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ABSTRACT

Understanding patterns in coral reproductive biology at local and regional scales is
crucial to elucidate our knowledge of characteristics that regulate populations and
communities. The lack of published data on coral spawning patterns in the Maldives
hinders our understanding of coral reproductive biology and limits our ability to assess
shifts in reproductive phenology over time. Here we document baseline environmental
cues, spawning patterns, exact timings and oocyte development of restored and wild
Acropora, inhabiting shallow water reefs, across two Maldivian atolls. A total of 1,200
colonies were recorded spawning across the two sites between October 2021 and April
2023. These colonies represent 22 species of Acropora, with coral spawning observed
over an extended period of eight months. This research details exact spawning times
of multi-specific spawning, asynchronous spawning and ‘split spawning’ of Acropora,
across multiple lunar phases; and highlights the need to consider restored colonies
when discussing the sexual reproductive patterns of Maldivian Acropora in the future.
Overall, corals spawned earlier in North Male Atoll compared with Baa Atoll. Earlier
spawning events were significantly correlated with lower tide depths, wind speeds, daily
precipitation and higher sea surface temperatures which helped explain inter-atoll,
inter-annual, and intra-annual variations in spawning day. This study contributes to
understanding sexual reproductive cycles of Acropora in the Maldives; knowledge that
is vital for effective management of a critically endangered ecosystem in a changing
climate.

Subjects Ecology, Marine Biology
Keywords Coral Spawning, Maldives, Acropora

INTRODUCTION

Scleractinian corals are structural architects that form the foundation of coral reef
ecosystems. Predominantly made from three-dimensional (3D) calcium carbonate
structures (Baird et al., 2015; Jamodiong et al., 2018) they support 25% of all known marine
inhabitants (Bourne ¢» Webster, 2013). Reef building corals have a bipartite life history;
initially as planktonic larvae that allows connectivity among reefs, and subsequently a
sedentary adult stage (Mayorga-Adame, Batchelder & Spitz, 2017; Davies et al., 2017). This
early planktonic period is a critical component to sustaining coral reef ecosystems, which
have been on the decline over the past three decades due to numerous anthropogenic
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pressures including climate change, pollution and overfishing (Hughes et al., 2017; Hughes
etal., 2018).

Coral reproduction is a fundamental process that contributes to supporting coral
reef functions and structure (Baird et al., 2015), and has evolved to improve survival
by taking place during favourable conditions that maximise fertilisation, gamete
density and predator satiation (Foster, Heyward ¢» Gilmour, 2018). Understanding of
coral reproductive timings is crucial to elucidate our knowledge of characteristics that
regulate populations and communities, particularly through recruitment and ecosystem
connectivity (Kool, Moilanen & Treml, 2013; Done, Gilmour & Fisher, 2015). Furthermore,
sexual reproduction increases genetic diversity of offspring, improving the adaptation and
resilience of the next generation (Otfo & Lenormand, 2002), which in turn has important
implications for coral reef management and conservation (Richmond, 1997; Guest, 2008).

The first documentation of multi-specific synchronous spawning took place in the 1980s
on the Great Barrier Reef (Harrison et al., 1984). This phenomenon led to the increased
effort to document coral spawning across a wide geographic region (Harrison, 2011).
Researchers discovered that multi-specific coral spawning is probably a characteristic
of all speciose coral assemblages, occurring at both high and low latitudes (Guest et al.,
2005; Baird, Guest & Willis, 2009; Bauman, Baird ¢ Cavalcante, 2011; Chelliah et al., 2015;
Bouwmeester et al., 2015; Gouezo et al., 2020) and has revealed that the dominant spawning
pattern of coral species is classified as hermaphroditic broadcast (Harrison, 2011). Local
and regional environmental conditions have been shown to regulate the seasonal timing
of gametogenic cycles either as ultimate factors or proximate cues (Babcock et al., 1986;
Harrison & Wallace, 1990) and typically include sea surface temperature (Keith et al., 2016;
Sakai et al., 2020), wind speed (Van Woesik, 2010; Keith et al., 2016; Sakai et al., 2020; Lin
¢ Nozawa, 2023), precipitation (Hayashibara et al., 1993; Mendes ¢» Woodley, 2002) and
lunar phase (Brady, Hilton & Vize, 2009; Boch et al., 2011; Kaniewska et al., 2015; Lin et al.,
2021), among others.

Located in the Indian Ocean lies the Maldives (3.2028°N, 73.2207°E), in which coral reef
ecosystems were subjected to two mass bleaching events in 1998 and 2016 (Cowburn et al.,
2019). Coral coverage decreased from 40—-60% to less than 8% after the 1998 bleaching event
(Morri et al., 2015; Pisapia et al., 2016). Despite this disturbance, Maldivian reefs showed
resilience and recovered up to 40% in 2015 (Pisapia ef al., 2016). However, in 2016, another
mass bleaching event extirpated many reef building corals, including those of the genus
Acropora (Pisapia, Burn & Pratchett, 2019). Coral bleaching has been shown to decrease
reproductive potential of survivors (Leinbach et al., 2021), reduce gamete numbers (Ward,
Harrison ¢ Hoegh-Guldberg, 2000), and lead to a long-term impact on reproduction
over multiple spawning periods (Levitan et al., 2014). To alleviate these impacts on
coral reef ecosystems, restoration initiatives that manipulate asexual propagation were
implemented not only in the Maldives but worldwide (Bostrim-Einarsson et al., 2020;
Montano et al., 2022). As the persistence of coral populations rely on the success of natural
recruitment through reproduction (Richmond, Tisthammer & Spies, 2018), it is imperative
we understand reproductive patterns to predict population recovery following disturbance
in the Maldives.
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Although coral spawning is a well-known phenomenon where patterns in the Indo-
Pacific have been collated from both the literature and unpublished observations (Baird
et al., 2021), little remains documented about the extent of spawning synchronicity
in the Maldives, the world’s seventh largest coral reef ecosystem, comprising 3.14%
of global reefs (Dhunya, Huang & Aslam, 2017). Published reports from the Maldives
include observations on coral slicks in South Ari Atoll (Loch et al., 2002), and spawning
of Pocillopora verrucosa (Sier ¢ Olive, 1994). Mentions of A. hyacinthus and A. digitifera
spawning during March and April were stated in personal communications (Clark ¢
Edwards, 1999) and a published report by Harrison ¢» Hakeem (2007) revealed patterns of
asynchronous spawning over multiple lunar cycles. Informal records of slick formations
and the inference of spawning are mentioned during March—April and in the last quarter
of the year (Marine Research Institute, 2023). Blog posts reveal coral spawning observations
in April-May 2012 at Gili Lankanfushi, North Male Atoll, (Gili Lankanfushi Maldives,
2012) and also in December 2014 (Gili Lankanfushi Maldives, 2014), whilst newsletters
from Laamu Atoll have publicised spawning information over multiple months since 2021
(Maldives Underwater Initiative, 2021). Yet exact timings and species information is not
readily available. The lack of published data to distinguish the onset of gametogenesis
“in-situ” and exact spawning times to amalgamate regional spawning patterns hinders
our understanding of coral reproductive biology at a regional scale and limits our ability
to assess shifts in reproductive phenology over time. The Maldives territory is 99% water
spanning across 26 atolls and is home to 258 species of hermatypic corals (Dhunya, Huang
& Aslam, 2017). While informal spawning research has been documented through blogs
and newsletters, peer-reviewed literature remains scarce. Moreover, the impact of coral
restoration activities on the natural spawning cycle of Acropora has not been documented
in this region.

Asexual propagation techniques can be limited by species availability and constrained
genotypic diversity of clonal fragments (Oppen et al., 2017). However, the successful
out-planting of vast numbers of genets of the same species can lead to ‘spawning hubs’
that reproduce sexually resulting in a mass supply of coral larvae released back into
the environment (Horoszowski-Fridman, Izhaki & Rinkevich, 2011; Montoya Maya et
al., 2016). Moreover, if donor colonies are the remnants of preceding mass bleaching
events, coral propagation improves the likelihood of bleaching-resistant genotypes within
populations which can be passed onto new recruits improving ecosystem resilience
(Montoya Maya et al., 2016). Reefscapers Pvt Ltd (hereafter referred to as: Reefscapers)
utilises asexual propagation through their coral frame technique by attaching coral
fragments, of varying species and genera, onto metal frames which have been previously
coated with resin and sand, using cable ties (Morand, Dixon ¢ Le Berre, 2022). Each frame
is given a unique reference code. Due to the high mortality of branching species following
the 2016 coral bleaching event (Pisapia, Burn ¢» Pratchett, 2019; Bessell-Browne et al., 2021),
propagation efforts were predominantly focused on increasing coverage of the coral genus
Acropora.

In this study we document baseline environmental cues, spawning patterns, exact
spawning timings, and oocyte development of naturally occurring and restored Acropora
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inhabiting shallow water reefs across two islands, over an 18-month period (October
2021-April 2023). This information will be critical to begin to understand coral spawning
synchronicity of Maldivian Reefs at a local and regional scale and will help to direct
conservation and management strategies in a changing environment.

MATERIALS & METHODS
Study sites

Research surveys took place around two resort islands with long-term restorative projects
run by Reefscapers situated in two different Maldivian Atolls: Landaa Giraavaru located
in Baa Atoll (5.2862°N, 73.1121°E) a UNESCO Biosphere Reserve since 2011 and Furana
Fushi (4.2500°N, 73.5458°E), located in North Male Atoll, Maldives, since 2020 (Fig. 1).
Landaa Giraavaru is 0.18 km? in area in a small sand cay situated on the western front of
the Maldivian atoll chains (Hein et al., 2020). Furana Fushi is located 8.5 km north of Male,
the capital city of the Maldives.

Coral colonies were surveyed up to an 11m depth around the ‘house reef’, with particular
focus on the southern near-shore reef of Landaa Giraavaru. At Furana Fushi, surveys were
conducted up to a 6m depth at two shallow, near-shore reef sites and two lagoon sites. The
most severely affected genus from the 2016 coral bleaching event, Acropora (Pisapia, Burn
& Pratchett, 2019; Bessell-Browne et al., 2021), was the main focus of this study. Survey
sites were chosen based on Acropora coverage and diversity of reef type, which were: (i)
Wild—naturally occurring colonies, (ii) Relocated—colonies moved from another site and
transplanted directly onto the reef, (iii) Frame—colonies asexually propagated as small
fragments onto Reefscapers human-made structures, and (iv) Pyramid-relocated colonies
transplanted directly onto Reefscapers human-made structures in their entirety (i.e., not
asexually propagated). Pyramid and relocated colonies are only located at Furana Fushi
and were relocated from Gulhifalhu, a reclaimed island situated in the south of the North
Male Atoll and roughly 12.5km from Furana Fushi. The pyramids have been “in-situ’ since
June 2020.

Surveys
Identification of gravid colonies

To predict the month of spawning, reproductive maturity surveys were conducted in-water
for Acropora from September 2021-April 2023, by a minimum of two observers in each
location. Surveys coincided with coral restoration activities to reduce negative impacts
on coral colonies. Observers used scissors to fragment a 1-2 inch section of a coral
colony from the base to avoid the infertile zone (Randall, Giuliano ¢ Page, 2021), and
identify the presence or absence of gametes (Harrison et al., 1984). Reproductive stages
were tracked and classified into three distinct categories based on oocyte colouration: (i)
white—immature (Fig. 2A), (ii) pale—close to maturity (Fig. 2B), and (iii) pigmented—mature
(Fig. 2C), following Baird, Marshall & Wolstenholme (2000). These classifications were used
to inform field monitoring for spawning and were not included in statistical analysis. Upon
observation of gametes, the species, location, reef type and oocyte category of gravid
colonies were recorded in a central database. Gravid colonies were thereafter sampled
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Figure 1 Location of study sites in the Maldives: Landaa Giraavaru, Baa Atoll, and Furana Fushi,

North Male Atoll.

Full-size & DOI: 10.7717/peer;j.16315/fig-1

bi-monthly to track changes in colouration. If sampling bi-monthly was not possible (due

to adverse weather, staffing constraints, access to location etc.), colonies were sampled

monthly. Coral species were identified using Corals of the World (Veron & Stafford-Smith,

2000). Genetic testing would need to be carried out to confirm species identification.
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Figure 2 Stages of sexual reproduction in Acropora, Maldives. (A—C) Development of oocyte coloura-
tion from white (immature; (A)), to pale (B), to pigmented (mature; (C)) in A. millepora. These classifi-
cations were used to inform field monitoring for spawning. Photographs by Margaux A.A. Monfared. (D)
Observed gamete ‘setting’ in A. secale prior to spawning. The presence of ‘setting’ as shown in this image
is what observers were looking for during nightly surveys. Photograph by Kate Sheridan. (E) Photograph
to show moment of gamete bundle release in A. rosaria, defined as the spawning time per colony. Photo-
graph by Simon P. Dixon. (F) A colony of A. gemmifera spawning egg-sperm bundles. In situ observations
suggested these oocytes were white-pale. Photograph by Kate Sheridan.

Full-size Gl DOI: 10.7717/peerj.16315/fig-2

Observing coral spawning and bundles

Upon observation of gravid colonies with mature gametes within the skeletal tissue, nightly
surveys took place over a period of six hours (16:30-22:30) around the full moon and new
moon. Observers checked for ‘setting’ (tightly packed egg and sperm bundles that ‘set’ in
the coral polyp mouth prior to being released; Fig. 2D), in previously identified gravid
colonies. These bundles are buoyant due to lipid components and thus float to the surface
upon release (Arai et al., 1993). The times of bundle appearance/setting and spawning time
vary among Acroporid species (Babcock et al., 1986; Fukami et al., 2003); thus observers
entered the water prior to sunset and remained checking for setting for up to two hours
after sunset. Upon identifying setting in any colonies, observers remained in the water until
bundle release to record the time of spawning. Setting time and spawning time (defined as
the first observed gamete release; Fig. 2E) were recorded for individual colonies.

Surveys around full moon began two days prior and continued for up to eight days after,
whilst new moon surveys took place two days prior for up to four days after, from October
2021-April 2023 at all sites. Surveyors utilised a combination of conventional SCUBA and
free diving at both locations, strategically placing teams of free divers at shallow survey sites
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(where depth < 3 m), and the SCUBA divers at deeper depths. Due to the placement of
restored colonies adjacent to their wild counterparts we were able to determine individual
spawning times to the minute. Individual surveyors remained within a specified area to
ensure accuracy.

During nightly surveys, all timings were recorded on slates “in-situ” by observers. In
the case of logistical constraints preventing night surveys, such as adverse weather, staffing
numbers or site access, colonies were sampled daily and checked for absence of gametes,
through reproductive maturity surveys, the following morning to ensure exact spawning
dates.

The sunset time was recorded for both study sites using ‘Time and Date’ webpage
(Time and Date AS, 1995a; Time and Date AS, 1995b), to later calculate the individual
colony spawning and setting time after sunset, as sunset can be associated with spawning
behaviour (Babcock et al., 1986; Brady, Hilton ¢ Vize, 2009; Sweeney et al., 2011; Keith et
al., 2016) and a useful indicator for predicting spawning (Baird et al., 2022). Data and
information on colonies that were not previously recorded as gravid but were observed
to spawn were also collected. In addition, the depth of the low tide closest to sunset (m)
was collected (Tideschart, 2023a; Tideschart, 2023b) as a proxy for tide depth at the time of

spawning to ensure a constant measure.

Statistical analysis
Variations in Spawning time and date

Differences in spawning day and time between atolls and annually for all observed colonies
were tested, and for individual species where the number of colonies was greater than
30. Response variables were tested for normality using the Shapiro-Wilk test, followed by
Levene’s test for Equality of Variances. All response variables demonstrated a non-normal
distribution, and thus Kruskal-Wallis tests were used. In instances where spawning was
recorded in more than two years, Dunn’s tests with Bonferroni corrections were performed
to establish differences in spawning day and time for all combinations of year.

Kruskal-Wallis tests were also used with the same response variables to compare
spawning amongst reef types, for A. humilis, A. digitifera, and A. millepora in Baa Atoll.
Only two reef types were recorded for these species: wild and frame colonies. These species
and atoll were chosen for this analysis due to sample size limitations; in North Male Atoll
there were too few wild colonies observed spawning for statistical analyses, and in Baa Atoll
the number of wild colonies to spawn was too small for all other species.

Influences of environmental factors on spawning day

To assess whether potential inter-atoll or inter-annual variations in spawning day are
associated with environmental conditions, Kendall’s rank correlations were tested between
the day of spawning relative to the nearest full moon with sea surface temperature (Keith
et al., 2016; Sakai et al., 2020), wind speed (Van Woesik, 2010; Keith et al., 2016; Sakai et
al., 2020), precipitation (Hayashibara et al., 1993; Mendes & Woodley, 2002) and tide depth
(Jamodiong et al., 2018). Average daily sea surface temperatures (SSTs) were obtained
from seatemperatures.net (Sea Temperature, 2013a; Sea Temperature, 2023b). Total daily
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precipitation (mm) and average daily Wind speed (mph) were obtained from Windy.app
(Windy.app, 2023).

The same correlations were also assessed for each atoll separately. These non-parametric
approaches were chosen due to the non-normal distribution of the data and the violation
of assumptions required for parametric tests. Statistical significance was determined at
the o = 0.05 level, and p-values less than 0.05 were considered statistically significant. All
statistical analysis were conducted using RStudio version 2022.12.0 (R Core Team, 2022;
RStudio Team, 2022).

RESULTS

In total, 1,200 colonies were recorded spawning across the two sites between 1 October
2021 and 30 April 2023: 501 frame, 593 pyramid, 2 relocated and 104 wild (Table 1). These
colonies represented 22 species of Acropora: 17 species were recorded in Baa Atoll and
19 species in North Male Atoll (Table 1). Fourteen species were recorded spawning in
both atolls. Coral spawning was recorded in eight months of the year: January (N = 1),
February (N = 2), March (N = 66), April (N =553), May (N =2), October (N = 53),
November (N = 444), and December (N =79). Furthermore, spawning was recorded
on 46 days throughout the study period; 24 days of which recorded spawning of more
than one species. The highest number of species recorded spawning on the same day was
14, which occurred on 5 April 2023 in North Male Atoll. Coral spawning was recorded
across multiple lunar phases (Fig. 3A) and after sunset (Fig. 3B). Thirty-six colonies were
recorded spawning around the new moon. Fourteen colonies spawned over more than one
consecutive day within one spawning season: six A. fenuis, two A. rosaria, one A. millepora
and five A. nasuta. One colony of A. gemmifera and two colonies of A. tenuis in North Male
Atoll were witnessed spawning white-pale gamete bundles (see Fig. 2F).

Oocyte development

Of the 1,200 colonies documented spawning in this study, 503 were first identified with
immature oocytes across 16 species. On average, immature oocytes were identified 94.5
days before spawning.

Inter-annual variation

There was a statistically significant annual difference in spawning day relative to full moon
(K=W test; X2(1) = 131.51, 772 = 0.108, p < 0.001), which was consistent between all
combinations of year based on a Dunn’s test with Bonferroni corrections (p < 0.001 for all
combinations). However, spawning time after sunset was not different between years (K-W
test; X2(1) = 5.0308, nz = 0.003, p=0.081). When looking at species-specific spawning,
of the species tested (where N > 30) annual variation in spawning time was statistically
significant in five species, although the effect of year on spawning time for all species is
small, suggesting limited ecological significance (Table 2). Of the species tested, day of
spawning was significantly different annually for all species except for A. plantaginea. The
effect of year on spawning day varied between species, and was greatest for A. cytherea and
A. millepora (Table 2).
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Table 1 The number of colonies to spawn and months of spawning per Acropora spp. in each atoll and

reef type.
Species Reef type (No. Colonies) Months of spawning
Baa North male Baa North male
A. aspera F=4 pP=2 Qctober, November April
A. austera NA P=5 NA April
A. clathrata NA P=1 NA April
A. cytherea NA P=85 NA March, April
A. digitifera F=37 F=3 March, April April
wW=19
A. gemmifera F=2 F=1 March, April January, March,
W=2 P=12 April, November
A. globiceps W =2 NA October, November NA
A. hempricii NA F NA March, April
P=15
A. humilis F=64 F=5 March, April, March, April,
W =18 P =43 October, November May, November
A. hyacinthus w=1 F=2 April March, April
P=15
A. latistella NA = NA April
A. millepora F=29 = March, April March, April
wW=27  P=19
A. muricata F=3 F=11 April April
pP=39
A. nasuta F=4 P=14 March, April March, April
W=5
A. plantaginea F=133 F=31 October, November, December
wW=8 pP=3 November,
December
A. retusa F=2 NA November NA
A. rosaria F=6 NA November NA
wW=1
A. samoensis F=6 F=2 April March, April,
P=5 November, December
A. secale F=42 F=28 March, April, QOctober,
W=6 P=120 October, November November,
R=2 December
W=8
A. squarrosa F=6 P=2 November November
A. tenuis F=56 F=18 November, December March, April,
W=4 P =210 November, December
w=3
A. valida F=3 P=1 February, May April
Notes.

Reef types are recorded as F, Frame; W, Wild; R, Relocated; and P, Pyramid.

Monfared et al. (2023), PeerdJ, DOI 10.7717/peerj.16315

9/24


https://peerj.com
http://dx.doi.org/10.7717/peerj.16315

Peer

A A. aspera (4)
. (24

A. austera(5)4

A. clathrata (1)
A. cytherea (85) -
A. digitifera (51)4
31

A. gemmifera (4)4
(13)4

A. globiceps (2)
A. hempricii (16) 4
A. humilis (82)4
(48)4

A. hyacinthus (1)
(17)4

A. latistella (2)4
A. millepora (56) 4
(20)4

A. muricala (3)4
(50)9

A. nasuta (9)4
(14)4

Species

:

A. plantaginea (141)4
(34)

A. retusa (2)4

A. rosaria (7)4

A. samoensis (6)4
(7)1

A. secale (48)
(158)

A. squarrosa (6)4
@)

A. tenuis (60) 1
(231)4

A. valida (3)4
(1)

New Moon

10

Full Il\lloon
Spawning Date Proximity to Full Moon

10

New Moo

n

B A. aspera (2)4
. @)

A. austera(5)-

A. clathrata (1)4
A. cytherea (85)
A. digitifera (51)4
(0)1

A. gemmifera (3)4
(12)4

A. globiceps (1)
A. hempricii (16) 4
A. humilis (71)4
(43)

A. hyacinthus (1)4
(17)

A. latistella (1)4
A. millepora (40)
(20)4

A. muricata (3)-
(50)4

A. nasuta (9)4
(14)4

A. plantaginea (133)4
(33)4

A. retusa (2)4

A. rosaria (7)4

A. samoensis (6)4
(7)4

A. secale (42)4
(122)

A. squarrosa (3)-
(2)1

A. tenuis (48)4
(229)4

A. valida (0)
(1)1

Species

T
Sunset

50 100 150
Minutes after sunset

200

Atoll
—e- Baa

~o~ NorthMale

Atoll
- Baa

NorthMale

Figure 3 Spawning date and time of Acropora spp. (A) The day of coral spawning of Acropora spp.
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Table 2 Results of Kruskal-Wallis tests to assess the difference in spawning day relative to full moon
and spawning time after sunset between years, for Acropora spp.

Species Response Explanatory Response Explanatory
Spawn date Year Spawning Year
relative to time after
full moon (day) sunset

(minutes)
X2 df s p X a7 P

A. cytherea 52.903 1 0.625 <0.001 14.433 1 0.162 <0.001

A. humilis 22.404 2 0.161 <0.001 11.334 2 0.074 0.003

2021-2022 0.047 0.161

2021-2023 <0.001 0.015

2022-2023 <0.001 0.047

A. millepora 45.948 1 0.607 <0.001 0.321 1 — 0.571

A. plantaginea 0.330 1 — 0.5657 4.446 1 0.020 0.035

A. secale 18.338 2 0.081 <0.001 15.289 2 0.066 <0.001

2021-2022 <0.001 0.002

2021-2023 1 0.024

2022-2023 0.725 0.193

A. tenuis 61.774 2 0.208 <0.001 22.324 2 0.074 <0.001

2021-2022 <0.001 -

2021-2023 <0.001 -

2022-2023 <0.001 <0.001

Notes.

Significant results are given in bold. Values less than 0.001 (highly significant) are denoted as <0.001.

Inter-atoll variation

There was a statistically significant difference in spawning day relative to the full moon
between atolls (K-W test; X?(1) = 318.77, n?> = 0.265, p < 0.001). While significant
differences were also found in all species tested (Table 3), the effect sizes were small-
medium for all species except A. humilis (Cohen, 1992). Furthermore, spawning time after
sunset was also significantly different between atolls (K-W test; X2(1) = 36.924, n*> = 0.030,
p < 0.001). However, this was largely due to variations in coral community composition,
and at the species level within species spawning time was only statistically different between
atolls for A. plantaginea (p < 0.001), A. humilis (p = 0.046), and A. secale (p < 0.001), with
varying effect sizes (Table 3).

Environmental predictors of spawning

Earlier spawning events relative to full moon were significantly correlated with lower tide
depths, wind speeds, and precipitation levels, but higher sea surface temperatures (Table 4).
When considering each atoll individually, this trend was also true (Table 4). Tide depth had
the strongest correlation with spawning day in both atolls, with the strongest correlation
in Baa Atoll (Table 4). In North Male Atoll, there was little difference in the correlation
coefficients of each variable, suggesting they have a similar effect on spawning day.
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Table 3 Results of Kruskal-Wallis tests to assess the difference in spawning day relative to full moon
and spawning time after sunset between atolls, for Acropora spp. Significant results are given in bold.

Values less than 0.001 (highly significant) are denoted as <0.001.

Species Response Explanatory Response Explanatory
Spawn date Atoll Spawning time Atoll
relative to after sunset
full moon (day) (minutes)

X2 df N’ P X2 df 0 P

A. digitifera 12.564 1 0.203 <0.001 Timing not recorded.*

A. humilis 71.094 1 0.548 <0.001 3.977 1 0.023 0.046

A. millepora 20.383 1 0.262 <0.001 0.001 1 - 0.975

A. muricata 10.598 1 0.188 0.001 0.014 1 - 0.907

A. plantaginea 21.198 1 0.117 <0.001 40.358 1 0.228 <0.001

A. secale 56.381 1 0.271 <0.001 82.551 1 0.400 <0.001

A. tenuis 70.050 1 0.239 <0.001 0.039 1 - 0.843

Notes.

*In North Male Atoll, A. digitifera was recorded spawning through absence of gamete surveys. Therefore, the exact spawning
date was obtained but not the spawning time.

Table 4 Kendall’s rank correlations and corresponding effect sizes assessing the influence of local environmental factors on the spawning day
relative to the full moon for Acropora spp.

All data

Baa Atoll

North Male Atoll

z p

z

z

Total daily 0.276
precipitation

(mm)

Average 0.481
daily wind

speed (mph)

Tide depth 0.626
(m)

Average —0.295
daily sea

surface

temperature

8

12.162 <0.001

22.399 <0.001

26.111 <0.001

—13.746 <0.001

0.115

0.246

0.724

0.284

3.226

7.079

18.882

8.199

0.001

<0.001

<0.001

<0.001

0.419

0.438

0.470

—0.354

12.732

14.302

14.109

—11.554

<0.001

<0.001

<0.001

<0.001

Notes.

Significant results are denoted in bold. Values less than 0.001 (highly significant) are denoted as <0.001.

Reef type variations
Of the three species in Baa Atoll assessed for differences in spawn day relative to the full

moon and spawning time after sunset between frame and wild colonies, no significant

differences were found.

DISCUSSION

The results from this study expand our limited knowledge on the exact spawning times

of 22 Acropora spp. across two Maldivian atolls and identifies two peak spawning

periods each year. The first season occurs between March and April, and the second
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season occurs between October and December. Similar patterns have been observed in
Western Australia (Rosser & Gilimour, 2008; Rosser, 2013; Gilmour, Speed ¢ Babcock, 2016),
Indonesia (Permata et al., 2012; Wijayanti et al., 2019), and Singapore (Guest, 2005), with
peak spawning events inferred from recruitment studies in Sri Lanka during March—April
(Kumara, Cumaranatunga ¢ Souter, 2007). In addition, this study demonstrates spawning
events occur in the Maldives over an extended period of eight months of the year (Table 1),
which has similarly been seen in other equatorial reefs (Gouezo et al., 2020).

In North Male Atoll, more species were observed spawning in the first season (16 species)
compared to the second seasons (six species), but in Baa Atoll, nine species were observed
during each season (Table 1). The climate in the Maldives experiences a wet season,
accompanied with the west to northwest winds associated with the hulhangu monsoon,
from April to November and a dry season known as the iruvai monsoon associated with
winds from the east-northeast from December to March (Kench ¢~ Brander, 2006). The
transition period of the hulhangu monsoon takes place between March and April (Aleer,
2013), which appears to be associated with the largest number of multi-species spawning
observed in North Male Atoll. In comparison, the iruvai transitional period from October
to November (Aleem, 2013), signifying the end of the wet season, appears to show fewer
species spawning in North Male Atoll. In contrast, nine species were observed spawning
in each transitional period in Baa Atoll. Multi-specific spawning events have also been
observed to take place during monsoonal transition periods in Indonesia (Wijayanti
et al., 2019; Indrayanti et al., 2019). The bi-annual monsoon change strongly influences
environmental parameters such as winds and currents in the North of the Maldives, in
comparison to the South of the Maldives, which is less affected by monsoon changes and
influenced by the equatorial currents (Su, Wijeratne ¢ Pattiaratchi, 2021). Given this study
documented differences between two atolls in relatively close latitudinal proximity, the
contrasting influence of the bi-annual monsoon change from the north and south of the
Maldives highlights that further inter-atoll differences could be observed in spawning
patterns across the North-to-South atoll chain of the Maldives and may be linked to the
different effects of the monsoon, as well as intra-atoll variations further influenced by local
environmental factors. This emphasises the need to document and record coral spawning
patterns across the Maldives and will help to expand our understanding of inter- and
intra-atoll connectivity.

Some inter-atoll variability observed in spawning patterns can likely be explained by
species composition at our study sites. Some species present at Landaa Giraavaru are not
present at sampled sites in Furana Fushi, for example A. rosaria. Other species such as
A. retusa are present at Furana Fushi but were not observed with gametes or spawning.
Additionally, a recent study by Davies et al. (2023) found that corals exposed to light
pollution are spawning between one and three days closer to the full moon compared
to those on unlit reefs, for the majority of genera. Furana Fushi is situated near to both
Male, the capital city of the Maldives, and Velana International Airport and thus exposed
to greater artificial light pollution, which could explain the significantly earlier spawning
days relative to full moon observed in North Male Atoll compared with Baa Atoll. Both the
potential influence of light pollution and varying inter-atoll species composition further
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emphasise the need for understanding the potential disparity in spawning patterns across
the Maldivian atolls.

At both sites surveyed in this study, colonies of Acropora utilised multiple spawning
events:

(i) 14 colonies spawned sections of their branches over consecutive days; (ii) several
species utilised ‘split spawning’ and spawned in consecutive months within the same
season; (iii) two colonies spawned over two lunar phases within the same month and; (iv)
one colony was observed spawning in two consecutive spawning seasons. Corals utilise
variations in spawning synchrony as a mechanism for reproductive isolation and to reduce
interbreeding (Gilmour, Speed ¢ Babcock, 2016). For one colony to spawn during two
spawning seasons within one year remains rare, but has been documented in A. fenuis,
A. cytherea and A. florida (Gilmour, Speed ¢ Babcock, 2016). Utilising multiple spawning
events, either over multiple days in the same month, multiple months in the same season,
or two consecutive seasons, can have individual advantages; namely to: (i) increase the
likelihood of successful fertilisation; or (ii) minimise the effects of a single catastrophic event
on reproductive success (Harrison et al., 1984; Babcock et al., 1986; Richmond ¢ Hunter,
1990), or (iii) to help realign reproduction events to favourable environmental conditions
(Hock et al., 2019), particularly in instances of multi-specific spawning events or events in
which the number of conspecific colonies spawning is high. Despite potential advantages,
such mechanisms of ‘split’ spawning in Acropora corals occur periodically in the Maldives,
which concurs with research from Australia (Foster, Heyward ¢ Gilmour, 2018). This could
be explained by the date of where the full moon falls in the lunar month each year. Foster,
Heyward & Gilmour (2018) identified that split spawning took place regularly on Scott
Reef when the full moon occurs in the first week of the typical spawning month or the last
week of the previous month. However, in some documented cases, conspecific spawning
in different seasons has the potential to impede gene flow and result in genetic divergence
(Rosser, 2015; Rosser et al., 2020). Further research into the genetic structure of Acropora
corals in the Maldives would be beneficial to distinguish the true extent of species-specific
spawning across and within atolls over time.

Although both atolls experienced two peak spawning seasons in this study with
similarities within those seasons in terms of species composition, differences observed
between North Male and Baa Atolls in spawning seasonality, day, and time suggest the
potential for further inter-atoll variation in Acropora coral spawning across the Maldives.
Although we found local environmental factors are significantly correlated with spawning
day relative to full moon events, our results show considerable inter-atoll differences in
spawning seasonality within populations of the same species, with four species experiencing
differences in spawning season between atolls. Therefore, we can hypothesise that across
the Maldives there is variation between other atolls in Acropora spawning seasonality and
synchrony.

The day of spawning relative to the full moon varied annually for five of the six species
tested. Although this study did not attempt to establish a causal relationship between
environmental conditions and coral spawning, our results demonstrate that the proximity
of coral spawning to the full moon is significantly correlated with various environmental
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conditions. While the strength of these correlations varied between atolls and between
environmental variables, temporal and geographic variability can be expected based on
local factors influencing the night of spawning. However, whether regional environmental
conditions are influencing spawning seasonality across Maldivian atoll chains year-on-year
remains to be explored.

Across multiple spawning events and both atolls, we recorded A. tenuis spawning, on
average, 21.2 min after sunset, and earlier than other species during nights of multi-
specific spawning (Fig. 3B). A. tenuis has also been observed spawning soon after sunset
in Australia and Japan (Harrison et al., 1984; Hayashibara et al., 1993; Fukami et al., 2003).
Shifting spawning time could be a mechanism to reduce the risk of hybridisation for
broadcast spawners during mass, multi-specific spawning events (Palumbi, 1994; Knowlton
et al., 1997; Fukami et al., 2003). Therefore, A. tenuis could be spawning earlier than other
species to ensure fertilisation only between conspecifics. Additionally, the mechanism to
shift spawning time could also explain significantly different inter-annual spawning times
experienced by five species of Acropora in this study, due to the high number of species
recorded spawning on the same night. During multi-specific spawning events, species can
stagger their gamete release times through the evening to prevent hybridisation (Fukami
et al., 2003; Levitan et al., 2004; Van Woesik, 2010). On average, Acropora species observed
spawning in this study first released gamete bundles over 100 min after sunset, with the
exception of A. tenuis and A. valida (Fig. 3B). Fukami et al. (2003) also observed A. austera
spawning earlier than other mass-spawning species, which was not the case in our study
where A. austera spawned, on average, 102 min after sunset. However, our average is based
on 3 colonies, which could be anomalous.

This study provides the first insight into restored and wild colony spawning behaviour
of Acropora in the Maldives. Neither the day or time of coral spawning in Baa Atoll showed
a significant relationship between reef type (frame and wild) of A. millepora, A. humilis
and A. digitifera. Due to a low sample size in wild colonies affected by previous bleaching
events (Pisapia, Burn & Pratchett, 2019), this analysis could only be conducted on three
species. Despite these sample size limitations, our study provides preliminary evidence
that restoration activities may not impact the natural spawning cycle of Acropora at our
study site and there is potential for cross-fertilisation between restored and wild colonies,
thus aiding natural recovery by boosting reproductive output. A critical aim of coral
restoration is to increase coral cover, diversity, and fecundity. Given the rate of decline of
Acropora in the Maldives and subsequent popularity in restorative activities, the ability for
frame colonies to reproduce sexually and fertilise with wild conspecifics can improve the
resilience of reef ecosystems. Zayasu ¢ Suzuki (2019) found greater genetic diversity in an
artificial population of A. yongei compared with wild colonies, showcasing the ability of
restoration efforts to improve resilience of coral reefs to future stressors. The preliminary
findings of spawning patterns based on reef type in this study demonstrate the need to
consider restored colonies when discussing sexual reproductive patterns of Acropora in the
Maldives.
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CONCLUSION

This research details for the first-time exact spawning times of Acropora across two
Maldivian atolls elucidating patterns of multi-specific spawning, asynchronous spawning
and ‘split spawning’ across multiple lunar phases. It is clear the Maldives experiences two
distinct spawning seasons throughout the year, but spawning events can occur over an
extended period of eight months. Inter-atoll variations in spawning day are likely influenced
by local environmental factors, however further research into coral reproductive patterns of
multiple study sites within atolls and across the Maldives needs to be conducted to ascertain
regional disparities and seasonal variations. The preliminary findings of spawning patterns
based on reef type in this study demonstrate the need to consider restored colonies when
discussing the sexual reproductive patterns of Maldivian Acropora in the future.
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