1	Climate envelope predictions indicate an enlarged suitable wintering distribution for
2	Great Bustards' (Otis tarda dybowskii) in China for the 21st century
3	Chunrong Mi ^{1,2} , Falk Huettmann ³ , Yumin Guo ¹
4	¹ College of Nature Conservation, Beijing Forestry University, P.O. Box 159, Beijing
5	100083, China;
6	² Institute of Geographic Sciences and Natural Resources Research, University of
7	Chinese Academy of Science, Beijing 100049, China;
8	³ EWHALE Lab-, Department of Biology and Wildlife, Institute of Arctic Biology
9	University of Alaska Fairbanks, 419 Irving I, P.O. Box 757000, AK 99775, USA
10	
11	Corresponding author:
12	Yumin Guo
13	College of Nature Conservation, Beijing Forestry University, P.O. Box 159, Beijing 100083,
14	China
15	guoyumin@bjfu.edu.cn
16	
17	
18	Publish time: 2015/12
19	
20	
21	
22	

ABSTRACT

1

2 Rapidly changing climate makes humans realize that there is a critical need to rethink the 3 eurrent conservation and to incorporate climate change adaptation into conservation planning. Whether Great Bustards (Otis tarda dybowskii), a globally endangered migratory 4 subspecies whose population is approximately 1,500~2,200 individuals in China, would 5 still exist in a changing climate environment, and how, is an important protection issue. In 6 this study, we selected the most suitable species distribution model for bustards using 7 climate envelopes from four machine learning models, combining two modelling 8 approaches (TreeNet and Random Forest) with two sets of variables (correlated variables 9 removed or not). We used common evaluation methods (AUC and TSS) as well as 10 independent testing data to identify the most suitable model. As often found elsewhere, we 11 found Random Forest with all environmental variables outperformed in all assessment 12 13 methods. When we projected the best model to the latest IPCC-CMIP5 climate scenarios (RCPs of 2.6, 4.5 and 8.5 in three GCMs), and averaged the project results of the three 14 models, we found that suitable wintering habitats, in the current bustards distribution would 15 increase during the 21st century. The Northeast Plain and the south of North China were 16 projected to would-become two major suitable-wintering habitats of areas for bustards. 17 However, the models suggest that some currently suitable habitats will experience a 18 reduction, such as Dongting Lake and Poyang Lake in the Middle and Lower Yangtze 19 20 River Basin. Although our results suggested thate suitable habitats in China would widen with climate change in China, greater efforts should be undertaken to assess and mitigate 21 unstudied human disturbance, such as pollution, hunting, inappropriate agriculturale 22

Comment [UConn1]: Please spell out all acronyms when first used in the abstract, and the again when first used in the main paper. Similar RCP and GCM need defining later in this paragrap

Comment [UConn2]:

- development, infrastructure construction, habitat fragmentation, as well as and oil and mine
- 2 exploitation for instance. All of these are negatively and intensely linked with global
- 3 change.
- 4 Keywords: Climate change, Species distribution models (SDMs), Great Bustards (Otis
- 5 tarda dybowskii), Random Forest, China

6 INTRODUCTION

- 7 Climate is among the most dominant factors that affect species across broad spatial scales
- 8 (Woodward 1987, Pearson and Dawson 2003). Long-term studies indicate that the
- 9 anomalous climate of the last half-century is already affecting the physiology, distribution,
- and phenology of many species, especially for many of the already endangered species
- 11 (Sykes and Prentice 1996, Hughes 2000). Species distribution models (SDMs) are able to
- 12 successfully quantify the relationship between species distribution and climate (Drew et al.
- 13 2011). Increasing attention has been given to projecting potential species distributions
- under various climate change scenarios by applying those methods (Dyer 1995, Iverson and
- Prasad 1998, Prasad et al., 2006, Wu et al., 2012), and incorporatinged climate change
- impacts into species conservation strategies (Araújo and Rahbek 2006, Strange et al., 2011,
- 17 Baltensperger et al., 2015).
- 18 Knowing species distributions represents an essential foundation in conservation biology
- 19 (Araujo and Guisan 2006, Tanneberger et al., 2010, Drew et al., 2011). Understanding
- 20 where species emerge temporally and spatially across large geographic areas is important to
- 21 conserving, monitoring, and managing species effectively (Wu and Smeins 2000). For this
- purpose, SDMs, including process-based and bioclimatic envelope approaches, have been

suggested as an effective tool to meet these needs (Guisan and Thuiller 2005, Elith et al., 1 2 2006, Hu and Jiang 2010). There has been rapid progress in this field of SDMs, and tools 3 and workflows are now openly available to assess distributions and the impacts of climate 4 change on species and habitats (Peterson et al., 2002, Hijmans and Graham 2006, Drew et 5 al., 2011). 6 The Great Bustard (Otis tarda) is one of the world's heaviest flying birds, occupying grassland habitats. It is categorized as a globally threatened vulnerable (VU) species 7 according to the IUCN. Its world population for in 2010 was estimated to be 44,100 to 8 57,000 individuals; and approximately 4-10% of the global population is located in China 9 and believed to be declining (Alonso and Palacín 2010). This species is divided into two 10 subspecies: O. t. tarda and O. t. dybowskii. The latter subspecies (Taxonomic Serial 11 No.:707876) is our research target. It is distributed throughout eastern Asia in areas such as 12 13 Russia, Mongolia, China, and South and North Korea (Kong and Li 2005). In China, O. t. 14 dybowskii is distributed in Heilongjiang, Jilin, Inner Mongolia, and Hebei Province during summer. It winters in Heilongjiang, Jilin, Inner Mongolia, Shaanxi, Hebei, Henan, 15 Shandong, Jiangsu, Jiangsi, Hubei, Hunan (Jiang 2003, Wang and Yan 2002), Shanxi, and 16 17 Anhui Province (Wu et al., 2001). Until the early twentieth century, it's well supported that there was a large population of O. t. dybowskii in the Asian region, and with eastern Russia 18 alone is estimated to have held more than 50,000 individuals prior to the 1940s (Chan and 19 20 Goroshko 1998). However, numbers have declined during the twentieth century, with a particularly rapid drop in counts from the wintering grounds during the 1950s and 1960s 21 (according to data from the wintering grounds) (Chan and Goroshko 1998). In China, 22

tTaking Poyang Lake, located in the Jiangxi Province, China, as an example, hundreds of bustards were present in winter until the 1980s (Kennerley 1987). But by the late 1990s just fewer than 20 individuals could be found (Wang Qishan in litt.1999), and in the last 10 years, bustards havewere not been observed ever since. The wintering population of O. t. dybowskii in China was recently estimated at only 1,500~2,200 individuals (Goroshko 2010). Arguably, in China, a This rapid decline appeared in of the past four decades, is seemingly directly linked to more efficient methods of hunting, the large-scale conversion of steppe to agricultural land at its on the breeding grounds, and habitat loss on the wintering grounds in China (Chan and Goroshko 1998). How to protect O. t. dybowskii and to keep this subspecies alive in the next 100 years, and with a population increase even, including considerations of how to deal with habitat loss and hunting, climate change remains a non-trivial question to be resolved. In order to assess more specific the likely effect of caused by climate change on to bustards in the 21st century, we employed species distribution models based on machine learning (TreeNet and Random Forest) to predict the distribution of suitable habitats for of this subspecies in the future. According tTo the best of our knowledge, this work is the first predictive, spatial model of the wintering distribution of Great Bustards and i-It presents a step toward developing a national conservation effort to assess bustards' management. More specifically, the goal of this study is to estimate the spatial impacts of climate change on the future wintering distribution of bustards. At minimum, the results of this study are expected to provide information on what habitat changes may occur, and guide future sampling, surveying, and conservation efforts across China. Further, we try to infer on the wider

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

status of this bird during times of gGlobal Cchange.

MATERIALS AND METHODS

Study area and data

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

The species data we used in this study came from our own fieldwork investigations of 2012 and 2013, consisting of recorded bird occurrence GPS locations, and. Also, we extracted data from used previously published literature data papers in Chinese journals, all of which we and __mapped it all in ArcGIS10.1 (see Supplement S1). Overall, we used 102 geo-referenced bird sighting locations across China from the for a time-period 1990-2013 across China). Because of the lack of wintering data in Russia and Mongolia, we restricted our projected area just to China (Figure 1). The boundariesy of Nnature Rreserves were downloaded from the World Database Protected on Areas (WDPA. http://www.protectedplanet.net/). Then we and clipped the protected area to the range of China in ArcGIS 10.1. We used the geographic projection of WGS1984 Mercator.

Put Figure 1 here

Nineteen bioclimatic variables at a 30s resolution—were obtained from the WorldCelim database (Hijmans et al., 2005, http://www.worldclim.org/) to describe for current climate conditions during (1950–2000). Other environmental variables that are considered to be important drivers of the Great Bustard's distributions were also used to build the bustards' habitat distribution model. Those included topographical factors (altitude, slope, and aspect), water-related factors (distance to river, distance to lake, distance to coastline), human interference factors (distance to road, distance to rail road, and distance to settlement), and land cover. Aspect and slope layers were derived in ArcGIS 10.1 from the

altitude layer-in ArcGIS10.1, which was obtained from the WorldeClim database.; Road, 1 2 rail road, river, lake and coastline and settlement maps were taken from the Natural Earth 3 database, while; the land cover map was taken from the ESA database (detailed information is provided for all layers in Supplement S2). All spatial layers of these environmental 4 variables were resampled to a resolution of 30 s to correspond to that of the bioclimatic 5 6 variables. Reliable future projections of land cover, distance to road, distance to rail road, distance to settlement, distance to river, and distance to lake predictors weare not available. 7 while sIncluding static variables based on current information included in SDMs alongside 8 dynamic variables could improve model performance (Stanton et al., 2012), . Ttherefore, 9 we kept these variables in our future projections. 10 Models in Although machine learning models are difficult to overfit, especially. That is 11 specifically the case for rRandom Forest and methods that employ bagging. Further, we 12 13 first calculated correlations among the 19 bioclimatic variables and other 10 other environmental variables in ArcGIS and. We removed a variables whenever a correlation 14 coefficient > |0.90| was obtained (Costa et al. 2010; see correlation matrix in Supplement S3 15 (Costa et al., 2010). A total of 15 bioclimatice variables were removed, leaving 4 16 17 bioclimatic variables and 10 other environmental variables were left. Subsequently, we

18

19

20

21

22

constructed two sets of bustard distribution models: one was based on the reduced set of the

result of a correlation test that only kept 4 bioclimatic variables and 10 environmental

predictors used to construct SDMs (14 predictors); the other approach was to used all of the

19 bioclimatic and 10 environmental variables for model construction (29 predictors). The

models were named TN14, TN29, RF14 and RF29, where TN denotes a TreeNet analysis

Comment [UConn3]: This phrase was unclear Please check that the edits have not altered the meaning

Comment [UConn4]: This assertion needs a supporting reference.

and RF denotes a Random Forest analysis.

1

2

4

11

13

14

17

18

21

22

Species distribution modeling and testing

3 We chose the TreeNet (hereafter TN, generally referred to as boosted regression trees (BRT), stochastic gradient boosting, Friedman 2002) and Random Forest (hereafter RF, Breiman 2001) -software produced byby Salford Systems Ltd to buildas our species 5 distribution models because of their good performance and common usage (Zhai and Li 6 2003, Elith et al., 2006, Drew et al. 2011, Lei et al., 2011). These algorithms are among the 7 best modeling algorithms available and perform so well due to their inherent optimizations 8 in Salford Predictive Modeler (SPM). Additional benefits of SPM over the R version are 9 10 that it continues to undergo research and improvement under one of the algorithm's original co-authors. It runs under a convenient GUI, and could produce a number of descriptive results and graphics which are not available in the R version (Herrick 2013). 12 For more details on TreeNet and Random Forest, we refer readers to read the user guide (https://www.salford-systems.com/ products/spm/userguide) and references within (See 15 also Drew et al. 2011). About 10,000 pseudo-absence points were taken by random sampling across all of China by using the freely available Geospatial Modeling 16 Environment software (GME; Hawth's Tools). We used a 10-fold cross-validation procedure for TN, where it divided our dataset 10-fold using 80% of the data for model calibration and retaining 20% of the data for evaluation; and out of bag (OOB) data used to 19 test RF. In addition, we used balanced class weights, and 1000 trees were built for all 20 models to find an optimum within.

For model assessments, independent Great Bustards location records during 1980-2000

Formatted: Indent: First line: 0.29"

Comment [UConn5]: This sounds like promotional material from the company - is ther any evidence that their software is better? (Note, am not saving that it is not. I just think that there should be independent verification, rather than simply expecting readers to take it on faith.) Herr appears to be an unpublished PhD thesis although the full citation is not given so I'm not certain - on avian influenza, so it seems unlikely t have the requisite mathematical work to back up this claim. I would suggest deleting these sentend The authors do not need to justify their choice of software package, they just need to be clear that Salford Systems is the software used, not the statistical techniques themselves

Comment [UConn6]: Note that there is no need to give acronyms such as OOB if they are no going to be used later in the paper.

were acquired from the book of the Threatened Birds of Asia (Collar et al., 2001, see 1 2 Supplement S4). We extracted the relative index of occurrence (RIO) for these testing data 3 from four projected maps (TN14, TN29, RF14, RF29). And then, bBoxplots with 95% confidence intervals for these RIO value were used to analyze the fitting effectiveness of 4 each model. Furthermore, the testing and pseudo-absence points were used to calculate 5 Aarea under the ROC curves (AUC) and the True Skill Statistic (TSS) (Allouche et al., 6 2006) using. This was done with the 'SDMTools' package in R 3.1.0. The best suitable 7 SDM for bustards was finally determined by comparing the boxplots, AUC and TSS of all 8

Future projections for Great Bustards

models in concert.

9

10

11

12

13

14

15

16

17

18

19

20

21

22

for future climate scenarios for 2070 (average for 2061–2080). The data applied here are the most recent IPCC-CMIP5 climate projections from three Global Circulation Models (BCC-CSM1-1, CNRM-CM5 and MIROC-ESM, hereafter BC, CN and MR) under three representative concentration pathways (RCPs of 2.6, 4.5 and 8.5, which are named after a possible range of radiative forcing values in the year 2100 relative to pre-industrial values (+2.6, +4.5, +6.0, and +8.5 W/m2, respectively). We used the average predicted probability of occurrence across the three GSMs for each grid as our consensus forecast (named BCM). This method was considered as one of the best methods—for developing an ensemble forecast (Hole et al., 2009). Subsequently, we applied the sensitivity-specificity equality approach as the suitable habitat threshold using a threshold probability of 0.85 to define the presence—absence distribution of Great Bustards wintering habitats, as this method is have

After obtaining determining the final model technique, we tried to constructed models

Comment [UConn7]: Spell out

Formatted: Indent: First line: 0.29"

Comment [UConn8]: Since this term is introduced previously, use the acronym here – but make sure the acronym is defined when first used see comment above.

Comment [UConn9]: Again, define this acronym when fist used in the paper, then use on the acronym here.

Comment [UConn10]: This acronym is not defined. Should it be GCM?

has been found to be a robust approach (Liu et al., 2005).

Spatial analysis of potential effects of climate change envelopes

We applied used ArcGIS 10.1 to calculate the suitable habitat area of Great Bustards for two time periods (current and 2070) under three scenarios (RCP 2.6, 4.5 and 8.5) from three GCMs (BC, CN and MR) and their average (BCM). We also used the overlay analysis (in ArcGIS 10.1) to assess the potential distribution changes of bustard wintering habitats, which. This allowed us to identify areas of the habitat range that are projected to be lost, gained or remain under future climate scenarios. Also, we overlaid four presence-absence distribution maps (current, RCP2.6, RCP4.5 and RCP8.5) with the boundaries y of China's Nnature Rreserves of China to explore how much Great Bustards habitats are is currently found in the reserves, and how that amount they is projected

RESULTS

towould vary with climate change.

Boxplots created <u>usingby</u> the independent testing data <u>taken</u> from <u>literature (the Collar et al.</u> (2010Threatened Birds of Asia). Figure 2_indicated that <u>the Random Forest analysis</u> showed a higher relative index of occurrence (RIO) than <u>the TreeNet analysis</u>, and a stronger focus on a narrow range of values (>0.9; Figure 2). The model based on 29 predictors performed a little better than the one based on 14 predictors, <u>and was thus preferred which matters</u> for <u>large area</u> prediction—and makes them better overall. This means for us that Random Forest with 29 predictors obtained the best fitting effectivity for testing data.

Put Figure 2 here

Formatted: Indent: First line: 0.29"

Formatted: Indent: First line: 0.29"

(Table 1) indicated that our models can accurately capture bustards' habitat relationships, agnd values above 0.75 generally indicate an adequate model performance for most applications (Pearce and Ferrier 2000). AUCs of Random Forest models were higher than TreeNet_models, and SDMs with 29 predictors performed better than the more parsimonious models with just 14 predictors. TSS had the same trends as AUC, and Random Forest performed better than TreeNet, Again, models with more predictors (29) performed better than models with relatively few predictors (14) (Note: Judged by the current use and literature, models with 14 predictors are still a relatively high number of predictors in most model studies to date. However, we clearly show that more predictors perform even better and to be precise on the large scale). According to the above three consistent Given these results, we then selected a Random Forest model with 29 predictors as our final SDM with which to and projected to future climate.

The high AUC values (>0.91) for all four Great Bustard models of Great Bustards

Put Table 1 here

Put Figure 3 here

The threshold (=0.85) to define the presence absence distribution was obtained by the

sensitivity specificity equality approach by Liu et al (2005) for the Random Forest, 29 predictors' model. We then transformed four continues distribution maps (Current, BCM 2.6, BCM 4.5, BCM 8.5) to binary presence absence maps. The results indicated that when solely judged by climate change envelopes the suitable wintering habitats of Great Bustards would enlarge (Figure 3 and Table 2). More specifically, under the RCP 2.6 climate change scenario, the suitable habitat area for bustards would improve from the

Comment [UConn11]: I found the original te here to be unclear. Please check this edit to ensur it accurately represents what was done. Note too that this sentence would fit better in the Method section.

Comment [UConn12]: The information at the start of this paragraph is all Methods, and largely repeats what is given there. I've moved the quantitative information on the threshold, and suggest deleting the rest.

current 290, 640 (1000*km²) to 374, 410 (1000*km²), an improvement of 298.82%; Under RCP4.5, a median radiative forcing, climate change would result in a habitat increase of 8.88% by 2070 (from 290.64 to 316.46 (1000*km²)). And under RCP 8.5, the highest radiative forcing, the habitat area would still increase from 290.64 to 304.17 (1000*km²) by 1.04% to 2070 (Table 2). This trend is arguably explained by how the climate areas are distributed in the study area, currently and in the future.

Put Table 2 here

Table 2 and Figure 3 show that 23 to 31% some of the original suitable wintering habitats would be lost depending on .- About 67.29, 90.56 and 88.08 (1000* km²; 23.15%, 31.15% and 30.30% of the current distribution area, respectively) habitat area under RCP 2.6, 4.5 and 8.5 respectively would transform to being unsuitable for this species scenario (Table 2). Habitat would be severely get lost in near Dongting Lake, Poyang Lake (which is located in the Yangtze River Basin), and Tianjin, Beijing which is near the Bohai Bay (see Figure 3). Meanwhile, the long-term traditional wintering ground in Anhui, Jiangsu, Henan, Hebei, Shaanxi and Heilongjiang Provinces would still remain. Our model shows that the area west of Shandong, the northeast of Henan, and the north of Jilin would gradually become suitable wintering grounds for Great Bustards (Figure 3).

Put Figure 3 here

The expansion and shift of bustards' habitats would also affect the conservation effectiveness of current reserves where this subspecies lives. Table 2 showed oOnly about 8.24% (23,-950-(1000* km²)) of the current total bustards wintering habitat suitable ground is currently located in nature reserves, but . Tethis area would increase under all three to

Comment [UConn13]: Convert areas to km² throughout, as shown here. This format is easier readers to quickly comprehend and takes up less space

Comment [UConn14]: You do not need this information in the text and the table; one or the other should be delete. I would suggest simplifying the manuscript text to a single summa sentence, something like "Depending on RCP scenario, the suitable area was projected to increase by between 1% and 29%."

Comment [UConn15]: This sentence is self-evident and should be deleted.

29.53 (1000* km², 7.89%) in the __RCP 2.6 scenarios (Table 2); in the median radiative forcing scenario (RCP 4.5), the area in the reserve would decline by only 22.58 (1000* km²; 7.13%); while under the RCP 8.5, the highest radiative forcing scenario, 27.30 (1000* km²), or about 8.98% suitable area would be located in the reserve. Nonetheless, Only less than 10% of the area of bustard's wintering distribution ground is and willould be located in the nature reserve under all projections, and these reserves are mainly just-located in the wwest of the Heilongjiang Province and in the Nnorth of Jilin Province (Figure 4), assuming no additional reserves are constructed in the bustards wintering habitats. (So far, those assumptions are realistic due to the high land and people pressures).

Put Figure 4 here

DISCUSSION

Effective conservation of Great Bustards includes a relevant protection and restoration of their suitable habitats. Our model is the first to predict and map, with high accuracy (AUC: 0.98, TSS: 0.94), the wintering distribution of *O. t. dybowskii* in China. Our best climate envelope model results are was non-parsimonious (29 predictors) and based on the RandomForest algorithm, and indicatesing that these suitable wintering habitats in the current bustard distribution would will increase during the 21st century (Table 2 and Figure 3). However, some current suitable habitats will experience a reduction become unsuitable, such as in the Dongting Lake and Poyang Lake areas in the Middle and Lower Yangtze River Basin. These are areas where observers have not the seen any Great Bustards in the last ten years. Our forecast model showed that climate change also was the cause to drive population declines in both of the two lake regions (Figure 3), except for efficient hunting

and habitat loss because of human activity. In addition, we found that most wintering 1 2 grounds (>90%) of bustards were not in the nature reserves at all and carry no relevant area 3 protection (see Table 2). Such findings are very relevant for an improved understanding and for prioritization ofing conservation efforts and suggest that new reserves shouldto be 4 5 established. 6 According to our model predictions, the Northeast Plain would-will become one of the major wintering distribution areas for this subspecies. Originally, the Northeast Plain 7 actually is the traditional breeding ground of bustards, and also several some male 8 individuals overwinter there (Liu 1997). Here we speculate that more bustards, both male 9 and female individuals may remain there, and infer that this habitat will result in become a 10 residential area or that bustards becoming resident in this area or will havinge a shorter 11 distance for migration distance than in the currently period. This situation has already been 12 13 observed in the Red-crowned Crane (Masatomi et al., 2007) and with the Oriental White Stork (Yang et al., 2007). The suitable wintering habitats in the Northeast Plain are located 14 southeast of the Greater Khingan Mountains, southwest of the Lesser Khingan Mountains, 15 as well as northwest of the Changbai Mountains. It is possible that these mountains might 16 17 become a natural barrier to the habitat expansion of this subspecies. These areas are used for agriculture and are susceptible to urban expansion. Therefore, the question of how to 18 leave enough space and how to protect and maintain this species under such a situation 19 should be taken into serious consideration-first, before any new policies and conservation 20

The southeast of Hebei and the northeast of Henan Province are the traditional wintering

plans are made.

21

22

Comment [UConn16]: The model predicts the habitat loss will occur in the future, but that cannexplain losses over the past 10 years (the current projection says the birds should be there). That suggests that hunting and/or habitat loss have been more important. This sentence should be cut or edited accordingly.

Comment [UConn17]: Note that this will on happen if the breeding distribution does not also shift with climate change.

Comment [UConn18]: Add scientific names for these species.

grounds for this species. There are at least 300 individuals respectively overwintering in the commercially operated cropland of Cangzhou, Heibei Province and the Yellow River Wetland of Changyuan, Henan Province. However just a few loosely protected area were constructed exist in these areasthere.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

To determine One gets quickly interested in the question 'why are so little few-bustards' suitable habitats is located in nature reserves², and 'which type of land cover are bustards prefer during winter?' To shed more light on this question, we overlaid the presence-absence maps with a land cover layer, and quantified the land type of each grid cell of suitable habitat with ArcGIS 10.1. From Table 3, wWe found cropland and sparse vegetation were the bustards' main preferred wintering grounds in current and three future scenarios (Table 3; more detail is found in Supplement S5), with. It shows that more than 75% of the wintering ground of this subspecies in fell on cropland, a habitat while farmlands are usually not usually included in a nature reserves. This can explain why so little wintering grounds are not located in reserves. From these resultsat, we can also infer that this subspecies has become intensively dependented on farmlands, potentially because of specifically on the quantity of food left in farmland and the associated farmland planting mode. Other habitats, even within reserves, are widely not used. Suitable habitat environments such as flat terrain, open landscapes with a far-reaching vision and with adequate food would help this endangered subspecies to overwinter and its population to increase again. Established seasonal protected areas and leaving more food behind on the wintering grounds are well-known management choices to protect bustards further in the landscape. Though, the development of China and its landscapes is ongoing with a very

Comment [UConn19]: This sentence should be moved to the Methods section.

Comment [UConn20]: This information shows be reported in the Results section, not here.

Comment [UConn21]: Ii would suggest this change because the actual reason remains unknown. An alternative hypothesis is that they use farmland because all of their natural habitat has been destroyed and they have nowhere else to destroyed.

Meanwhile, China is now paying more attention to the ecological role of nature and to environmental management. Furthermore, in order to ensure food security, we do not expectargue the area of cropland in China would not to decline, hardly change significantly in the 21st century and . So we estimate that the area of suitable wintering habitats would still—will increase despite urbanization though we do not exactly know how land cover would exactly change into future. From fieldwork and the reports of local villagers, we found that hunting (e.g. to disperse poisoned corn on farmland) waswere among the main factors killing bustards (e.g. Meng 2010). Power lines are also a relevant threat factor (Raab and Schuetz 2012). Other threats like contamination and indirect effects like large-scale water irrigation projects are not well assessed, yet. Much is unknown about Macro-ecology and a more holistic large-scale research for Great Bustards (such as distribution, migration, meta population study, habitat assessment) are not so well developed in Asia, yet. Location and population data are also insufficient. We believe that more and advanced work of this kind should be undertaken in the future, including efforts tele coupling to deal-better address its status as anwith the international migratory species. Basic, and tThe most important work, might consist of monitoring this subspecies in order to obtain such fundamental data for effective conservation action. Our distribution modelling-work and distribution map is meant to better indicate where

bustards stay during winter and then to be applied for the management of this species.

Based on our research finding, we are optimistic on the validity of about the bustard's

wintering habitats. However, the breeding grounds located in the steppe land are severely

pfast pace, and urbanization is becoming more and more serious and widespreadincreasing.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Comment [UConn22]: This might be true, but the quality of that farmland might decline if farming methods become more intensive.

Comment [UConn23]: Specify what type of contamination. Are you referring to things like pesticides and heavy metals?

affected by human activities, which <u>has already</u> resulted <u>already</u> into massive habitat loss and habitat fragmentation. More research <u>is should be done</u> urgently <u>needed</u> in the breeding grounds, <u>includingtoo</u> (<u>such as to</u> establish<u>ment of</u> a monitor<u>ing</u> network, <u>earry out a</u> comprehensive distribution and abundance survey, and <u>modelling of also project</u> breeding distributions <u>at least</u> based on <u>the existing data</u>, <u>all linked directly to conservation management</u>). Finally, a suitable and effective plan is needed to protect this endangered species nationally and internationally.

The limitations of our research <u>still are include</u>: 1) arguably, we <u>somewhat</u> undersampled

The limitations of our research still are include: 1) arguably, we somewhat undersampled the current distribution, althoughgreat bustards but the 102 presence samples (102 records) were enough to produce though for a good and robust—model performance (as judged by AUC_andr TSS); 2) our model is based on presence-absence data and we consequently we could_no²t yet_estimate the current_population, and_or future population sizevariations during a changing climate; 3) we lack any future road, residential, and land cover scenarios, although and such GIS layers but which would be of great value to conservation planning and would likely improved to be applied to future projections bustards future distribution; and finally 4) bustards are not only wintering in China, but_also winter in Mongolia and Russia; our research is currently restricted to China because of we lacking data from these other both of the two countries. We hope this research could help to trigger further the collection of new information urgently needed improvements on those topics.

In summary, our results indicate that there is a critical need to rethink the current approach to parsimony and conservation, and to incorporate climate change adaptation into our conservation planning during an already rapidly changing climate. Based on concrete

Comment [UConn24]: Do you have absence data? I thought it was a presence only model?

data and a robust modelling approach, oour model would aid be rather useful and insightful to managers currently addressing conservation of bustards issues in China and for bustards overallelsewhere. In addition, dDistribution maps, created in time, could be get overlaid with maps of the current and predicted locations of activities such as, let's say, oil, gas, mineral, and wind energy development resources, in order to identify areas of potential future conflict, estimate the potential size and severity of impacts caused by a specific activity development, and prioritize conservation strategies geographically (such as based on Marxan applications etc.; cf. Beiring 2014 for parts of Asia).

9 ACKNOWLEDGEMENTS

This research was just-possible because of the large investment of field effort, money, time, personal interest, and dedication by researchers for the past 24+ years. We heartfully-thank all those who contributed to the International Great Bustard Census, as well as students from the EWHALE lab, UAF and Salford Systems Ltd, as well as the China Great Bustard

15

16

1

2

3

4

5

6

7

8

10

11

12

13

14

ADDITIONAL INFORMATION AND DECLARATIONS

Protection and Monitoring Network (http://www.otistarda.org/en).

17 Author Contributions

- 18 Chunrong Mi analyzed the data, wrote the paper, prepared figures and/or tables, reviewed
- 19 drafts of the paper.
- 20 Falk Huettmann analyzed the data and reviewed drafts of the paper.
- 21 Yumin Guo reviewed drafts of the paper.

22 REFERENCE

- 1 Alonso, J C. and Palacín, C. 2010. The world status and population trends of the Great
- Bustard (Otis tarda): 2010 update. Chinese Birds 1(2): 141-147
- 3 Allouche, O., Tsoar, A. and Kadmon, R. 2006. Assessing the accuracy of species
- 4 distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of
- 5 *Applied Ecology.* 43: 1223-1232.
- 6 Araújo MB, and Rahbek C. 2006. How Does Climate Change Affect Biodiversity? Science
- 7 313:21-22.
- 8 Araujo, MB. and Guisan, A. 2006. Five (or so) challenges for species distribution
- 9 modelling. *Journal of Biogeography* 33: 1677-1688.
- 10 Araújo, MB. and Peterson, AT. 2012. Uses and misuses of bioclimatic envelope modeling.
- 11 *Ecology* 93: 1527-1539.
- 12 Beiring, M. 2014. Modeling Migratory Passerines in the Pacific Rim. Unpublished M.Sc.
- 13 Thesis, University of Vienna, Austria
- Breiman, L. 2001. Random Forests. *Machine Learning* 45(supplement 1): 5-32.
- 15 Chan S, and Goroshko OA. 1998. Action plan for conservation of the great bustard: Asia
- 16 Council, BirdLife International.Costa, G., Nogueira, C., Machado, R., and Colli, G. 2010
- Sampling bias and the use of ecological niche modeling in conservation planning: a field
- evaluation in a biodiversity hotspot. *Biodiversity and Conservation* 19: 883-899.
- 19 Collar, N.J., Crosby, R., and Crosby, M. 2001. Threatened birds of Asia: the BirdLife
- 20 International red data book. BirdLife International Cambridge, UK.
- 21 Czaplewski, RL. and Forest, RM. 1994. Variance approximations for assessments of
- 22 classification accuracy. US Department of Agriculture, Forest Service, Rocky Mountain

- 1 Forest and Range Experiment Station Fort Collins, CO.
- 2 Drew, CA., Wiersma, Y. and Huettmann, F. 2011. Predictive species and habitat modeling
- 3 in *landscape ecology*: Springer.
- 4 Dyer, JM. 1995. Assessment of climatic warming using a model of forest species migration.
- 5 Ecological Modelling 79: 199-219.
- 6 Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., J. Hijmans, R.,
- Huettmann, F., R. Leathwick, J., Lehmann, A., Li, J., G. Lohmann, L., A. Loiselle, B.,
- 8 Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., McC. M. Overton, J., Townsend
- 9 Peterson, A., J. Phillips, S., Richardson, K., Scachetti-Pereira, R., E. Schapire, R.,
- 10 Soberón, J., Williams, S., S. Wisz, M. and E. Zimmermann, N. (2006) Novel methods
- improve prediction of species' distributions from occurrence data. Ecography 29:
- 12 129-151.
- 13 Friedman, J. 2002. Stochastic gradient boosting. Computational Statistics & Data Analysis
- 14 38: 367-378.
- 15 Goroshko, OA. 2010. Present status of population of Great Bustard (Otis tarda dybowskii)
- in Dauria and other breeding grounds in Russia and Mongolia: distribution, number and
- dynamics of population, threats, conservation. pp. First International Symposium on
- 18 Conservation of Great Bustard. Beijing.
- 19 Guisan, A. and Thuiller, W. 2005. Predicting species distribution: offering more than simple
- 20 habitat models. *Ecology letters* 8: 993-1009.
- 21 Herrick K. 2013. Predictive Modeling of Avian Influenza in Wild Birds. Veterinary
- 22 Research.

- 1 Hole DG, Willis SG, Pain DJ, Fishpool LD, Butchart SHM, Collingham YC, Rahbek C,
- and Huntley B. 2009. Projected impacts of climate change on a continent wide
- 3 protected area network. *Ecology letters* 12:420-431.
- 4 Hu, J., Hu, H. and Jiang, Z. 2010. The impacts of climate change on the wintering
- 5 distribution of an endangered migratory bird. *Oecologia* 164: 555-565.
- 6 Hughes, L. 2000. Biological consequences of global warming: is the signal already
- 7 apparent? Trends in Ecology & Evolution 15: 56-61.
- 8 Iverson, LR. and Prasad, AM. 1998. Predicting abundance of 80 tree species following
- 9 climate change in the eastern United States. *Ecological Monographs* 68: 465-485.
- 10 Jiang, J. 2003. The status of resource and conservation of Great Bustard in China. M.Sc.
- 11 Thesis, Northeast Forestry University. (in Chinese)
- 12 Kennerley P. 1987. A survey of the birds of the Poyang Lake Nature Reserve, Jiangxi
- Province, China, 29 December 1985–4 January 1986. Hong Kong Bird Report1984/1985:
- 97–111.Kong, Y. and Li, F. 2005. The Status and Research Trends of the Great Bustard.
- 15 Chinese *Journal of Zoology* 40: 111-115. (in Chinese)
- Lei, Z., Liu, S., Sun, P., and Wang, T. 2011. Comparative evaluation of multiple models of
- the effects of climate change on the potential distribution of Pinus massoniana. Chinese
- 18 *Journal of Plant Ecology* 35: 1091-1105.
- 19 Liu, B. 1997. The Status and Protection of Great Bustards in Northeast. Natural Resources
- 20 *Study* 61-63. (in Chinese)
- 21 Liu, C., Berry, P., Dawson, T. and Pearson, R. 2005. Selecting thresholds of occurrence in
- the prediction of species distributions. *Ecography* 28: 385-393.

- 1 Masatomi, Y., Higashi, S. and Masatomi, H. 2007. A simple population viability analysis of
- 2 Tancho (Grus japonensis) in southeastern Hokkaido, Japan. Population ecology 49:
- 3 297-304.
- 4 Meng D. 2010. Study on the Rescue to Great Bustard in Cangzhou, Hebei. The First China
- 5 International Seminar on Protection of Great Bustard. Beijing. (in Chinese)
- 6 Pearce, J. and Ferrier, S. 2000. Evaluating the predictive performance of habitat models
- developed using logistic regression. *Ecological Modelling* 133: 225-245.
- 8 Pearson, RG. and Dawson, TP. 2003 Predicting the impacts of climate change on the
- 9 distribution of species: are bioclimate envelope models useful? Global ecology and
- 10 *biogeography* 12: 361-371.
- 11 Pearson, RG., Dawson, TP. and Liu, C. 2004. Modelling species distributions in Britain: a
- hierarchical integration of climate and land cover data. *Ecography* 27: 285-298.
- 13 Pearson, RG., Raxworthy, C.J., Nakamura, M. and Townsend Peterson, A. 2007. Predicting
- species distributions from small numbers of occurrence records: a test case using cryptic
- geckos in Madagascar. *Journal of Biogeography* 34: 102-117.
- 16 Peterson, AT., Ortega-Huerta, MA., Bartley, J., Sánchez-Cordero, V., Soberón, J.,
- 17 Buddemeier, RH. and Stockwell, DR. 2002. Future projections for Mexican faunas under
- global climate change scenarios. *Nature* 416: 626-629.
- 19 Raab R, and Schuetz C. 2012. Underground cabling and marking of power lines:
- 20 conservation measures rapidly reduced mortality of West-Pannonian Great Bustards Otis
- 21 tarda. Bird Conservation International 22:299-306.
- 22 Stanton, JC., Pearson, RG., Horning, N., Ersts, P., and Reşit Akçakaya, H. 2012.

- 1 Combining static and dynamic variables in species distribution models under climate
- 2 change. *Methods in Ecology and Evolution* 3: 349-357.
- 3 Strange, N., Thorsen, B.J., Bladt, J., Wilson, K.A. and Rahbek, C. 2011. Conservation
- 4 policies and planning under climate change. Biological Conservation 144, 2968-2977.
- 5 Sykes, M. and Prentice, IC. 1996. Climate change, tree species distributions and forest
- 6 dynamics: A case study in the mixed conifer/northern hardwoods zone of northern
- Furope. *Climatic Change* 34: 161-177.
- 8 Tanneberger, F., Flade, M., Preiksa, Z. and Schroeder, B. (2010) Habitat selection of the
- 9 globally threatened Aquatic Warbler Acrocephalus paludicola at the western margin of its
- breeding range and implications for management. *Ibis* 152: 347-358.
- 11 Wang, Q. and Yan, C. 2002. Chinese Cranes, Rails and Bustards, Taiwan: National
- Fenghuangu Bird Park. (in Chinese)
- Wang, Q. 1999. Current status of waterbirds in China wetlands.Pp.1-11 in Proceedings of
- 14 International Workshop on the Crested Ibis Conservation '99, Hanzhong, China. (In
- 15 Chinese)
- Woodward, FI. 1987. Climate and plant distribution: Cambridge University Press.
- Wu, W., Gu, S., Wu, J., Cao, M., Juncheng, L. and Xu, H. 2012 Impact of Climate Change
- on Distribution of Breeding Sites of Red-Crowned Crane in China. Journal of Ecology
- *and Rural Environment* 3: 004.
- 20 Wu, X. B. and Smeins, F. E. 2000. Multiple-scale habitat modeling approach for rare plant
- conservation. *Landscape and Urban Planning* 51: 11-28.
- 22 Wu, Y., Liu, S., and Cao, J. 2001 The wintering population survey and conservation

- strategy of Great Bustards. *Anhui Linye* 4: 30. (in Chinese)
- 2 Xia, C., Lin, X., Liu, W., Lloyd, H. and Zhang, Y. 2012. Acoustic identification of
- individuals within large avian populations: a case study of the Brownish-flanked Bush
- 4 Warbler, South-Central China. *PloS one* 7: e42528.
- 5 Yang, C., Zhou, L., Zhu, W. and Hou, Y. 2007. A preliminary study on the breeding
- 6 biology of the oriental whitestork Ciconia boyciana in its wintering area.
- 7 Acta Zoologica Sinica 53: 215-226 (in Chinese).
- 8 Zhai, T. and Li. X. 2003. Climate change induced potential range shift of the crested ibis
- 9 based on ensemble models. *Acta Ecologica Sinica* 9: 1353-1362. (in Chinese)

11

16

17

18

19

14			
15			

21			

Figure Legend:

23

24

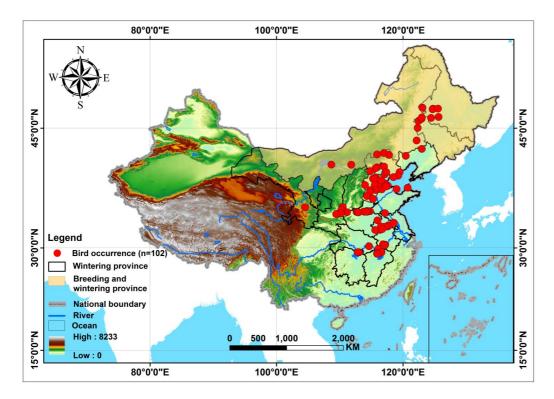
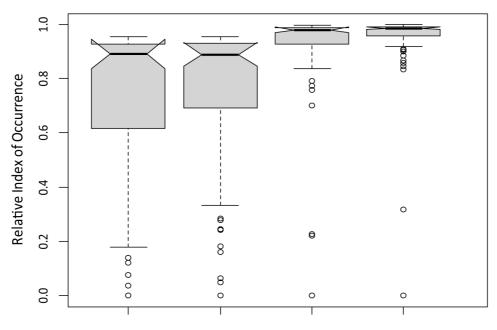



Figure 1 The study area for predicting the distribution of of Great Bustards (Otis tarda dybowskii) in China. 102 presence records of bustards are

shown; the elevation of this study area ranges from 0 to 8,233 m.

TreeNet 14 TreeNet 29 Random Forest 14 Random Forest 29

Figure 2 Boxplots of from independent testing data taken from the literature (the Threaten Birds of Asia, Collar et al. (2001)) extracted derived from four Great Bustards distribution models (TreeNet 14, TreeNet 29, Random Forest 14, Random Forest 29).

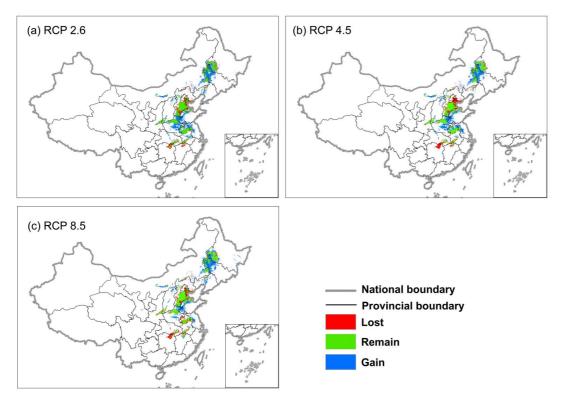


Figure 3 Projected change of the Great Bustard's <u>suitable</u> wintering <u>suitable</u> habitat <u>baseds</u> on <u>a consensus forecast (BCM) from three GCMs by 2070 under (<u>a</u>A) RCP 2.6, (<u>b</u>B) RCP 4.5, <u>and (c</u>C) RCP 8.5. The projected current <u>Great Bustards habitats distribution was were</u> overlaid with future <u>habitats projections</u> to identify areas that would be lost, gained, or remain <u>occupied</u>.</u>

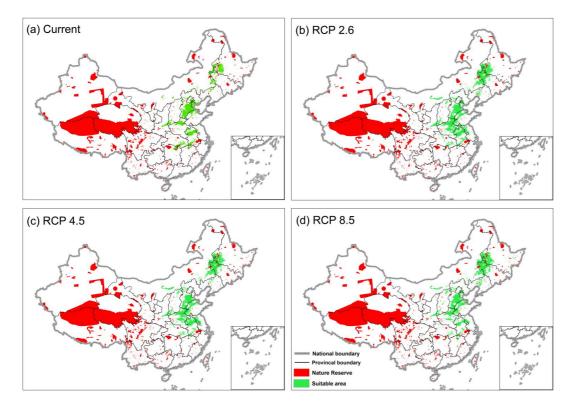


Figure 4 Projection of Great Bustards suitable habitats based on the consensus forecast from three GCMs overlaid with the locations of Nnature Reserves: (a) projected current distribution, (b) projected distribution by 2070 for RCP 2.6, (c) projected distribution by 2070 for RCP 4.5, (d) projected distribution by 2070 for RCP 8.5.

1 Table Legend

2 Table 1 The AUC and TSS values of four Great Bustards² distribution models. Bold type

indicates the best model according to each measure.

	TreeNet 14	TreeNet 29	Random Forest 14	Random Forest 29
AUC	0.914	0.923	0.961	0.982
TSS	0.828	0.846	0.922	0.965

3

4

5

6

7

9

10

11

12

13

14

Table 2 Projected change in the total area of the Great Bustard's wintering suitable winter 2

habitats area (1000* km²) and the suitable habitats area (1000* km²) in current nature reserve

based on consensus forecast from three GSMs by 2070. Areas are given in (1000* km²), with

the percent of the current total given in parentheses.

Area	Area Lost	Area	Area Gained	New total	Habitat in
	(%)	Remain <u>ing</u>	(%)	habitat	Reserve
Scenario		(%)			(%)
Current					23.9_
	-	-	-	290.64	5 (8.24)
RCP 2.6	67.29(23.15)	223.35(76.84)	218.36(75.13)	374.41(128.82)	29.53(7.89)
RCP 4.5	90.56(31.15)	200.08(68.84)	206.94(71.20)	316.46(108.88)	22.58(7.13)
RCP 8.5	88.08(30.30)	202.56(69.69)	189.69(65.26)	304.17(104.65)	27.30(8.98)

Comment [UConn25]: Please check my interpretation here.

Formatted: Centered

Comment [UConn26]: Throughout the table give numbers to 1 decimal place, as it is highly unlikely that the models can support better precision. Also put a space before the parenthese As shown in this row. Make similar changes in oth

Table 3 Land cover type <u>for of projections</u> of Great Bustards wintering habitats under <u>the</u> current <u>conditions</u> and three RCP <u>projections</u> by 2070.

Land type	Cropland (%)	Sparse (<15%)	Other (%)	Total
Scenario		vegetation (%)		
Current	14,211(79.66)	1,210(6.78)	2,418 (13.55)	17,839
RCP 2.6	20,828(77.46)	2,783(10.35)	3,278(12.19)	26,889
RCP 4.5	18,544(75.90)	2,941(12.04)	2,949(12.07)	24,434
RCP 8.5	17,054(74.64)	2,887(12.31)	3,065(13.07)	23,456