5.04E−09 9.60E−09
CBR1 58.780441 99.21114632 0.755166033 0.001746125 0.002219401
SMPD4 2.28095394 5.437838743 1.253396055 2.14E−22 2.02E−21
GPX7 1.50203363 4.344910673 1.532409402 0.000302397 0.000406969
GSTO2 0.303990672 0.880769726 1.534737826 0.001201774 0.001545723
GSTK1 45.1586356 63.78578441 0.498233036 8.94E−08 1.57E−07
CMAS 15.22241776 20.10836615 0.401598346 5.00E−05 7.30E−05
PGP 2.46275828 8.344557131 1.76056045 1.37E−25 3.34E−24
LRAT 1.094300194 0.233448683 −2.228831208 9.54E−25 1.80E−23
UCKL1 4.9052273 11.12656123 1.181615888 1.80E−23 2.23E−22
PIP4K2B 3.30158812 7.811014925 1.242349865 1.56E−23 1.96E−22
ACOT12 21.45356354 13.71772584 −0.645175979 9.38E−09 1.75E−08
GSR 15.11395882 25.70655358 0.766254607 4.11E−05 6.04E−05
CPT2 25.1462894 16.46242324 −0.611168817 2.48E−12 6.29E−12
PLD2 1.824123198 3.033992898 0.734014539 8.11E−09 1.52E−08
POLR3GL 12.67931058 19.32978751 0.608349475 1.82E−09 3.61E−09
GGCT 7.3906693 16.97966798 1.200031323 1.92E−23 2.34E−22
CYB5R1 6.89941468 17.42151749 1.336324415 1.52E−25 3.59E−24
PDE2A 2.178131344 1.126729193 −0.950950145 1.15E−13 3.35E−13
OGDH 13.79518708 24.98405926 0.856842875 4.59E−13 1.28E−12
ENPP1 9.1646637 7.547183961 −0.280143502 1.15E−05 1.76E−05
COMT 30.706629 25.72272779 −0.255506498 2.65E−05 3.94E−05
QPRT 43.8780206 54.08350685 0.301690256 0.04267486 0.048305126
AGMAT 32.4994148 25.32091879 −0.360083985 2.71E−05 4.02E−05
GRHPR 62.909347 40.6577625 −0.629743565 9.98E−12 2.48E−11
ACER2 0.36464292 0.323416101 −0.173092878 0.012247144 0.014473155
FLAD1 4.34967458 13.71639311 1.656921782 1.85E−29 6.98E−27
PYCR3 2.93010406 9.072809425 1.630597454 9.42E−25 1.80E−23
HEXB 14.85885542 30.48633278 1.036839629 3.86E−21 2.72E−20
NAT1 2.219190636 1.399346689 −0.66528017 2.09E−11 4.98E−11
GART 3.11647116 5.301358952 0.766448866 3.40E−14 1.03E−13
PLCE1 0.212974455 0.608776786 1.515232948 9.85E−19 4.83E−18
PLCD3 0.266926144 1.228215767 2.202051505 8.51E−16 2.88E−15
CYP3A43 2.620158394 1.416590761 −0.887230991 1.35E−12 3.50E−12
ETNK2 33.401069 32.2062868 −0.052551941 0.004773988 0.005851236
CDS2 2.7498919 4.632668795 0.752468636 1.26E−14 3.97E−14
NME2 6.86305604 19.23153189 1.486550645 1.71E−21 1.36E−20
IMPDH2 12.91924434 36.52956009 1.499542692 3.89E−24 5.83E−23
OTC 88.002804 58.70658403 −0.58402718 6.74E−07 1.13E−06
PIK3C2A 2.259323538 3.277646011 0.536769169 3.36E−05 4.96E−05
CYP4A11 233.0618168 72.59752175 −1.682720458 1.82E−24 3.10E−23
ACSS1 0.750883248 2.273225868 1.598080527 1.27E−05 1.94E−05
POLE 1.3055207 2.220828061 0.766472369 6.30E−10 1.30E−09
ACP1 11.20816652 18.54387434 0.7263924 8.05E−21 5.19E−20
ACMSD 26.174961 21.07948543 −0.312347738 4.05E−05 5.96E−05
CYP2A6 536.9454174 278.4392503 −0.947412844 2.29E−11 5.43E−11
SHMT1 52.7147148 32.16605069 −0.712666918 1.45E−12 3.75E−12
CEL 0.033783259 0.531241933 3.974988605 3.70E−16 1.30E−15
MIOX 0.025307544 0.730525513 4.851295268 1.25E−11 3.07E−11
PLA2G7 1.73344392 4.023914912 1.214958635 0.000584406 0.00076469
GNPNAT1 13.14352562 9.498633602 −0.468560417 5.97E−09 1.12E−08
PNPT1 2.55535368 4.267066066 0.739721463 3.15E−14 9.59E−14
INPP5K 3.03390274 4.147665679 0.451124774 4.84E−07 8.16E−07
ADK 19.8979868 13.99084463 −0.508139411 1.05E−11 2.60E−11
CA12 0.325978387 3.7360177 3.518653069 1.48E−09 2.96E−09
NMNAT3 0.695570616 1.378986438 0.987339375 1.16E−09 2.33E−09
KMO 8.11238004 3.338421404 −1.280959164 8.62E−18 3.74E−17
ARG2 0.49592443 2.010793536 2.019572755 7.62E−05 0.000109157
GNPDA1 2.73301806 7.292774088 1.41597271 3.86E−20 2.26E−19
MAT2A 11.17323804 17.09991339 0.613941674 0.000105036 0.000149064
AGK 1.495999866 2.767032531 0.887229559 4.65E−16 1.62E−15
UROC1 40.84584802 11.96254955 −1.771664535 3.22E−19 1.67E−18
ADH4 804.750736 228.0260374 −1.819343421 8.53E−21 5.46E−20
UGT2B7 279.779916 115.0979264 −1.281430561 6.96E−18 3.07E−17
PAH 116.2219842 94.99517702 −0.290956817 0.000150537 0.000208925
ALOX15B 0.142066661 1.817887709 3.677623143 7.72E−07 1.29E−06
GMPR2 7.85884262 12.66631626 0.688608242 1.09E−18 5.30E−18
GAA 20.41744244 34.96541419 0.776126435 1.55E−11 3.77E−11
APIP 1.640616216 3.661128344 1.158050556 3.30E−22 3.00E−21
PFAS 1.153738786 2.725413061 1.240158275 5.61E−19 2.82E−18
IMPA1 4.43702154 7.935114115 0.838659414 2.13E−12 5.44E−12
NAT2 25.52141146 4.833929648 −2.400439738 1.20E−25 3.13E−24
SMPD2 1.62738852 3.829329681 1.234533154 1.20E−19 6.72E−19
SUCLG2P2 0.361432093 0.260115564 −0.474571886 7.34E−05 0.000105697
SYNJ1 0.648474406 0.91861337 0.502408146 0.000217285 0.000296654
PAICS 11.60426494 16.32540539 0.492463677 1.22E−08 2.24E−08
TK1 2.468539172 20.42635341 3.048702228 5.30E−26 1.74E−24
AFMID 18.4721284 24.5251126 0.408909654 0.000233607 0.000317219
ALAD 38.4233746 37.10296135 −0.050449893 0.01920916 0.022381043
NT5C3A 1.954837404 4.189451043 1.099712601 2.24E−17 9.01E−17
GSTZ1 11.81957816 4.287539533 −1.462956668 2.84E−21 2.06E−20
PGM2L1 0.22568328 0.446572794 0.984595823 0.001355076 0.001736982
DAO 17.87964038 12.9572827 −0.464554521 2.75E−06 4.46E−06
POLR2J 16.07014268 32.76108605 1.027600446 2.75E−19 1.45E−18
FHIT 0.791113118 2.26275842 1.516126666 6.30E−22 5.60E−21
GPD1 36.7540008 17.69852929 −1.05427182 4.63E−13 1.29E−12
CHST12 0.378759634 0.713920394 0.91448063 2.32E−13 6.63E−13
HMGCS1 26.26538034 41.55101209 0.661721142 0.000113855 0.000159481
BHMT 188.5596978 89.71365222 −1.071621902 2.19E−13 6.30E−13
UGT1A4 30.3252135 24.22035055 −0.324298057 6.85E−08 1.21E−07
LAP3 38.7008652 30.80759113 −0.329079938 2.01E−05 3.02E−05
ACP4 0.013881318 0.395615568 4.83288278 1.58E−12 4.10E−12
PDE11A 0.6499311 0.489365997 −0.409372922 4.45E−07 7.54E−07
POLA1 0.530661838 1.544546194 1.541318312 4.30E−19 2.19E−18
ALDH2 154.9258366 71.34767851 −1.118639365 1.47E−22 1.42E−21
CES5A 1.156581576 0.643541115 −0.845762796 2.67E−09 5.18E−09
XDH 15.64604762 9.530809199 −0.715127647 1.12E−09 2.25E−09
JMJD7-PLA2G4B 0.08957713 0.24466282 1.449592525 1.59E−10 3.50E−10
HK1 1.756529668 3.532845207 1.008102594 0.004998106 0.006106101
POLR3A 1.148311722 2.372790232 1.047070233 7.34E−23 7.69E−22
ACSM3 8.26916818 3.080383675 −1.424632156 3.51E−21 2.50E−20
ZNRD1 1.920201268 4.468929856 1.218671864 4.96E−20 2.88E−19
GFPT1 4.77169852 8.360365723 0.809063159 2.23E−11 5.31E−11
LCLAT1 1.079431836 1.825327458 0.757883159 4.13E−11 9.55E−11
SULT1E1 4.766748444 3.612816882 −0.399881359 7.85E−08 1.38E−07
LIPG 4.0745132 2.953168638 −0.464363962 7.83E−06 1.22E−05
MBOAT7 4.30759108 10.22851875 1.247644029 2.35E−24 3.77E−23
PCYT2 15.79421824 27.65662255 0.808228454 6.16E−10 1.27E−09
GMPS 2.12571058 5.125880879 1.269854768 3.78E−23 4.40E−22
SGPL1 5.76193592 8.91802992 0.630171424 5.88E−09 1.11E−08
PYCR1 0.861568492 8.121217599 3.236658648 9.35E−06 1.45E−05
PIPOX 96.0303444 72.54766923 −0.404561087 4.98E−06 7.84E−06
MDH1 20.8540302 33.17323875 0.669693649 3.56E−14 1.07E−13
PAFAH1B3 2.183462234 13.95513656 2.676106759 2.23E−19 1.19E−18
ETNK1 3.83300098 5.261446108 0.456985012 0.000160517 0.000221554
PRPS2 6.2703327 8.859932778 0.498753759 0.003710583 0.004615306
ENTPD8 4.7108131 3.744468425 −0.33121517 1.12E−05 1.73E−05
ALOX12 0.109011063 0.275266308 1.336353479 1.04E−12 2.76E−12
ACACB 8.46489348 5.654933634 −0.581981821 3.48E−09 6.71E−09
GMDS 3.66597734 7.7145025 1.073375254 3.91E−10 8.20E−10
ME3 0.531760212 1.606608404 1.595170589 3.70E−15 1.21E−14
PIK3CA 1.177370638 1.455137701 0.305587128 0.039746951 0.045262365
DCK 1.436440984 3.648930365 1.344974898 1.32E−15 4.39E−15
GYS1 1.954834784 4.327244832 1.146402068 3.57E−18 1.63E−17
ADO 2.54632174 3.430583608 0.430039305 5.05E−05 7.37E−05
AGPAT1 8.15078736 20.35100554 1.320088745 2.02E−24 3.31E−23
ADSL 3.82300396 8.444661914 1.143332971 6.03E−24 8.28E−23
ALDH6A1 64.384127 28.49727636 −1.175881016 9.37E−20 5.28E−19
INPP5A 3.35817814 4.788868444 0.512006041 1.30E−07 2.25E−07
MTMR7 0.146421709 0.848734424 2.535183728 1.88E−05 2.83E−05
SULT1A1 13.47559808 9.050285627 −0.574314075 3.86E−09 7.41E−09
CYP26A1 6.569500214 0.658808858 −3.31785176 1.48E−21 1.21E−20
PDHB 10.74619842 14.41091844 0.423335903 4.93E−09 9.42E−09
ALDH1B1 67.6148248 40.63371028 −0.734662494 5.75E−11 1.32E−10
ACOX1 33.2083646 25.9762862 −0.354351492 1.12E−07 1.94E−07
PCYT1A 3.16719152 5.454631679 0.784277673 2.39E−20 1.42E−19
NEU1 7.53752836 26.66679468 1.822880995 3.40E−28 3.93E−26
POLR3G 0.27411095 0.623002221 1.184477344 3.97E−13 1.11E−12
GPD1L 0.656858692 1.902400678 1.534166188 5.88E−09 1.11E−08
TSTA3 11.35656626 26.20332018 1.206222933 9.59E−18 4.11E−17
AK1 2.37631508 3.937539076 0.728568102 1.41E−08 2.57E−08
PRODH2 39.0309294 28.08474289 −0.474831221 1.12E−07 1.94E−07
AOC1 1.798183299 0.745771443 −1.269734631 0.001027935 0.001333489
SPTLC2 1.75140612 2.742051601 0.646742062 3.29E−10 6.95E−10
KHK 82.384005 61.54386532 −0.420749206 1.71E−07 2.97E−07
DGKQ 1.457440362 4.03086916 1.467654105 4.12E−23 4.65E−22
ACAA2 105.504459 52.75512735 −0.99992075 5.19E−20 2.99E−19
ADPRM 2.7431114 3.986350382 0.53925531 1.35E−05 2.06E−05
AGXT2 21.68184318 9.089264569 −1.254251933 2.47E−18 1.14E−17
TYMP 15.65976866 31.83914656 1.023738765 1.52E−06 2.49E−06
SYNJ2 1.00822186 2.334073703 1.211036978 8.08E−10 1.65E−09
UPB1 32.3556494 25.21832405 −0.359545233 0.00015816 0.000219102
ENTPD2 0.372271672 1.96584486 2.400721728 3.97E−12 9.92E−12
GPX1 124.116905 222.3074623 0.840856749 1.77E−10 3.88E−10
PRPS1 12.66083042 18.44318764 0.542715993 3.69E−06 5.87E−06
GLB1 9.81417212 18.17416942 0.888950954 8.00E−18 3.51E−17
DHDH 0.083578928 0.534516557 2.677023475 3.88E−10 8.16E−10
PTGES2 7.21657504 16.7167287 1.211906346 8.10E−22 7.03E−21
NME1 5.12519878 17.66287993 1.785040727 4.09E−24 5.94E−23
GLYCTK 55.138394 52.81353627 −0.062149503 0.028147703 0.032445062
TKFC 25.9085641 18.57767451 −0.479859139 9.44E−08 1.65E−07
ADCY3 0.561033466 1.082943581 0.948799348 0.000235869 0.000319141
HAGHL 0.048049798 0.557557535 3.536518411 1.02E−21 8.52E−21
UGT2A1 0.98181545 0.696545876 −0.495233494 0.000447104 0.000590145
PTGS2 0.685695488 0.209820152 −1.708414783 5.31E−17 2.01E−16
ALDOB 2772.70035 1401.228338 −0.98459964 1.94E−14 5.97E−14
TYRP1 0.008600457 0.267724997 4.960194749 0.000375099 0.000501238
NUDT9 8.49499344 10.95659974 0.367115405 0.000437831 0.000578918
MPI 2.65308182 4.29403827 0.694665881 6.65E−13 1.80E−12
PPAT 0.863819914 1.765653998 1.031400175 3.59E−13 1.02E−12
GPD2 0.764990188 1.774788278 1.214133781 1.94E−12 4.95E−12
DTYMK 2.81252568 11.25842326 2.001066619 4.78E−28 4.51E−26
GBA3 29.65604208 9.090840342 −1.705840501 2.15E−20 1.29E−19
PGS1 1.087267554 2.837714227 1.384022308 3.10E−24 4.88E−23
ITPA 8.35692768 20.76255349 1.312939329 2.62E−22 2.42E−21
GSTA2 171.5788165 122.8201096 −0.482324649 3.52E−06 5.61E−06
ENPP2 4.152915006 9.060232331 1.1254237 9.16E−05 0.000130485
GLDC 19.3329667 15.99389614 −0.273541615 0.001078603 0.001394427
PKM 4.01863632 25.24352982 2.65113573 1.86E−14 5.79E−14
MTMR6 2.721699042 3.270919686 0.26518879 0.033367063 0.038285916
UPP1 2.553424264 3.724478367 0.544605114 0.000545856 0.000715488
RRM2 0.469398657 6.378298565 3.764286013 3.18E−26 1.33E−24
ACSL6 0.2617771 1.020156731 1.962380012 0.035460273 0.040503035
LDHA 83.2189104 80.19834618 −0.053338913 0.042299176 0.047951769
GPI 20.7880496 42.19970111 1.021478374 1.93E−16 7.02E−16
ACSM5 50.4663964 20.22345997 −1.319293229 2.44E−17 9.70E−17
PMM1 7.81445296 10.63144872 0.444121415 0.001111858 0.001432513
HADH 41.8828638 35.57719138 −0.235407469 5.47E−05 7.95E−05
SAT2 85.0755162 76.44819578 −0.154261546 0.006385788 0.00776372
GNE 25.03165064 13.02163252 −0.942843099 2.36E−17 9.45E−17
GSTM2 0.271784875 0.548345501 1.012620017 0.000818116 0.001066801
AKR1C2 16.24967136 50.10020952 1.624406096 5.01E−06 7.87E−06
CDO1 96.0541018 74.41269956 −0.368298364 2.75E−05 4.08E−05
CNDP1 6.560749296 1.024432657 −2.679035444 1.45E−22 1.42E−21
AHCYL1 15.2581398 20.6807703 0.438710837 2.04E−05 3.05E−05
ACP6 0.71604374 1.761317951 1.298535743 2.41E−20 1.42E−19
NME7 0.643526996 1.362272741 1.081942999 4.98E−17 1.90E−16
ADH1C 476.144326 233.435638 −1.02837411 1.14E−12 3.00E−12
TBXAS1 1.383732803 1.149415109 −0.267665469 0.000395307 0.000526379
BAAT 190.9706308 179.3099227 −0.090895458 0.01578084 0.018472146
AOC2 0.219990869 0.495573818 1.171656326 1.73E−09 3.44E−09
AGL 6.99793654 3.850530943 −0.861872192 9.11E−17 3.36E−16
IDO2 0.862516082 0.34741407 −1.311895173 9.61E−15 3.06E−14
UMPS 3.1273573 4.722024104 0.59446135 3.46E−13 9.83E−13
RDH11 16.88686872 20.31333093 0.26652499 0.041311007 0.04690197
AADAT 11.0372536 2.431650612 −2.182373373 7.44E−26 2.16E−24
ME1 2.644506866 8.410134567 1.669130164 0.000433795 0.000574588
ACSM2A 35.2888359 22.45481559 −0.652186966 3.27E−08 5.87E−08
CYP2C8 449.461848 100.5747926 −2.159929897 6.04E−26 1.82E−24
LCMT1 2.3080183 5.778087404 1.323937364 5.58E−25 1.20E−23
PLA2G12A 5.69083708 5.41609293 −0.071388385 0.004386592 0.005385166
AZIN2 0.124387656 0.277501557 1.157652541 9.96E−10 2.02E−09
PTGIS 2.191950054 1.166763256 −0.909703067 2.41E−14 7.37E−14
GPX4 118.53575 188.6938862 0.670725443 1.28E−10 2.86E−10
RRM1 3.92014216 10.15498263 1.373209893 1.84E−21 1.42E−20
ACAA1 48.7472452 25.20723697 −0.951482702 4.88E−18 2.21E−17
NNMT 469.3829578 140.666585 −1.738485801 1.15E−17 4.88E−17
TDO2 85.2300468 35.60804767 −1.259158787 2.05E−15 6.71E−15
ADCY6 1.052476086 3.845742664 1.869474775 3.47E−25 7.71E−24
SARDH 34.544682 18.5565624 −0.896534155 1.76E−17 7.30E−17
RFK 5.10336714 7.08934908 0.474203736 1.99E−05 3.00E−05
GAMT 189.2736142 172.100408 −0.137222788 0.0195276 0.022717008
ACYP1 0.435832892 1.541828841 1.822795635 4.19E−26 1.44E−24
MTHFD1 36.8332948 23.39997829 −0.654503263 3.30E−11 7.65E−11
GNMT 134.7991696 71.11434267 −0.922599145 2.73E−11 6.39E−11
POLR2E 23.3947028 33.18577334 0.504382993 1.39E−11 3.40E−11
PAFAH2 5.46319746 4.725647625 −0.209233512 7.56E−05 0.000108525
RRM2B 3.53135628 5.709601422 0.693167654 1.77E−08 3.21E−08
CYP1A2 162.0610482 24.79812246 −2.708234578 4.83E−24 6.89E−23
ALDH18A1 7.39242978 15.6829565 1.085077018 4.28E−15 1.39E−14
HDC 0.257674991 0.232402497 −0.148926952 0.000172793 0.000238063
GANC 0.61022308 1.019814907 0.740898679 3.01E−10 6.41E−10
ADCY1 1.645927202 1.296404921 −0.344384126 1.17E−09 2.34E−09
FBP1 394.352886 138.9132655 −1.505302825 4.76E−21 3.27E−20
POLR1C 3.35005178 6.978792797 1.058794103 2.33E−21 1.74E−20
GLS 1.201759816 4.164693323 1.793061676 3.87E−12 9.70E−12
LPCAT2 0.474627134 1.255891704 1.40384558 0.000234735 0.000318178
P4HA2 1.008157448 4.303512033 2.093793535 1.64E−22 1.57E−21
CKB 3.60284462 23.67772586 2.716322184 3.20E−06 5.13E−06
ITPKA 0.460224664 4.393506423 3.254962596 5.55E−18 2.48E−17
POLR2C 9.07856552 14.29939552 0.655417896 2.19E−10 4.77E−10
COX10 2.5153264 3.46926254 0.4638834 0.000317057 0.000425939
POLR2L 45.7742558 93.97066345 1.037674004 3.18E−19 1.66E−18
ALDH3B1 1.04183392 2.518889866 1.27366273 1.40E−06 2.30E−06
ITPKB 0.905496968 1.49022587 0.718749297 4.85E−05 7.09E−05
TXNRD1 6.76314148 28.10662419 2.055144747 1.93E−17 7.90E−17
CA5B 0.142795734 0.550149828 1.945871693 6.48E−16 2.22E−15
PLCB1 0.225675628 1.091508615 2.274000988 4.77E−14 1.42E−13
NUDT5 9.44814408 17.61621736 0.898801304 1.61E−21 1.30E−20
ODC1 18.19301946 33.29143499 0.871766053 1.65E−08 3.00E−08
ACACA 1.393724136 3.919558477 1.491746117 6.37E−20 3.62E−19
INPP5J 0.03995144 0.299135465 2.904479538 2.70E−11 6.36E−11
DNMT3B 0.128279551 0.715787579 2.480240297 7.59E−21 4.97E−20
PDE7A 0.574264186 1.45451893 1.340755577 3.24E−14 9.82E−14
INPPL1 4.00731938 9.917278334 1.30730675 4.82E−21 3.28E−20
POLR3F 1.290860464 2.890671173 1.163071445 2.94E−25 6.72E−24
DPYS 89.3997666 56.69502639 −0.657048886 2.46E−09 4.82E−09
CBR3 0.238376351 1.432379474 2.587100731 8.94E−16 3.01E−15
CA2 43.516094 27.05355184 −0.68573105 1.63E−13 4.71E−13
PLA2G1B 0.358601163 2.766570668 2.947646705 2.58E−09 5.01E−09
NIT2 8.36875624 7.98024058 −0.068580986 0.03755159 0.042826964
PAFAH1B2 5.55860366 8.178248219 0.557069332 2.81E−10 6.00E−10
GYS2 38.5893622 12.55410139 −1.620044433 4.34E−21 3.00E−20
GLUL 58.1799336 366.9451525 2.656970884 0.000190569 0.000261125
GPT2 34.4213786 29.04180666 −0.245173675 0.000173655 0.000238815
FMO2 0.513662603 0.392428653 −0.388390661 1.83E−05 2.78E−05
TXNDC12 10.49130104 17.80804426 0.763335484 7.64E−21 4.97E−20
MTMR2 0.825414542 1.902368228 1.204605765 2.99E−11 6.94E−11
AHCYL2 1.248491948 1.918117883 0.619504871 8.41E−07 1.40E−06
ALDOA 20.55360858 72.12748631 1.811157437 2.08E−19 1.12E−18
MDH2 46.934258 79.50191043 0.760348177 6.89E−16 2.34E−15
FADS2 9.642111654 20.05759983 1.056727937 0.011186336 0.013321267
PAPSS1 2.28088236 5.466021302 1.260899043 7.56E−17 2.81E−16
NANP 0.94921358 1.727478428 0.863863049 2.01E−15 6.61E−15
MAT1A 492.371978 208.7499778 −1.237972613 2.22E−21 1.68E−20
GSTA4 3.88265552 12.89632448 1.73184433 2.91E−16 1.03E−15
ADCY4 0.314709281 0.7262269 1.206400646 6.53E−13 1.77E−12
INPP4B 0.149343996 0.294366749 0.97897548 0.001456753 0.001857852
UGT1A10 0.008250359 0.550736449 6.060761396 0.01163501 0.013812001
NOS2 0.097262382 0.402505335 2.049054083 5.21E−13 1.44E−12
ACER3 0.859076874 1.427533057 0.732665013 9.70E−08 1.69E−07
PIK3C3 0.909520322 1.266871369 0.47809227 2.98E−07 5.07E−07
HAAO 80.8500472 45.99512303 −0.813767719 3.64E−12 9.15E−12
DEGS1 7.60895486 17.27093585 1.182576051 6.59E−18 2.93E−17
NUDT2 7.28607756 17.12103503 1.232555663 4.35E−19 2.20E−18
ADH1B 527.994414 221.1341117 −1.255601077 3.38E−17 1.31E−16
POLR2I 11.61097278 19.34012161 0.736108019 2.47E−10 5.33E−10
NT5M 0.40577981 1.573026546 1.954774029 3.24E−17 1.27E−16
GATM 201.0644772 134.4996308 −0.580056005 1.14E−08 2.11E−08
PLPP3 35.3993676 17.43031475 −1.022124966 3.08E−17 1.22E−16
PHPT1 13.54757584 48.38776828 1.836607678 3.87E−26 1.43E−24
AKR1B10 21.56249119 348.4054764 4.014171528 1.73E−11 4.18E−11
DGKA 0.329520905 0.633643682 0.943301801 2.37E−05 3.54E−05
TREH 1.851689492 1.32430031 −0.483611878 3.78E−06 6.00E−06
UGT1A6 2.955261072 7.241389897 1.292981046 0.006980058 0.008405017
B4GALT2 5.90955282 11.4905014 0.959320883 1.47E−17 6.13E−17
SGMS2 3.765996564 1.802598975 −1.062953208 1.68E−05 2.55E−05
ENTPD1 0.634465836 1.48168498 1.223624363 2.79E−19 1.46E−18
INPP5E 1.353489428 3.225346035 1.252770331 1.93E−19 1.05E−18
AMPD2 4.28833292 7.542024427 0.814534911 7.54E−13 2.02E−12
KYNU 2.4308026 2.247638585 −0.113022668 9.84E−07 1.63E−06
UGP2 58.5313736 40.07029916 −0.546676855 1.31E−10 2.91E−10
CDA 29.0720696 17.30167458 −0.7487221 1.20E−10 2.69E−10
NME1-NME2 0.318942837 0.531576005 0.736978107 0.000431791 0.000572938
DGUOK 11.27155494 19.37659762 0.781628714 1.50E−13 4.35E−13
AK2 14.9739754 17.94421295 0.261061357 0.000889768 0.001158232
PI4KA 2.861807906 5.047843187 0.818740256 2.57E−10 5.53E−10
COX15 6.69914978 8.729761864 0.381964291 2.57E−08 4.65E−08
CHST13 13.29861354 25.15093577 0.919336234 5.40E−07 9.06E−07
GLO1 32.9487238 51.30883037 0.638984552 5.19E−09 9.87E−09
HAO2 86.8433924 25.34855366 −1.776512651 1.58E−20 9.67E−20
GCDH 24.69117048 14.79007361 −0.739365996 2.95E−12 7.47E−12
CPT1B 0.121235197 0.398590265 1.717097872 1.74E−14 5.44E−14
SPTLC1 3.060500882 4.809781218 0.652203488 1.51E−05 2.29E−05
PYGB 4.35291446 18.82163409 2.112338313 8.70E−26 2.35E−24
POLR2H 5.75387058 12.47900765 1.116898537 1.04E−22 1.07E−21
POLR2B 4.42658506 7.625983009 0.784729173 7.24E−11 1.65E−10
RETSAT 38.7021028 37.57376368 −0.04268632 0.019656262 0.022831504
PTDSS2 1.662328 4.164425941 1.324912563 2.15E−23 2.57E−22
PYCR2 5.37894786 15.26388831 1.50472661 5.48E−28 4.59E−26
METTL2B 1.507055692 2.85584579 0.922185347 1.48E−21 1.21E−20
DGKH 0.113162972 0.327426191 1.532767749 3.75E−16 1.31E−15
GSTA1 630.2036156 548.263622 −0.200948279 0.00110705 0.001428757
MAT2B 7.7057353 10.40578761 0.433381633 4.64E−06 7.33E−06
BPNT1 5.53523458 10.96770642 0.986545495 3.39E−21 2.44E−20
DNMT3A 0.555289364 2.215351506 1.996223959 7.94E−24 1.07E−22
SEPHS2 127.9557976 190.1067404 0.571164168 2.59E−10 5.56E−10
POLE3 8.66220048 16.03828744 0.888714631 6.27E−19 3.13E−18
INPP4A 0.504742884 0.934387362 0.888472096 7.54E−11 1.70E−10
CYP2E1 530.2645806 266.8712181 −0.990568666 5.25E−11 1.21E−10
CYP2J2 34.1905172 23.20978966 −0.558862799 5.17E−11 1.19E−10
ITPK1 7.76110164 15.32881022 0.981912369 6.29E−16 2.16E−15
POLR2D 3.37104148 5.942900711 0.817972898 1.73E−20 1.05E−19
CSAD 8.06462968 6.521514989 −0.306401137 7.35E−05 0.000105697
NADSYN1 1.32031081 2.690367867 1.026925864 1.07E−21 8.84E−21
AMD1 4.19170934 5.335768195 0.348157311 0.011707199 0.01387588
GSTM5 0.363642937 0.231850861 −0.649325476 3.60E−10 7.60E−10
GAL3ST1 0.673563029 6.610136193 3.294795138 0.00012214 0.000170769
GPT 47.2407036 38.45088064 −0.297013812 4.98E−06 7.84E−06
AGPAT3 8.2516119 11.64639678 0.497135802 4.54E−07 7.67E−07
POLR3B 2.42816858 2.951770627 0.281712031 0.003889012 0.004829283
ASL 53.904885 52.08163964 −0.049641151 0.001055415 0.001366789
PLA2G15 2.72944324 4.31619806 0.661154372 5.77E−08 1.02E−07
BDH2 10.50709572 6.470275333 −0.699464937 1.71E−12 4.41E−12
DGKD 0.77171494 1.905129995 1.303749501 4.07E−19 2.09E−18
ADI1 91.0607558 69.40997785 −0.391686365 2.37E−07 4.07E−07
CHPT1 14.3208144 19.59827237 0.452612945 1.36E−06 2.24E−06
NME3 9.19139972 22.42554503 1.286786564 6.38E−22 5.60E−21
DHODH 15.80542924 6.798435324 −1.217145566 4.99E−16 1.73E−15
LCAT 68.1154072 16.82335661 −2.01751558 2.17E−26 9.64E−25
GLS2 4.778706618 1.78680446 −1.419238437 1.24E−15 4.17E−15
PLPP1 14.99118618 30.87743991 1.042438601 9.08E−10 1.85E−09
CKMT1B 0.007144548 0.294667545 5.366101652 0.004188776 0.005159096
ENTPD4 1.775126334 2.540169076 0.517002824 0.002229478 0.002814809
PLCD1 1.691310116 2.545895876 0.590032202 2.56E−07 4.37E−07
G6PC 204.0482294 152.8745478 −0.416561961 7.14E−06 1.12E−05
ATIC 7.75802162 18.69461756 1.268862257 1.56E−23 1.96E−22
PEMT 52.8566338 30.87396532 −0.775693761 4.96E−14 1.47E−13
AMY2B 0.407575554 0.944786186 1.212920347 3.39E−06 5.43E−06
MGST1 91.208676 75.16583894 −0.279093923 0.000239299 0.000323204
CBS 1.188079795 0.956133191 −0.313348227 0.028413017 0.032700957
PFKFB4 0.151297184 0.756509371 2.321972815 5.38E−18 2.42E−17
MTHFD1L 0.557753522 2.524923016 2.178539778 2.35E−22 2.19E−21
SUOX 10.01822034 9.128650786 −0.134152697 0.011544688 0.013726361
ACP2 20.4062632 24.48232224 0.262728389 0.004059381 0.005016093
GOT1 154.184527 113.1036936 −0.447011949 1.05E−06 1.73E−06
MCEE 8.66946072 8.069239048 −0.103509624 0.013633303 0.016032934
POLR3C 2.99792546 7.304838 1.284887766 1.45E−22 1.42E−21
DOI: 10.7717/peerj.16335/table-1

Analysis of the differential expression and prognostic relationship of DEGs in HCC based on TCGA database

By using univariate COX regression analysis, we found that 79 DEGs in tumor tissues of HCC patients were associated with the prognosis of HCC patients, of which 21 genes with high expression indicated a better prognosis and the other 58 genes were associated with a poor prognosis (Fig. 3A). Of these, 75 genes were MRGs (Fig. 3B). Among the 75 MRGs associated with the prognosis of HCC patients, 55 genes were highly expressed in tumor tissues of HCC patients, and 20 genes were poorly expressed. We used heatmaps for illustration (Fig. 3C). Then, we evaluated the protein-protein interactions of these genes, further revealing the strong interaction activity of these molecules at the protein level, as shown in Fig. 2D. Similarly, correlated networks built based on mRNA expression levels in TCGA showed a negative (blue) and positive (red) correlation between these prognostically relevant MRGs, as shown in Fig. 3E.

Differentially expressed MRGs in HCC patients.

Figure 2: Differentially expressed MRGs in HCC patients.

(A) Heatmap of DEGs in HCC. The color from blue to red represents the progression from low expression to high expression. (B) Volcano plot of differentially expressed genes in HCC. The red dots in the plot represent upregulated genes, and the blue dots represent downregulated genes with statistical significance. Black dots represent no differentially expressed genes in HCC. (C) Heatmap of differentially expressed MRGs in HCC. The color from blue to red represents the progression from low expression to high expression. (D) Volcano plot of differentially expressed MRGs in HCC.
Identification of the metabolism-related DEGs with prognostic values in the TCGA cohort.

Figure 3: Identification of the metabolism-related DEGs with prognostic values in the TCGA cohort.

(A) Forest plot shows the results of univariate Cox regression analysis between gene expression and OS. (B) Venn diagram shows the intersection of differentially expressed MRGs and prognostic-related genes. (B) The heatmap shows the expression difference of these 75 MRGs with a prognostic value. (D) The PPI network showed the interaction between 75 genes. (E) A correlation network of 75 MRGs with prognostic value. The correlation coefficient is distinguished by different colors.

Development and evaluation of metabolism-related risk score

The expression profiles of the above 75 genes were used to establish a prognostic model by LASSO Cox regression analysis. Based on the optimal value of λ, 14 genes that contribute the most to the prognosis of HCC patients were identified (Table 2). Among these genes, except for ACADS, GOT2, ADH4, and CSAD, high expression of the other 10 genes was associated with a poor prognosis in HCC patients (P < 0.05). The risk score is calculated as follows: risk score = (0.0875 * DLAT expression) + (0.2953 * SEPHS1 expression) + (-0.1116 * ACADS expression) + (0.1978 * UCK2 expression) + (-0.0143 * GOT2 expression) + (-0.0295 * ADH4 expression) + (-0.3244 * LDHA expression) + (0.0520 * ME1 expression) + (0.0105 * TXNRD1 expression) + (0.0433 * B4GALT2 expression) + (0.1975* AK2 expression) + (0.1783* PTDSS2 expression) + (-0.023 * CSAD expression) + (0.0207 * AMD1 expression). Based on the median of the risk score, the sample was rated as low and high risk (Fig. 4A). Of these, 164 patients were in the high-risk group and 165 patients were in the low-risk group. Principal component analysis (PCA) and t-distribution random neighborhood embedding (t-SNE) analysis showed that patients in different risk groups were distributed in two directions (Figs. 4B4C). This suggests that the MRRS model can distinguish well between high- and low-risk patients. It is shown that the patients in the high-risk group had a higher probability of death than those in the low-risk group (Fig. 4D). In addition, Kaplan–Meier survival analysis also confirmed that the survival time of the high-risk group was significantly reduced compared to the low-risk group (Fig. 4E, P < 0.001). The predictive performance of the model was evaluated using a time-varying ROC curve, with the area under the curve (AUC) reaching 0.829 at 1 year, 0.770 at 2 years, and 0.760 at 3 years (Fig. 4F). Overall, these findings suggest that MRRS was able to distinguish the prognosis of HCC patients in the TCGA database.

Table 2:
The genes that contribute to the prognosis of HCC patients.
Based on the optimal value of λ, 14 genes that contribute the most to the prognosis of HCC patients were identified.
Gene Coef
DLAT 0.087527704
SEPHS1 0.295255334
ACADS −0.111567502
UCK2 0.197793632
GOT2 −0.014390167
ADH4 −0.029554667
LDHA 0.324459855
ME1 0.052008356
TXNRD1 0.010457298
B4GALT2 0.043281636
AK2 0.19745112
PTDSS2 0.178350248
CSAD −0.023302247
AMD1 0.02060711
DOI: 10.7717/peerj.16335/table-2
Construction and verification of the MRRS in the TCGA cohort.

Figure 4: Construction and verification of the MRRS in the TCGA cohort.

(A) The risk score distribution of HCC patients in the TCGA database. The color from blue to red indicates the level of expression from low to high. Scatter plots of high-risk and low-risk risk scores. (B) PCA analysis of CRA patients. (C) T-SNE analysis of CRA patients. (D) Survival status and survival time of patients. Red dots indicate patients who have died, and blue dots indicate that they are still alive. (E) Survival curves of low-risk and high-risk populations in HCC patients. Red represents the high-risk group, and blue represents the low-risk group. (F) 1-year, 2-year, and 3-year AUCs. AUC, the area under the curve; ROC, receiver operating characteristic.

Validation of MRRS in the ICGC cohort

To test the robustness of the model developed by the TCGA cohort, we validated the model with HCC patients’ data from the ICGC database. We calculated the risk score for each patient in the ICGC cohort using the same formula. Based on the above median, we divided HCC patients from the ICGC cohort into high-risk (n = 214) and low-risk (n = 13) (Fig. 5A). In the ICGC cohort, the results of PCA and t-SNE analyses were similar to those of TCGA (Figs. 5B5C). The high-risk group had a worse prognosis than the low-risk group (Fig. 5D). The survival curve showed that MRRS was effective in differentiating patients with different prognostic conditions, and patients in the high-risk group tended to have a higher risk of death and significantly shorter survival times than those in the low-risk group (Fig. 5E, P < 0.05). ROC analysis showed that MRRS had good predictive power on the prognosis of patients in the ICGC cohort (AUC = 0.757, 0.738, and 0.725; at 1, 2, and 3 years, respectively in ICGC, Fig. 5F). Taken together, this evidence shows that the model was able to predict the prognosis of HCC patients well.

Validation of the MRRS in the ICGC cohort.

Figure 5: Validation of the MRRS in the ICGC cohort.

(A) The risk score distribution of HCC patients in the ICGC database. The color from blue to red indicates the level of expression from low to high. Scatter plots of high-risk and low-risk risk scores. (B) PCA analysis of CRA patients. (C) T-SNE analysis of CRA patients. (D) Survival status and survival time of patients. Red dots indicate patients who have died, and blue dots indicate that they are still alive. (E) Survival curves of low-risk and high-risk populations in HCC patients. Red represents the high-risk group, and blue represents the low-risk group. (F) 1-year, 2-year, and 3-year AUCs. AUC, the area under the curve; ROC, receiver operating characteristic.

Independent prognostic value of MRRS in patients with HCC

To further determine whether MRRS can be used as an independent predictor of prognosis in HCC patients, we first performed univariate and multivariate Cox regression analysis in the TCGA cohort. As shown in Figs. 6A6B, MRRS was found to be significantly correlated with the prognosis of HCC patients in both univariate Cox regression analyses (Hazard ratio (HR) = 3.757, 95% CI [2.819–5.007], p < 0.001) and multivariate Cox regression analysis (HR = 3.695, 95% CI [2.695–5.066], p < 0.001). Univariate and multivariate Cox regression analyses were then performed in the ICGC cohort for validation. The results showed that MRRS remained an independent predictor of prognosis in the ICGC cohort (HR = 3.023, 95% CI [1.958–4.667], p < 0.001, and HR = 2.574, 95% CI [1.602–4.135], p < 0.001; Figs. 6C6D). In addition, the multivariate analysis to remove confounding factors, age, sex, and stage could not be used as independent prognostic indicators for HCC patients, showing the superiority of MRRS in the prognosis assessment of HCC patients. Overall, our study suggests that MRRS can serve as an independent prognostic factor for patients with HCC.

MRRS is an independent prognostic signature for HCC patients.

Figure 6: MRRS is an independent prognostic signature for HCC patients.

(A) In the TCGA cohort, risk factors analysis of OS in the univariate Cox regression. (B) In the TCGA cohort, risk factors analysis of OS in the multivariate Cox regression. (C) In the ICGC cohort, risk factors analysis of OS in the univariate Cox regression. (D) In the ICGC cohort, risk factors analysis of OS in the multivariate Cox regression.HR hazard ratio.

GO and KEGG analysis of DEGs in high and low-risk groups in the TCGA and ICGC cohorts

To elucidate the biological functions and pathways associated with MRRS risk scores, we first used GO enrichment analysis and KEGG pathway analysis for DEGs between high and low-risk groups in the TCGA cohort. The results of GO enrichment analysis showed that in terms of Biological Processes, signal transduction, cell division, and apoptotic process were significantly enriched. In terms of cellular components, cytosol, cytoplasm, and plasma membrane were significantly enriched; In terms of Molecular Function, protein binding, identical protein binding, and ATP binding were significantly enriched (Fig. 7A). KEGG enrichment results showed significant enrichment of metabolic pathways such as drug metabolism-cytochrome P450, retinol metabolism, central carbon metabolism, and tyrosine metabolism. Cell cycle, glycolysis/gluconeogenesis, ECM-receptor interaction, and signaling pathways such as the HIF-1 signaling pathway and PPAR signaling pathway were also enriched (Fig. 7B). In addition, immune-related signaling pathways such as the IL-17 signaling pathway and the TNF signaling pathway were significantly affected (Fig. 7B). Then we performed GO enrichment analysis and KEGG enrichment analysis for DEGs between high and low-risk groups in the ICGC cohort. GO enrichment analysis showed significant enrichment of cell adhesion, cell division, and positive regulation of T cell proliferation and activation pathways (Fig. 7C). KEGG enrichment results showed that in addition to the significant enrichment of metabolic signaling pathways, a variety of immune-related signaling pathways were also significantly enriched, such as Th17 cell differentiation, human T-cell leukemia virus 1 infection, Th1 and Th2 cell differentiation, leukocyte transendothelial migration, antigen processing and presentation, Fc gamma R-mediated phagocytosis, and B cell receptor signaling pathway (Fig. 7D). In addition, consistent with the results of the analysis in the TCGA cohort, the PPAR signaling pathway and PI3K-Akt signaling pathway were also significantly affected (Fig. 7D). Taken together, these findings highlight that HCC patients in the high and low-risk groups may lead differences in tumor malignant characterization through these pathways, ultimately leading to different prognoses of HCC patients.

Functional enrichment of the DEGs between risk groups.

Figure 7: Functional enrichment of the DEGs between risk groups.

(A–B) In the TCGA cohort, results of GO and KEGG pathway analysis. (C–D) In the ICGC cohort, results of GO and KEGG pathway analysis.

Infiltration of immune cells in TME in high- and low-risk populations

GO and KEGG enrichment analysis showed differences in function and pathways between risk groups in ECM-receptor interaction pathways and multiple immune-related signaling pathways. To further explore the correlation between different risk scores and immune status, we further explored the content of immune matrix components in the tumor microenvironment. According to the ESTIMATE algorithm, B cells, CD4+ T cells, CD8+ T cells, DC cells, macrophages, and neutrophil subsets in tumor tissues of high-risk groups were significantly upregulated significantly higher in the high-risk group (P < 0.05, Fig. 8), indicating that there are more immune cell components in TME in high-risk HCC patients.

Relationships between the MRRS and infiltration abundances of immune cells.

Figure 8: Relationships between the MRRS and infiltration abundances of immune cells.

(A–F) The relationship between risk score and six types of immune cells.

Downregulation of GOT2 promotes the migration capacity of hepatocellular carcinoma

By analyzing the relationship between prognosis and GOT2 mRNA expression levels in patients with hepatocellular carcinoma in the TCGA database, we found that patients with low GOT2 expression had a worse prognosis in the TCGA database (Fig. 9A). To further explore the biological significance of GOT2 in the progression of hepatocellular carcinoma, we first transfected siRNAs targeting GOT2 (siGOT2) or negative control siRNA (siNC) in HEK293 cells and verified their knockdown efficiency by RT-qPCR (Fig. 9B). The wound healing assay was used to assess the effect of GOT2 on the migration of hepatocellular carcinoma cells (Huh7 and MHCC97H). As shown in Figs. 9C9F, down-regulation of GOT2 significantly inhibited migration in both cell lines compared to the control group. Together, our findings provide new insights into the role of GOT2 in influencing malignant phenotypes by regulating migration in hepatocellular carcinoma cells.

Decreased expression of GOT2 in hepatocellular carcinoma inhibits migration.

Figure 9: Decreased expression of GOT2 in hepatocellular carcinoma inhibits migration.

(A) The Kaplan–Meier plots plot shows the relationship between GOT2 expression levels and patient outcomes. (B) HEK293 cell line was transfected with siNC or siGOT2 and the mRNA expression level of GOT2 was by RT-qPCR. (C–F) Wound healing assays showed that GOT2 reduced cell migration in Huh7 (C–D) and MHCC97H (E–F). Error bar indicates SD of the mean. p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 by biological repeated-measures analysis of variance (n = 3).

Discussion

HCC is an extremely common malignancy worldwide, it is important to develop reliable prognostic indicators for HCC patients. In this study, we established 14 genetic biomarkers as new prognostic models of MRRS and analyzed their ability to predict prognosis in HCC patients. The prognostic performance of the model is verified by the survival curve and ROC curve, and the results show that the model has good predictive performance. Its prediction efficiency was verified in the ICGC cohort. MRRS is a good independent indicator for predicting the prognosis of HCC patients in both TCGA and ICGC cohorts. Our prognostic model can help predict the prognosis of HCC patients clinically, thereby recommending better treatment measures for high-risk HCC patients.

GO and KEGG analysis showed that cell proliferation signals were significantly altered in patients in the high-risk group, suggesting that metabolism significantly affects cell proliferation, and cell proliferation may be the cause of poor prognosis in HCC patients. The mechanisms involved may be related to the PPAR signaling pathway, and PI3K-Akt signaling pathway, so PPAR inhibitors and PI3K-Akt inhibitors can be tried in high-risk patients to have a better prognosis for HCC patients. Functional analysis showed that immune signals were widely involved in tumor processes in high-risk patients, and more immune cells were infiltrated in the tumor microenvironment of high-risk patients. Our results are consistent with previous studies, and that increased expression of tumor blasts such as regulatory T cells, tumor-associated macrophages, tumor-associated neutrophils, and myeloid-derived suppressor cells in most cancers generally predicts worse outcomes (Senovilla et al., 2012). TME is generally divided into three categories (Chen & Mellman, 2017; Lanitis et al., 2017): (1) immune-inflamed: immune cells exist near tumor cells, (2) immune-excluded: immune cells exist around the stroma but do not penetrate the tumor, (3) immune-desert: lack of immune cell infiltration. In the current study, we reasonably speculate that tumors in patients with high-risk HCC may be Immune-excluded tumors (IETs). In this case, although TME shows abundant immune cell infiltration, cytotoxic T lymphocytes (CTL) cannot effectively infiltrate the tumor and exert a killing effect. This suggests that immunotherapy alone in high-risk patients may be less effective in patients. At present, the possibility that high-risk patients are immune-inflamed cannot be ruled out, and further evaluation of immunotherapy responses between different patients is needed to obtain better treatment outcomes. High-risk patients with immune inflammation should be aggressively treated with immunotherapy to achieve better clinical outcomes. This strategy may also be used in other cancer patients to seek better treatment targets and carry out precise treatment of cancer.

Although the mechanism of metabolism in tumors has become an increasingly popular area of research in recent years, the potential regulation between tumor immunity and metabolism still needs more research. Different states of tumor-associated macrophages (TAMs) are able to adapt to the tumor microenvironment by altering metabolism. It can inhibit the differentiation of M2-type TAMs by inhibiting the metabolism pathway (Van den Bossche et al., 2016; Divakaruni et al., 2018). Cancer-related MDSCs, whose main energy supply mode is converted from glycolysis to FAO. Increased fatty acid uptake and higher expression of key enzymes, which in turn upregulated the FAO rate necessary to produce immunosuppressive ARG1 (Hossain et al., 2015). Cytokines that drive the expansion of MDSCs. Fatty acid transporters (FATPs), as long-chain fatty acid transporters, upregulate and control the inhibitory activity of MDSCs on tumors in tumor-derived MDSCs (Veglia et al., 2019). This evidence suggests that fatty acid metabolism targeting MDSCs and M2 TAMs may be an important means of enhancing the efficacy of cancer immunotherapy. In this study, antigen presentation signaling pathways differed significantly between different risk groups. One possible hypothesis is that differences in mediators in tumor tissues attract antigen-presenting cells (APCs) to the site of tumor cells (Friedmann Angeli, Krysko & Conrad, 2019). Our study shows that many immune-related biological processes and pathways are enriched among HCC patients with different metabolism risk groups. Therefore, it is reasonable to assume that metabolism in tumor tissues in HCC patients is closely related to tumor immunity.

Recent studies have found that amino acid metabolism (Bertero et al., 2019; Ericksen et al., 2019) and tricarboxylic acid metabolism (Nie et al., 2020) play an important role in tumor development and cancer drug resistance (Yoo & Han, 2022; Ma et al., 2018). As a member of glutamate-oxaloacetate aminotransferase, a recent study showed that GOT2 expression levels affect metabolism (Wang et al., 2018), suggesting that GOT2 may be an important regulator of cellular metabolism. In our study, the prognostic curve confirms that GOT2 plays an important role in predicting survival in patients with hepatocellular carcinoma. To gain a deeper understanding of the mechanism by which GOT2 affects tumor progression, wound healing assays are performed. These findings suggest that GOT2 has a significant activating effect on the migration ability of hepatocellular carcinoma.

In summary, our study defines a new prognostic model MRRS constructed from 14 MRGs. The model was shown to be independently correlated with OS in the derivation and validation cohorts, providing insights for predicting HCC prognosis. The study had several limitations. First, our prognostic model was constructed and validated with retrospective data from a public database. More forward-looking, real-world data are needed to validate its clinical utility. Secondly, since the model focuses on the evaluation ability of metabolism in HCC patients, a variety of indicators should be included in the comprehensive judgment of clinical decision-making. For example, it should be emphasized that the responsiveness of HCC patients in the high-risk score group to immunotherapy needs more research to elucidate.

Supplemental Information

Risk Score

The penalty parameter (λ ) of the model is determined by tenfold cross-validation following the minimum criterion (i.e., the λ value corresponding to the lowest partial likelihood bias). Subsequently, the patient’s risk score is calculated based on gene expression and the corresponding Cox regression coefficient as follows: score= sum (expression of each gene × corresponding coefficient)

DOI: 10.7717/peerj.16335/supp-1
1 Citation   Views   Downloads