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Injured trilobites present insight into how a completely extinct group of arthropods
responded to traumatic experiences such as failed predation and moulting complications.
These specimens are therefore important for more thoroughly understanding the Paleozoic
predator-prey systems that involved trilobites. To expand the record of injured trilobites,
we present new examples of injured Ogygopsis klotzi and Olenoides serratus from the
Campsite Cliû Shale Member of the Burgess Shale Formation (Wuliuan, Miaolingian),
Paradoxides (Paradoxides) paradoxissimus gracilis from the Jince Formation (Drumian,
Miaolingian), Ogygiocarella angustissima from the Llanfawr Mudstones Formation
(Darriwilian3Sandbian, Middle3Late Ordovician) and Ogygiocarella debuchii from the
Meadowtown Formation, (Darriwilian3Sandbian, Middle3Late Ordovician). We explore the
possible origins of these malformations and conclude that most injuries reûect failed
predation. We explore possible predators and highlight that a marked shift in possible
trilobite predator groups occurred during the Great Ordovician Biodiversiûcation Event. We
also collate other records of injured Ogyg. klotzi and Ol. serratus, and Ogygi. debuchii,
highlighting that these species are targets for further understanding patterns and records
of trilobite injuries.
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13 Abstract

14 Injured trilobites present insight into how a completely extinct group of arthropods responded to 

15 traumatic experiences such as failed predation and moulting complications. These specimens are 

16 therefore important for more thoroughly understanding the Paleozoic predator-prey systems that 

17 involved trilobites. To expand the record of injured trilobites, we present new examples of 

18 injured Ogygopsis klotzi and Olenoides serratus from the Campsite Cliff Shale Member of the 

19 Burgess Shale Formation (Wuliuan, Miaolingian), Paradoxides (Paradoxides) paradoxissimus 

20 gracilis from the Jince Formation (Drumian, Miaolingian), Ogygiocarella angustissima from the 

21 Llanfawr Mudstones Formation (Darriwilian�Sandbian, Middle�Late Ordovician) and 

22 Ogygiocarella debuchii from the Meadowtown Formation, (Darriwilian�Sandbian, Middle�Late 

23 Ordovician). We explore the possible origins of these malformations and conclude that most 

24 injuries reflect failed predation. We explore possible predators and highlight that a marked shift 

25 in possible trilobite predator groups occurred during the Great Ordovician Biodiversification 

26 Event. We also collate other records of injured Ogyg. klotzi and Ol. serratus, and Ogygi. 

27 debuchii, highlighting that these species are targets for further understanding patterns and 

28 records of trilobite injuries.

29 Keywords: Trilobites, injuries, predator-prey systems, predation, Paleozoic, Burgess Shale, 

30 Jince Formation, Llanfawr Mudstones Formation, Meadowtown Formation

31
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32 Introduction

33 Numerous injured trilobites have been reported from Cambrian to Devonian aged deposits 

34 (Owen, 1985; Babcock, 1993; Bicknell et al., 2022d). These malformations have presented 

35 insight into the position of trilobites as prey items (Rudkin, 1979; Conway Morris & Jenkins, 

36 1985; Owen, 1985; Zong, 2021b; Bicknell et al., 2022d), as well as how trilobites recovered 

37 from moulting complications (McNamara & Rudkin, 1984; Owen, 1985). Such specimens are 

38 therefore useful for understanding the palaeoecology and palaeobiology of the completely extinct 

39 group of arthropods (Owen, 1985; Rudkin, 1985; Babcock, 1993).

40 Trilobite injuries are considered exoskeletal breakage from accidental injury, attack, or 

41 moulting issues (Bicknell et al., 2022a). Injuries are generally �L�-, �U�-, �V�-, or �W�-shaped 

42 indentations (Babcock, 1993; Bicknell & Pates, 2019; Bicknell et al., 2022a) and can also be 

43 expressed as rounded and reduced exoskeletal sections, or as a �single segment injury� (SSI; 

44 (Pates et al., 2017; Pates & Bicknell, 2019; Bicknell et al., 2022a, e). Injuries commonly show 

45 evidence for cicatrisation and/or segment repair and regeneration�records of a successful 

46 moulting after an injury. Occasionally, abnormal structures, such as fusion of exoskeletal 

47 sections or lack of segment expression, are associated with injuries (Owen, 1985; Bicknell et al., 

48 2022a; Bicknell et al., 2023a). Such evidence reflects abnormal recovery from the injury. 

49 Importantly, these morphologies differ from teratologies that record how trilobites responded to 

50 genetic or developmental malfunctions (Owen, 1985; Babcock, 2007; Bicknell & Smith, 2021, 

51 2022).

52 To expand the record of injured trilobites from lower Paleozoic deposits, five novel 

53 specimens�Ogygiocarella angustissima (Salter, 1865), Ogygiocarella debuchii (Brongniart, 
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54 1822), Ogygopsis klotzi (Rominger, 1887), Olenoides serratus (Rominger, 1887), and 

55 Paradoxides (Paradoxides) paradoxissimus gracilis (Boeck, 1827)�with morphologies 

56 considered injuries are reported here. We also collate other evidence of malformed specimens of 

57 these species and explore possible injury causes.

58 Geological context

59 The Ogygopsis klotzi (NHMUK PI I 4749) and Olenoides serratus (NHMUK PI IG 4437-9) 

60 figured in this study were collected from Mount Stephen in British Columbia, Canada in 

61 Walcott�s (1908) �Ogygopsis Shale�, Burgess Shale Formation on the mountain trail 850 m 

62 above the town of Field. This is horizon is now placed within the Campsite Cliff Shale Member 

63 which also outcrops at Mount Field and the Fossil Gully Fault (Fletcher & Collins, 1998, 2003). 

64 The association of articulated trilobite remains and with an underlying distal wedge facies, 

65 suggests the unit was deposition in a deeper water, potentially euoxic setting (further from the 

66 carbonate platform forming the Cathedral Formation palaeocliff edge; Allison & Brett 1995). 

67 Presence of the eponym for the Pagetia bootes Subzone places the member firmly within the 

68 restricted shelf Bathyuriscus�Elrathina Zone (Fletcher & Collins, 1998) which has been 

69 correlated with the upper portion of the open-shelf Ptychagnostus praecurrens Zone of North 

70 America (Robison & Babcock, 2011). This is correlated with the later portion of the Wuliuan 

71 Stage (Miaolingian) on the global scale (Peng et al., 2012).

72 The Paradoxides (Paradoxides) paradoxissimus gracilis (NHMUK PI OR 42440) 

73 figured here was collected from Jince in the Czech Republic at an unknown locality in the Jince 

74 Formation. The taxon is widely distributed over the entire Jince Basin, occurring at multiple 

75 outcrops throughout the Litavka River Valley region, hence the exact position from where the 
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76 specimens derives is impossible to determine (Fatka & Szabad, 2014). However, more generally 

77 P. (P.) paradoxissimus gracilis occurs in the green, fine-grained greywackes and shales within 

78 the middle levels of the Jince Formation, which is thought to correspond with the peak of a 

79 transgressive event identified within the unit (Storch et al., 1993; Fatka & Szabad, 2014). The 

80 occurrence of abundant articulated agnostids, paradoxidids, and a conocoryphid species (Fatka et 

81 al., 2004), suggests a deeper water environment, within the conocoryphid biofacies of Álvaro et 

82 al. (2003). The taxon is the eponym for the P. (P.) paradoxissimus gracilis Zone in the PYíbram-

83 Jince Basin within the Barrandian area (Fatka & Szabad 2014 for a comprehensive discussion). 

84 Co-occurrence of the agnostid Hypagnostus parvifrons (Linnarsson, 1869) and the lower 

85 stratigraphic occurrence of Onymagnostus hybridus (Brøgger, 1878) (Fatka et al., 2004; Fatka & 

86 Szabad, 2014), suggests the zone corresponds with the middle and higher levels of the Baltic 

87 Paradoxides (Paradoxides) paradoxissimus Zone (Axheimer & Ahlberg, 2003; Høyberget & 

88 Bruton, 2008; Weidner & Nielsen, 2014). This region of the Chinese, one likely corresponds to 

89 the Scandinavian, South Chinese, and Australian Ptychagnostus atavus and Ptychagnostus 

90 punctuosus zones placing it in the early to mid-Drumian Stage (Miaolingian) globally (Peng et 

91 al., 2012).

92 The Ogygiocarella angustissima (NHMUK PI OR 59206) and Ogygiocarella debuchii 

93 (NHMUK PI In 23066) figured in this study were collected from two similarly aged deposits in 

94 Wales, United Kingdom. The Ogygiocarella angustissima specimen was apparently collected 

95 from Gwern-fydd, although this seems unlikely given the regional geology and lithology of the 

96 specimen. Lectotype material preserved in identical matrix has alternatively been suggested to be 

97 derived from �Harper�s quarry�, 500 m north-west of Welfield (near Builth), likely within the 

98 Llanfawr Mudstones Formation, Builth Inlier (Hughes 1979 and references therein, also see 
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99 updated stratigraphy in Davies et al. 1997 and Fortey et al. 2000). The Ogygiocarella debuchii 

100 specimen conversely originates from Betton Quarry (near Shropshire) in the upper Meadowtown 

101 Formation, Shelve Inlier. Both units are dominated by fine mudstone and siltstone, likely being 

102 deposited on a relatively deep shelf environment nearby a volcanic arc (Fortey & Owens, 1987; 

103 Davies et al., 1997; Fortey et al., 2000; Owens, 2002). Known ranges of Ogygiocarella 

104 angustissima and Ogygiocarella debuchii suggest the taxa occur in either the Hustedograptus 

105 teretiusculus and/or Nemagraptus gracilis zones at these localities. However, without more 

106 precise details regarding the exact collection horizons (and associated graptolite or other shelly 

107 fauna) it impossible to determine which precisely (Hughes, 1979; Bettley et al., 2001). Hence, 

108 the figured material likely comes from somewhere within the regional Llandeilian (Llanvirn) or 

109 Aurelucian (Caradoc) stages. This correlates with the global Darriwilian (Middle Ordovician) to 

110 Sandbian (Late Ordovician) boundary (Bettley et al., 2001; Cooper & Sadler, 2012; Goldman et 

111 al., 2023). 

112 Methods

113 Trilobite specimens within the Natural History Museum Invertebrate palaeontology collection 

114 (NHMUK PI), London were reviewed for injuries. Identified specimens were from the Campsite 

115 Cliff Shale Member of the Burgess Shale Formation, Jince Formation, and two unidentified 

116 Ordovician units around Wales, UK. These specimens were photographed under low angle LED 

117 light as stacks with a Canon EOS 600D at the NHM. Images were stacked using Helicon Focus 7 

118 (Helicon Soft Limited) stacking software. Measurements of specimens were collated from the 

119 images using ImageJ (Schneider et al., 2012) and compiled into Table 1. 

120 Results
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121 Ogygopsis klotzi (Rominger, 1887), NHMUK PI I 4749, Cambrian (Miaolingian, 

122 Wuliuan), Campsite Cliff Shale Member of the Burgess Shale Formation, Canada. Figure 1B, E

123 NHMUK PI I 4749 is a partial, moulted exoskeleton with an injury on the right thoracic 

124 pleural lobe. The injury is an asymmetric �U�-shaped indentation that truncates the 5th and 6th 

125 pleural spines by a maximum of 6.6 mm. The 5th spine shows limited pleural spine recovery, and 

126 the 6th pleural spine is rounded.

127 Olenoides serratus (Rominger, 1887), NHMUK PI IG 4437-9, Cambrian (Miaolingian, 

128 Wuliuan) Campsite Cliff Shale Member of the Burgess Shale Formation, Canada. Figure 1A, C, 

129 D

130 NHMUK PI IG 4437-9 is a partial, moulted exoskeleton with two injuries on the left 

131 thoracic plural lobe. The anterior injury is a �V�-shaped indentation that truncates the 1st and 2nd 

132 pleural spines by 4.6 mm and 1.6 mm, respectively. The second plural spine shows development 

133 of a new spine (Figure 1C). The posterior injury is an asymmetric, cicatrised �U�-shaped 

134 indentation that truncates the 6th and 7th pleural spines by 7.0 mm (Figure 1D). 

135 Paradoxides (Paradoxides) paradoxissimus gracilis (Boeck, 1827), NHMUK PI OR 

136 42440, Cambrian (Drumian), Jince Formation, Czech Republic. Figure 2.

137 NHMUK PI OR 42440 is a mostly complete exoskeleton with three injuries along the 

138 thorax. One on the left thoracic pleural lobe and two on the right pleural lobe. The anterior-most 

139 injury is an SSI that truncates the 1st pleural spine on the left pleural lobe by 3.3 mm (Figure 2D). 

140 The anterior-most injury on the right pleural lobe extends across the ?8th�?10th pleural spines (? 

141 denote uncertainty of the segment number as the specimen is broken anteriorly) (Figure 2B). 

142 This injury has a unique morphology. The ?8th pleural spine is rounded and truncated by 2.4 mm. 
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143 The posterior section of the ?8th segment is truncated further by 4.6 mm. The ?9th pleural spine is 

144 truncated by 6.4 mm. The ?8th and ?9th pleural spines have �W�-shaped indentations. The ?10th 

145 pleural spine is truncated by 5.4 mm and shows rounding. The posterior-most injury on the right 

146 side is a �W�-shaped indentation that truncates the ?13th and ?14th pleural spines by 4.3 mm and 

147 4.7 mm, respectively (Figure 2C).

148 Ogygiocarella angustissima (Salter, 1865), NHMUK PI OR 59206, Ordovician 

149 (Darriwilian�Sandbian, Middle�Late), Llanfawr Mudstones Formation, Wales, UK. Figure 3.

150 NHMUK PI OR 59206 is a mostly complete counter-part specimen that has two injuries 

151 on the right side (=left pleural lobe in life). The anterior-most injury is a �U�-shaped indentation 

152 that truncates the 1st�3rd pleural spines by 4.7 mm (Figure 3B, white arrows). All truncated 

153 spines show rounding, and the 3rd pleural spine shows recovery (Figure 3B, white arrows). The 

154 posterior injury is a �V�-shaped indentation that truncates the 5th and 6th pleural spines by 2.0 mm 

155 and 4.2 mm, respectively. Both pleural spines show rounding (Figure 3B, black arrows)

156 Ogygiocarella debuchii (Brongniart, 1822), NHMUK PI In 23066, Ordovician 

157 (Darriwilian�Sandbian, Middle�Late), upper Meadowtown Formation, Wales, UK. Figure 4.

158 NHMUK PI In 23066is an isolated pygidium with two injuries. The injury on the left side 

159 has disrupted ?6th�?9th pygidial ribs (as above, ? denotes uncertainty of rib numbers as the 

160 specimen appears broken anteriorly) (Figure 4C). Ribs are disrupted at the ?6th rib showing 

161 evidence of possible fusion with the ?7th rib (Figure 4C). Additionally, more posterior ribs have 

162 irregular borders and inconsistent widths. The injury on the right side is a shallow �U�-shaped 

163 indentation that extends 0.7 mm from the pygidial border (Figure 4B). The ?7th and ?8th pygidial 

164 ribs are also fused 0.9 mm from the axial lobe, proximal to the indentation (Figure 4B). 
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165 Discussion

166 Comparing the injuries documented to previously recorded examples of injured trilobites allows 

167 us to propose possible origins for the malformations. The �U�- �V�-, �W�-shaped indentations 

168 observed here (Figures 1A�E; 2A, C; 3A, B; 4A, B) are comparable to examples of injured 

169 Cambrian (see Rudkin, 1979; Babcock, 1993, 2007; Pates et al., 2017; Bicknell & Pates, 2020; 

170 Zong, 2021a, b; Bicknell et al., 2022e) and Ordovician (see Ludvigsen, 1977; Babcock, 2007; 

171 Zong, 2021a; Bicknell et al., 2022d, e) trilobites. These examples are commonly attributed to 

172 failed predation. We therefore conclude that most injuries observed here reflect unsuccessful 

173 predation attempts. There are select injury morphologies that require more detailed 

174 consideration. 

175 The abnormal indentation in Paradoxides (Paradoxides) paradoxissimus gracilis 

176 (NHMUK PI OR 42440, Figure 2B) could reflect two separate attacks that targeted the same 

177 exoskeletal region, or an additional moulting complication about this injury. We suggest both 

178 options as the posterior-most region of the injury (Figure 2B, blue arrow) shows more recovery 

179 than anterior sections. As trilobite recovered from injuries anterior to posterior, we would expect 

180 the more anterior region to show more evidence of recovery (McNamara & Tuura, 2011; Zong & 

181 Bicknell, 2022). As such, this injured region has experienced an additional traumatic event. The 

182 SSI observed on this specimen could also reflect failed predation (Bicknell et al., 2022a) or a 

183 moulting complication. As P. (P.) paradoxissimus gracilis has long pleural spines, these could 

184 have been damaged while moulting, resulting in an isolated injury (�najdr, 1978; Conway Morris 

185 & Jenkins, 1985; Daley & Drage, 2016; Drage, 2019). More research into the moulting patterns 

186 of P. (P.) paradoxissimus gracilis may help differentiate these options.
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187 The abnormal recovery and fusion of ribs in Ogygiocarella debuchii (NHMUK PI In 

188 23066; Figure 4) in two pygidial regions suggests two different traumatic events. The injury on 

189 the left side has no evidence of an indentation (Figure 4C). This indicates that a moulting 

190 complication occurred, and the ribs recovered abnormally�a condition that was propagated 

191 through subsequent moulting events. Conversely, the �U�-shaped indentation and fused pygidial 

192 ribs on the right side illustrates a failed predation attempt that recovered abnormally.

193 Records of injured Ogygopsis klotzi represent valuable insight into possible predator-prey 

194 dynamics within the Burgess Shale biota (Table 2). These injuries were originally thought to 

195 reflect predation by Anomalocaris canadensis Whiteaves, 1892 (see discussion in Rudkin, 1979). 

196 However, recent three-dimensional (3D) kinematic, biomechanical, and computational fluid 

197 dynamic modelling have demonstrated that A. canadensis appendages were ineffective at 

198 handling biomineralised prey (De Vivo et al., 2021; Bicknell et al., 2023b).  More plausible 

199 predators are the co-occurring trilobites and other artiopodans that have reinforced gnathobasic 

200 spines on walking legs (Whittington, 1980; Bruton, 1981; Bicknell et al., 2018b; Holmes et al., 

201 2020). Trilobite fragments within the gut contents of artiopodans (Zacaï et al., 2016; Bicknell & 

202 Paterson, 2018) and 3D biomechanical analyses of gnathobase-bearing appendages (Bicknell et 

203 al., 2018a, 2021) support this mode of durophagous predation. One other option is the mantis 

204 shrimp-like arthropod Yohoia Walcott, 1912 that may have damaged trilobite exoskeletons using 

205 its anteriorly directed raptorial anterior appendages (Pratt, 1998; Haug et al., 2012). 

206 The records collated in Table 2 represent the basis for developing a much larger dataset 

207 to explore Ogygopsis klotzi injury patterns. Documentation of more injured specimens in other 

208 collections should expand this preliminary sample and permit the left-right behavioural 

209 asymmetry hypothesis to be re-addressed (Babcock & Robison, 1989; Babcock, 1993). Recent 
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210 examination of injury patterns in Cambrian trilobites have demonstrated little evidence for injury 

211 asymmetry (Pates & Bicknell, 2019; Bicknell et al., 2022a). However, with 80% of Ogygo. klotzi 

212 unilateral injuries being right sided, this injury distribution could be present in the population 

213 (Table 2). Illustrating this condition with a statistical dataset of one species (following Pates et 

214 al., 2017; Bicknell et al., 2019, 2022a, 2023a; Pates & Bicknell, 2019) will likely uncover 

215 interesting injury patterns and represents a clear direction for exploring this topic further.

216 Predators of Olenoides serratus are likely the same as Ogygopsis klotzi as both species 

217 are from the Burgess Shale. It is worth also considering the presence of male mating claspers in 

218 Ol. serratus that functioned similarly to claspers in male horseshoe crabs in the context of 

219 injuries (Losso & Ortega-Hernández, 2022). These claspers cause injuries to the medial region of 

220 modern female horseshoe crabs during amplexus (Shuster Jr., 1982; Brockmann, 1990; Shuster 

221 Jr., 2009; Bicknell et al., 2018c; Das et al., 2021; Bicknell et al., 2022c). Male Ol. serratus may 

222 therefore have caused similar injuries during mating. However, these reduced appendages would 

223 not have produced the large injuries documented here and in Table 3. 

224 Previously documented injured specimens of �P. gracilis� (Boeck, 1827) permit useful 

225 comparisons (�najdr, 1978; Owen, 1985; De Baets et al., 2022). Injuries to Jince Formation 

226 Paradoxides are considered a result of moulting complications that arose from the flat 

227 morphology and elongate pleural spines common to Paradoxides (�najdr, 1978). As noted 

228 above, moulting is a viable explanation for the injuries considered in Figure 2. However, failed 

229 predation cannot be fully discounted. The most likely predators were the co-occurring 

230 paradoxidids (Babcock, 1993; Fortey & Owens, 1999; Fatka et al., 2009)�a proposal that 

231 further supports cannibalism within Cambrian trilobites (Conway Morris & Jenkins, 1985; Daley 

232 et al., 2013; Bicknell et al., 2022a). Additionally, the bivalved arthropod Tuzoia Walcott, 1912 
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233 could have targeted Paradoxides as Tuzoia is considered a nektobenthic to pelagic predatory or 

234 scavenger (Fatka & Herynk, 2016; Izquierdo-López & Caron, 2022).

235 Records of injured and malformed Ogygiocarella debuchii are limited (Table 4).  

236 However, the identification of five injured specimens since 2022 (Table 4) demonstrates that 

237 Ogygi. debuchii represents another avenue for future research into injury patterns. There is also 

238 mounting evidence to support at least three distinct arthropods groups that could have targeted 

239 Ogygi. debuchii as prey. 

240 (1) The Middle Ordovician (Darriwilian) Castle Bank Biota fauna (Botting et al., 2023) 

241 includes a yohoiid-like arthropod that could have attacked Ogygi. debuchii using raptorial 

242 appendages (Botting et al., 2023). 

243 (2) Ordovician eurypterids�forms known from Late Ordovician (Sandbian) aged Welsh 

244 deposits (Størmer, 1951; Tetlie, 2007)�have been highlighted as possible, albeit ineffective, 

245 predators of trilobites (Lamsdell et al., 2015; Bicknell et al., 2022b; Schmidt et al., 2022). If they 

246 were the predators, eurypterids would have targeted trilobites during a soft-shelled stage. 

247 (3) The large asaphid trilobites themselves could have targeted each other and used 

248 gnathobasic spines on walking legs to process the biomineralised exoskeletons.

249 Finally, nautiloids are commonly suggested as Ordovician predators and could have 

250 damaged the exoskeletons with re-enforced beaks (Brett, 2003; Klug et al., 2018). Evidently, the 

251 Great Ordovician Biodiversification Event saw the rise of more groups that targeted trilobites as 

252 prey and likely shifted where trilobites were located within their respective palaeoecosystems.
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Species Specimen 
number

Stage Cephalic 
length (mm)

Cephalic 
width (mm)

Thoracic 
length (mm)

Pygidial 
length (mm)

Pygidial 
width (mm)

Figure 
number

Ogygopsis klotzi NHMUK 
PI I 4749

Cambrian 
(Miaolingian, 
Wuliuan)

22.1 46.1* 27.3 29.3 37.9* Figure 1B, 
E

Olenoides serratus NHMUK 
PI IG 
4437-9

Cambrian 
(Miaolingian, 
Wuliuan)

21.6* 36.9* 24.2 16.4* 32.7 Figure 1A, 
C, D

Paradoxides 
(Paradoxides) 
paradoxissimus 
gracilis

NHMUK 
PI OR 
42440

Cambrian 
(Drumian)

19.1 54.8 42.7* 8.0 6.7 Figure 2A�
D

Ogygiocarella 
angustissima

NHMUK 
PI OR 
59206

Ordovician 
(Middle�
Late, 
Darriwilian�
Sandbian)

22.5 65.1 22.3 28.5 53.0* Figure 3A, 
B

Ogygiocarella 
debuchii

NHMUK 
PI In 23066

Ordovician 
(Middle�
Late, 
Darriwilian�
Sandbian)

� � � 11.4 19.5 Figure 4A, 
B

260 Table 1: Measurements of documented injured specimens. * indicates minimal values where the specimen is broken. � indicates 

261 exoskeletal section is not observed for the specimen.
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Citation Injury location Injury side Injury morphology
Rudkin (1979, fig. 
1A, B) 

Thorax, segments 3�6 Right �U�-shaped

Rudkin (1979, fig. 1C, 
D) 

Thorax, segments 6�8 Left �W�-shaped 

Rudkin (1979, fig. 1E, 
F) 

Anterior pygidium Right �W�-shaped

Rudkin (1979, fig. 1G, 
H), refigured in Rudkin 
(2009, fig. 1B)

Thorax, segments 7�8 Right �V�-shaped

Briggs & Whittington 
(1985, p. 37) 

Thorax, segment 10, 
extends into anterior 
pygidium

Right �U�-shaped

Pratt (1998, fig. 1A) Anterior pygidium Right �W�-shaped
Nedin (1999, fig. 2C) Thorax, segments 3�6 Bilateral Left: �U�-shaped (segment 5). Right: �W�-

shaped (segments 3�6)
Bicknell & Pates 
(2020, fig. 7A, B)

Thorax, segments 2�5 Left �W�-shaped

Bicknell & Holland 
(2020, fig. 2A, C)

Thorax, segments 1�4 Right �L�-shaped

Bicknell & Holland 
(2020, fig. 2B, D)

Thorax, segments 5�7 Right �U�-shaped with pinched and warped 
segments

This article, Figure 
1B, D

Thorax, segments 5�6 Right �U�-shaped

262 Table 2: Summary of injured and malformed Ogygopsis klotzi documented within the literature.

263

PeerJ reviewing PDF | (2023:08:89829:0:0:NEW 21 Aug 2023)

Manuscript to be reviewed



264

Citation Injury location Injury side Injury morphology 
Pratt (1998, fig. 1B), 
refigured in Butterfield 
(2001, fig. 1.2.3.1.i)

Genal spine; thorax, segments 1�3 Left �W�-shaped

Bicknell & Paterson 
(2018, fig. 1F)

Thorax, segments 5�7 Left �V�-shaped

This article, Figure 1A, 
C, D

Thorax, segments 1�2, 6�7 Left �V�-shaped (segments 1�2); 
�U�-shaped (segments 6�7)

265 Table 3: Summary of injured Olenoides serratus documented within the literature.

266
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267

Citation Species Injury location Injury side Injury morphology
Bicknell et al. 
(2022d, fig. 4a, b)

Ogygiocarella 
debuchii

Cephalon and 
genal spine

Right Truncated genal spine, �U�-
shaped along posterior 
margin of spine

Bicknell et al. 
(2022d, fig. 4c, d)

Ogygiocarella 
debuchii

Pygidium Left �U�- and �V�-shaped 

Bicknell et al. 
(2022e, fig. 2.1, 
2.2)

Ogygiocarella 
debuchii

Pygidium Left �W�-shaped

This article, Figure 
3A, B

Ogygiocarella 
angustissima

Thorax, 
segments 1�3, 5�
6

Left (right in the 
counterpart)

�U�-shaped (segments 1�3), 
�V�-shaped (segments 5�6) 

This article, Figure 
4A�C

Ogygiocarella 
debuchii

Pygidium Bilateral Left: Disrupted and fused 
ribs. Right: �U�-shaped and 
fused ribs

268 Table 4: Summary of injured Ogygiocarella debuchii and Ogygiocarella angustissima within the 

269 literature.

270
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517 Figure Captions

518

519 Figure 1: Injured Olenoides serratus (Rominger, 1887) and Ogygopsis klotzi (Rominger, 1887) 

520 from the Cambrian (Miaolingian, Wuliuan) aged Campsite Cliff Shale Member, Burgess Shale 

521 Formation, Canada. (A, C, D): Olenoides serratus. NHMUK PI IG 4437-9. (A): Complete 

522 specimen. (C): Close up anterior injury showing truncated (white arrow) and recovering (black 

523 arrow) pleural spines. (D): Close up of �U�-shaped injury showing limited cicatrisation. (B, E): 

524 Ogygopsis klotzi. NHMUK PI I 4749. (B): Complete specimen. (E): Close up of �U�-shaped 

525 injury (white arrows). (A, C, D): Images converted to greyscale.

526 [Note to copy editor: please make this full page width]

527 Figure 2: Injured Paradoxides (Paradoxides) paradoxissimus gracilis (Boeck, 1827) from the 

528 Cambrian (Drumian) aged Jince Formation, Czech Republic. (A�D): NHMUK PI OR 42440. 

529 (A): Complete specimen. (B): Close up of unique injury showing a truncated pleural spine (white 

530 arrow) with a notched posterior region (grey arrow), a �W�-shaped indentation (black arrow), and 

531 a truncated, rounded pleural spine (blue arrow). (C): Close up of �W�-shaped indentation. (D): 

532 Close up of SSI (black arrow).

533 [Note to copy editor: please make this full page width]

534 Figure 3: Injured Ogygiocarella angustissima (Salter, 1865), from the Ordovician (Middle�Late, 

535 Darriwilian�Sandbian) aged Llanfawr Mudstones Formation, Wales. (A, B): NHMUK PI OR 

536 59206. (A): Complete specimen. (B): Close up of �U�-shaped (white arrows) and �V�-shaped 

537 (black arrows) indentations.

538 [Note to copy editor: please make this full page width]
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539 Figure 4: Ogygiocarella debuchii (Brongniart, 1822) from the Ordovician (Middle�Late, 

540 Darriwilian�Sandbian) aged upper Meadowtown Formation, Wales (A�C): NHMUK PI In 

541 23066. (A): Complete specimen. (B): Close up of right side showing shallow �U�-shaped 

542 indentation (white arrow) and the fusion pygidial ribs (black arrow). (C): Close up of left side 

543 showing disruption and possible fusion (white arrows) of pygidial ribs and irregular rib sizes. 

544  [Note to copy editor: please make this full page width]

545

546

547
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Figure 1
Injured Olenoides serratus (Rominger, 1887) and Ogygopsis klotzi (Rominger, 1887)
from the Cambrian (Miaolingian, Wuliuan) aged Campsite Cliû Shale Member, Burgess
Shale Formation, Canada

(A, C, D): Olenoides serratus. NHMUK PI IG 4437-9. (A): Complete specimen. (C): Close up
anterior injury showing truncated (white arrow) and recovering (black arrow) pleural spines.
(D): Close up of 8U9-shaped injury showing limited cicatrisation. (B, E): Ogygopsis klotzi.
NHMUK PI I 4749. (B): Complete specimen. (E): Close up of 8U9-shaped injury (white arrows).
(A, C, D): Images converted to greyscale.
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Figure 2
Figure 2: Injured Paradoxides (Paradoxides) paradoxissimus gracilis (Boeck, 1827) from
the Cambrian (Drumian) aged Jince Formation, Czech Republic.

(A3D): NHMUK PI OR 42440. (A): Complete specimen. (B): Close up of unique injury showing
a truncated pleural spine (white arrow) with a notched posterior region (grey arrow), a 8W9-
shaped indentation (black arrow), and a truncated, rounded pleural spine (blue arrow). (C):
Close up of 8W9-shaped indentation. (D): Close up of SSI (black arrow).
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Figure 3
Figure 3: Injured Ogygiocarella angustissima (Salter, 1865), from the Ordovician
(Middle3Late, Darriwilian3Sandbian) aged Llanfawr Mudstones Formation, Wales.

(A, B): NHMUK PI OR 59206. (A): Complete specimen. (B): Close up of 8U9-shaped (white
arrows) and 8V9-shaped (black arrows) indentations.
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Figure 4
Figure 4: Ogygiocarella debuchii (Brongniart, 1822) from the Ordovician (Middle3Late,
Darriwilian3Sandbian) aged upper Meadowtown Formation, Wales

(A3C): NHMUK PI In 23066. (A): Complete specimen. (B): Close up of right side showing
shallow 8U9-shaped indentation (white arrow) and the fusion pygidial ribs (black arrow). (C):
Close up of left side showing disruption and possible fusion (white arrows) of pygidial ribs and
irregular rib sizes.
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