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ABSTRACT
Machine learning (ML) includes a broad class of computer programs that improve
with experience and shows unique strengths in performing tasks such as clustering,
classification and regression. Over the past decade, microbial communities have been
implicated in influencing the onset, progression, metastasis, and therapeutic response
of multiple cancers. Host-microbe interaction may be a physiological pathway
contributing to cancer development. With the accumulation of a large number of
high-throughput data, ML has been successfully applied to the study of human
cancer microbiomics in an attempt to reveal the complex mechanism behind cancer.
In this review, we begin with a brief overview of the data sources included in cancer
microbiomics studies. Then, the characteristics of the ML algorithm are briefly
introduced. Secondly, the application progress of ML in cancer microbiomics is also
reviewed. Finally, we highlight the challenges and future prospects facing ML in
cancer microbiomics. On this basis, we conclude that the development of cancer
microbiomics can not be achieved without ML, and that ML can be used to develop
tumor-targeting microbial therapies, ultimately contributing to personalized and
precision medicine.
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INTRODUCTION
With the popularization of the concept of “Holobiont” in life and medical science,
individual phenotypes are seen as the result of complex interactions resulting from the
joint expression of host and related microbial genomes (Simon et al., 2019). In short,
almost all functions of macroscopic organisms, including their development, growth, and
health, are influenced by the complex microbial communities in which they reside (Foster
et al., 2017). It is well known that humans are a host of multiple microbial symbionts, and
microbes have co-evolved with human bodies by inhabiting them thereby creating
individual habitats that are complex and are specific according to the host physiology
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(Nallanchakravarthula, Amruta & Ramamurthy, 2021). The efforts of human microbiome
projects and advances in diverse omics technologies have revolutionized our
understanding of the relationship between humans and microbial symbionts (Parida &
Sharma, 2020). Microbiota and host maintain a dynamic equilibrium referred to as
eubiosis that actively influences many physiological processes and plays an important role
in keeping human health. However, imbalance in the number and types of microbial
population leads to ecological imbalance. In this case, the dominant strain can induce
chronic inflammation, toxin and carcinogenic metabolites through multiple mechanisms,
thereby affecting the host microenvironment and homeostasis (Vimal, Himal & Kannan,
2020). Thus, dysbiosis may directly or indirectly contribute to carcinogenesis in human
beings.

The human associated microbiome consists of members from different phylogenetic
groups such as bacteria, viruses, fungi, protozoa, archaea and others dominated by bacteria
that live symbiotically and nonsymbiotically (Lloyd-Price, Abu-Ali & Huttenhower, 2016).
The commensal microbiota colonizes any surface exposed to the surrounding factors,
including mucosa and skin (respiratory, gastrointestinal, and urogenital), with the gut
being the most densely colonized and widely colonized organ (Loganathan & Priya Doss,
2022). More recent developments show the existence of potentially harboring low-biomass
microbial populations in other body sites, initially considered ‘sterile’, such as breast, lung,
prostate, bladder, liver, pancreas and blood circulatory systems (Geller et al., 2017; Meng
et al., 2018; Nejman et al., 2020; Parhi et al., 2020; Poore et al., 2020; Riquelme, Maitra &
McAllister, 2018). Cancer has long been believed to be a complex illness brought on by
interactions between the host and its microenvironment (Elinav et al., 2013). Cancer and
its associated host microbes are collectively referred to as a Cancer microbiomics
(Nallanchakravarthula, Amruta & Ramamurthy, 2021). Numerous studies have
demonstrated that each microbial niche may influence cancer promotion through
community-level interactions mediated by altered microbiome dysbiosis (Farrell et al.,
2012; Sobhani et al., 2011; Xuan et al., 2014), direct interaction of individual members
(Koshiol et al., 2016; Pereira-Marques et al., 2019), or via secreted or modulated
metabolites. Although the causal relationship between microbes and cancer is not absolute,
specific microbiome signatures and diversity may be a favorable biomarker for diagnosis
and prognosis in patients with cancer.

Increasing evidence suggested that the composition of microbiota changes during the
carcinogenesis or development, which gives rise to the promising diagnostic value of
microbiome based signatures (Chen et al., 2022; Zhang et al., 2022). Next generation
sequencing (NGS) is emerging as a powerful microbiome investigation method, allowing
characterization of microbial communities at unprecedented resolution, without prior
culturing (Escobar-Zepeda, Vera-Ponce de Leon & Sanchez-Flores, 2015). Due to difficulties
identifying biomarkers with standard statistical methods for disease diagnosis, the field has
moved to applying predictive ML models for classification of patient phenotypes. ML has
great ability to detect informative patterns in the data with limited prior knowledge of the
underlying system, which has shown to be useful for identifying key molecular signatures,
discovering potential patient stratifications, and particularly for generating models that
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can accurately predict phenotypes (Li et al., 2022a). Meanwhile, potential biomarkers
associated with human disease can be identified through interpretable models (Carrieri
et al., 2021; Gou et al., 2021; Wilmanski et al., 2019). Thus, ML has been increasingly
applied to cancer microbiomics data to classify samples and predict various outcomes
(Fukui et al., 2020; Topcuoglu et al., 2020).

The difficulties in accurate and efficient data analysis have become the immediate
challenge that must be tackled for further investigation of the cancer microbiomics.
The recently proliferated field of ML sheds new light on such tasks. In the following
sections, we will provide an overview of the data sources, methods, potential application,
and challenges of ML in cancer microbiomics. This narrative review aims to provide a
theoretical basis for promoting the development of cancer microbiomics. At the same time,
microbiology researchers and clinicians can quickly understand the current status of
microbiology research in cancer and the application of ML ideas.

To assess an unbiased comprehensive analysis of ML, microbiomics and malignancy
correlation studies, we used PubMed and Web of Science to identify relevant literature
published before June 2023 to identify and include studies in our analysis. The search
terms used were “deep learning or predictive modeling or artificial intelligence or machine
learning” AND “tumor or cancer” AND “microflora or microbiome or microbiology or
microbial or germ or microorganism or microbe or metagenomics or metagenome”. Only
studies published in English or with official English translations were included in this
study. The reference lists of eligible studies were manually screened to identify additional
relevant literature. As shown in Fig. 1, after an initial screening of titles and abstracts,
full-text articles were carefully verified. Included studies met the following criteria: (1)
research articles related to microbiomics, (2) the disease studied included malignancy, (3)
the study method used ML-related algorithms. Duplicates and studies with unclear ML
algorithms were excluded. Twenty-three studies assessing the relevance of microbes,
malignancies, and ML were identified by the inclusion and exclusion criteria described
above.

NEXT GENERATION SEQUENCING TECHNOLOGY IN
MICROBIOME
Currently, microbial community analysis by multiple NGS methods mainly includes
amplicon sequencing, metagenomic NGS (mNGS), RNA sequencing and omics-based
sequencing (See Fig. 2A). Taxa abundance is the most commonly used feature, as
microbiome profiles are assumed to be different in healthy and disease states. Amplicon
sequencing is the most common NGS method that could survey almost all bacteria and
sample types by targeting the 16s/18s ribosomal RNA (rRNA) housekeeping marker gene
to quantify the microbiome composition (Liu et al., 2021). The operational taxonomic
units (OTUs) is often used for microbial community analysis, which group sequences into
a consensus sequence (the OTU) at a defined sequence similarity threshold by some
pipelines (e.g., QIIME-uclust, MOTHUR and USEARCH-UPARSE). For the 16S rRNA
gene, a threshold of 97% sequence identity is generally used to define OTU to the species
level (OTU-97%) (Edgar, 2018), and be widely used in studies. As an alternative to OTUs,
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amplicon sequencing variants (ASVs) attempt to remodel the exact biological sequences
present in the sample using some pipelines (e.g., Qiime2-Deblur, DADA2, and
USEARCH-UNOISE3) (Callahan, McMurdie & Holmes, 2017). That is, sequences are
grouped into the same OTU with a threshold of 100% sequence identity. Compared with
OTUs, ASVs has the potential to improve both the sensitivity and specificity of 16S rRNA
gene sequence inference. Finally, OTUs/ASVs table is obtained as a helpful and important
starting point for most ML prediction approaches to better understand taxonomic
variation within microbial communities and its prediction of host traits (Loganathan &
Priya Doss, 2022; Zhang, Chen & Wong, 2021). In conclusion, Amplicon sequencing is
technically mature enough to obtain sufficient information about microbial community
composition in addition to being affordable for large-scale studies (Laudadio et al., 2018).
Compared with amplicon sequencing, mNGS could simultaneously examine all genes in
all organisms contained in the sample. it can result in species or strain level and has
potential to performmetagenomic population functional analysis. However, it is costly and
time-consuming. After mNGS, taxonomic table is obtained by comparing to the genome.
Then, the taxonomic table can be transferred into input features for ML classifiers and
perform prediction for diseases (Liu et al., 2021).

To capture the real-time functional activities of the microbiome, metatranscriptomics,
metaproteomics sequencings, and metabolome detection assess the microbial RNA,
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References after duplicates excluded
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References screened
           (n=5360)

abstract references 
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Full-text references 
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Figure 1 Schematic diagram of literature search. PubMed and Web of Science were searched for
keywords, and then after an initial screening of titles and abstracts, the full text was finally scrutinized for
inclusion of 23 relevant studies. Full-size DOI: 10.7717/peerj.16304/fig-1
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Figure 2 Schematic diagram of disease prediction modeling with microbiome data. (A) The health of
the human body is inextricably linked to its microbiota. By subjecting the microbiota of a specific site to
next-generation sequencing (amplicon, metagenome, omics-based), it may be possible to make predic-
tions about diseases through the microbiota. (B) Machine learning is usually categorized into supervised
(e.g., RF, SVM, ANN) and unsupervised (e.g., clustering and dimensionality reduction), with very dif-
ferent steps and outputs. The basic steps to build a disease prediction model are: 1. Sequencing data are
reasonably divided into training and testing sets, and the data are preprocessed (e.g., missing value
interpolation, outlier elimination, normalization, or standardization); 2. Parameters are optimized, and
appropriate ML algorithms are selected to build the model; and 3. The model needs to be validated,
visualized, evaluated, and interpreted. Full-size DOI: 10.7717/peerj.16304/fig-2
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protein, and metabolite respectively, to extract information on gene/protein/metabolite
expression. Thus, gene/protein/metabolite expression is obtained as the input features for
downstream analysis and classification by ML.

OVERVIEW OF MACHINE LEARNING
In the past 5–6 years, tremendous strides have been made towards using ML for predicting
specific phenotypes, from the microbiome data available in public databases (Seneviratne
et al., 2020). It is noteworthy that a large volume of high-throughput data has been
generated in the microbiome, prompting the association between microbiome and cancer
to become increasingly clear, and pushing researchers to use ML-based approaches to
predict systematic trends in the cancer microbiomics.

By using a variety of statistical, probabilistic and optimization methods to learn from
past experience, ML can build appropriate models from large, unstructured and complex
datasets to solve medically relevant problems (Choi et al., 2020). Generally, ML algorithms
can be categorized as supervised learning and unsupervised learning. Supervised learning
is the most common approach to ML, models in which are optimized (i.e., fitted) with a
training set of manually labeled input and output data to predict the values of future
inputs. Thus, supervised learning algorithms are mainly used to build ML models.
For some modeling algorithms (e.g., random forest (RF)), the importance of each variable
(e.g., species and gene) for the model prediction may be estimated for model interpretation
or further analysis (Salim et al., 2023). Supervised learning methods are further categorized
into regression and classification. Regression returns scores to reflect the possible outcome
(a.k.a. class label), while classification directly returns possible outcome the sample can
belong to (a.k.a. class label). Among the conventional ML methods, logistic regression
(LR), RF (Man et al., 2019), and support vector machine (SVM) (Lyashenko et al., 2020)
are the most frequently used supervised learning algorithms. Although ML algorithms
such as RFs can handle a large number of features, their accuracy can still be limited in
complex datasets (Statnikov et al., 2013). Deep learning (DL) belongs to a subclass of
supervised learning, which has attracted increasing attention in microbiome research in
recent years due to its unique advantages in processing large amounts of high and complex
data. For microbiome data, the input features are relative abundances instead of images,
which can be used to build DL models that classify the outcomes into presence or absence
of disease state (Xu et al., 2023). The most commonly used form of DL is artificial neural
networks (ANN) (Guo et al., 2020).

On the other hand, the unsupervised learning method is essentially used for processing
data with no predefined labels. Because no labeled input was provided, the algorithm may
explore the intrinsic properties of the data that are not apparent to human. Unsupervised
learning optimizes a model by learning the entire dataset and representing it in a more
compact way, or by clustering samples together based on the similarity of their features
(i.e., clustering and dimension reduction) (Raza & Singh, 2021). Dimension reduction
methods include t-distributed stochastic neighbor embedding (t-SNE), principal
components analysis (PCA) and principal coordinate analysis (PCoA), which have been
widely used for omics data visualization and feature extraction by extracting a set of
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principal variables from high-dimensional feature space (Goodswen et al., 2021).
The clustering algorithms, including self-organizing map (SOM), hierarchical clustering
and k‑means clustering, are frequently implemented to partition or stratify a set of objects
into multiple clusters based on similarities or differences.

The ML methods widely used in microbiome research are well-described by Namkung
as published in 2020 (Namkung, 2020). Here, we focus on the implementation of
supervised learning methods in human cancer microbiomics studies. So, we briefly sort out
the basic steps of building disease prediction models based on microbiome data by
analyzing relevant research results in recent years (Fig. 2B). Firstly, the sequencing data
were reasonably divided into training and test sets, and the data were preprocessed (such as
missing value interpolation, outlier elimination, normalization or standardization). Then
the parameters are optimized and the appropriate ML algorithm is selected to build the
model. Finally, the model needs to be validated, visualized, evaluated, and interpreted.

APPLICATION OF ML FOR CANCER MICROBIOMICS
The immense potential of the human microbiome grasped huge attention from the
research community of cancer. There has been an explosion in the study of the
microbiome in cancer research. In view of the correlation between non-invasive samples
and a variety of cancers, as well as the existing microbial multi-omics big data, the current
research direction of ML in cancer microbiomics is mainly focused on the development of
non-invasive tools for cancer diagnosis, prediction and monitoring. We summarize the
main literature on the application of microbial data to build cancer diagnostic models, and
the specific research methods and strategies are shown in Table 1. As can be seen from
Table 1, a total of 23 studies used ML algorithm to predict cancer phenotypes, among
which 12 studies applied RF algorithm, accounting for 52.2%, suggesting that RF algorithm
is one of the most widely used ML algorithms in cancer microbiomics.

ML algorithms in pan-cancer
Based on the extensive association between microbiome and cancer, and to characterize
the cancer-associated microbiome, Poore et al. (2020) re-examined microbial reads from
18,116 samples and 33 cancer types from The Cancer Genome Atlas (TCGA)
compendium of whole genome sequencing (WGS; n = 4,831) and whole transcriptome
sequencing (RNA-Seq; n = 13,285) studies. They built the stochastic gradient boosting ML
model that was able to distinguish well between and within cancer types and stages. They
then performed deep metagenomic sequencing of plasma samples from cancer individuals
with prostate, lung, and skin cancer (n = 100) and non-cancer, HIV-, healthy controls
(n = 69). The ML model also could distinguish well healthy from cancer and cancer from
cancer in the cell-free microbial profiles. This finding has already shown promise for a
universal strategy for cancer diagnosis based on the microbiome.

Coincidentally, Xu et al. (2023) applied a large amount of microbial data from 21 cancer
types, including 11,819 tissue samples (metagenomic data and 16S rRNA sequencing data)
and 1,845 blood samples (metagenomic data), to construct DeepMicroCancer. The
DeepMicroCancer is a set of tissue/blood microbiome based RF and tissue-blood
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Table 1 The representative applications of machine learning in human cancer microbiomics in recent years.

ML
algorithm

Sample type Data type Input
features

Sample
size

External
verification

Groups AUC Disease Ref.

GBM Tissue and
blood

Whole genome and
transcriptome

Taxonomic
table

18,116 169 CA vs. BD vs.
HC

0.891 Pan-
cancer

Poore et al. (2020)

RF Tissue and
blood

Whole genome and
transcriptome

Taxonomic
table

13,664 / CA vs. HC 0.90 Pan-
cancer

Xu et al. (2023)

NB Fecal 16S rRNA OTUs 90 / CRC vs. CRA
vs. HC

0.969 CRC Zackular et al.
(2014)

LR Fecal Metagenome Taxonomic
table

156 335 CRC vs. CRA 0.87 CRC Zeller et al. (2014)

RF Fecal 16S rRNA OTUs 404 / CRC vs. CRA
vs. HC

0.853 CRC Baxter et al. (2016)

SVM Fecal Metagenome Taxonomic
table

2,424 903 CRC vs. HC 0.809 CRC Pasolli et al. (2016)

NB Fecal 16S rRNA OTUs 141 141 CRC vs. CRA
vs. HC

0.994 CRC Ai et al. (2017)

RF Oral and fecal 16S rRNA OTUs 234 / CRC vs. CRA
vs. HC

0.94 CRC Flemer et al. (2018)

RF Fecal Metagenome Taxonomic
table

156 218 CRC vs. HC 0.91 CRC Koohi-Moghadam
et al. (2019)

RF Fecal Metagenome Taxonomic
table

60 231 CRC vs. HC 1 CRC Gupta et al. (2019)

LR Fecal Metagenome Taxonomic
table

768 203 CRC vs. BD 0.92 CRC Wirbel et al. (2019)

RF Fecal Metagenome Taxonomic
table

141 / CRC vs. HC 0.76 CRC Kishk et al. (2018)

LogitBoost Fecal Metagenome Taxonomic
table

696 / CRC vs. BD 0.968 CRC Bang et al. (2019)

RF Fecal 16S rRNA OTUs 242 / CRC vs. HC 0.999 CRC Qu et al. (2019)

RF Fecal 16S rRNA OTUs 46 / CRC vs. HC 0.85 CRC Trivieri et al. (2020)

LR Fecal Metagenome Metabolites 192 156 CRC vs. CRA
vs. HC

0.98 CRC Chen et al. (2022)

GBM Fecal 16S rRNA OTUs 615 / CRC vs. IBD
vs. HC

0.80 CRC Seo et al. (2022)

RF Lower
respiratory
tract

Metagenome Taxonomic
table

150 85 CA vs. BD vs.
HC

0.882 Lung
cancer

Jin et al. (2019)

SVM Gut 16S rRNA OTUs 107 74 CA vs. HC 0.976 Lung
cancer

Zheng et al. (2020)

RF Lower
respiratory
tract

Metagenome Taxonomic
table

60 / CA vs. BD 0.959 Lung
cancer

Chen et al. (2023)

LR Serum Metagenome Taxonomic
table

350 / CA vs. HC 0.99 Brain
tumor

Yang et al. (2020)
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microbiome based transfer learning models that can be used to diagnose a wide range of
cancer types. Thereinto, the tissue RF model demonstrated superior predictive
performance, with area under the curve (AUC) >0.9 for the prediction of all other cancers
except for lymphoid neoplasm diffuse large B-cell lymphoma (only seven samples).
The top contributing bacteria Ralstonia, Tetrasphaera, Nitrospira, and Luteimonas of this
RF model were generally distributed in natural environments like soil and water habitats or
plant surfaces, while some of which such as Ralstonia were proved to cause infection when
transferred to hospital settings (Ryan & Pembroke, 2018). In a study by Higuchi et al.
(2021), it was also shown that some bacteria such as Ralstonia constitute a
mesothelioma-specific microbiota that promotes the process of cancer progression.
Although the blood RF model has decent performance, which is unsurprisingly not
comparable with that of the tissue RF model. The top contributor in the blood RF model is
Herbaspirillum, which has been reported to be isolated from multiple cancer patients
(Chemaly et al., 2015; Gungor et al., 2020; Suwantarat et al., 2015). In addition, the
tissue–blood transfer learning (TL) model has a precision of 0.5 or higher for most cancers,
and the multiclassification averaged AUC reached 0.89, which performed better than the
RF model in predicting cancer types in small samples (Xu et al., 2023). These findings
suggest a new class of microbial-based cancer diagnostics, providing a unique opportunity
to develop cancer diagnostics.

ML algorithms in colorectal cancer (CRC)
As routine screening programs for CRC, non-invasive methods such as fecal occult blood
testing (FOBT) and carcinoembryonic antigen (CEA) testing, and invasive methods such
as high-quality colonoscopy can reduce the risk of death from CRC to some extent
(Medical Advisory Secretariat, 2009; Forones & Tanaka, 1999; Waldmann et al., 2021).
However, the large-scale use of these methods is limited by the low accuracy of
non-invasive methods and the damage caused by invasive methods. The researchers
therefore focused on the gut microbiome, a novel non-invasive method of CRC detection,
in an attempt to find new potential biomarkers. There is no doubt that CRC is one of the
most widely applied cancer types for ML algorithms. This has been summarized in detail in
a review published by Zhang, Chen & Wong (2021), and we have found some new
investigations regarding CRC diagnosis based on that review as well (see Table 1). It is

Table 1 (continued)

ML
algorithm

Sample type Data type Input
features

Sample
size

External
verification

Groups AUC Disease Ref.

RF Peritoneum 16S rRNA OTUs 30 / CA vs. BD 0.94 Ovarian
cancer

Miao et al. (2020)

RF Gastric juice 16S rRNA OTUs 139 / CA vs. HC 1 Gastric
cancer

Wei et al. (2023)

Note:
CA, cancer; BD, benign diseases; HC, health controls; AUC, area under the curve; operational taxonomic units; CRC, colorectal cancer; CAR, colorectal adenoma; IBD,
inflammatory bowel disease; ML, machine learning; RF, random forest; NB, Naïve Bayesian; LR, logistic regression; SVM, support vector machine; GBM, gradient
boosting machine; Ref., reference.
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worth mentioning that almost all CRC related literature in Table 1 used fecal microbiota to
establish diagnostic models. With the exception of Kishk et al. (2018) almost all MLmodels
have AUC values of 0.8 and above. This not only reflects the advantages of
non-invasiveness and accessibility of stool types, but also reflects the huge representation
of CRC characteristics of stool samples. In the following, we will supplement some recent
new research in detail.

Due to the abundance of microbial species and quantity, it is particularly important to
select suitable dimensionality reduction methods for feature selection prior to modeling.
Based on two public data sets, Qu et al. (2019) used single method (correlation-based
feature selection and maximum relevance-maximum distance) and multiple
dimension-reduction methods (single method combination) to select features. Finally,
multiple ML algorithm are utilized for modeling and diagnostic performance evaluation.
The results show that the model with RF combined with multiple dimension reduction
method has the best performance (AUC = 0.999). In additional, Koohi-Moghadam
introduced a novel concept—MetaMarker (https://bitbucket.org/mkoohim/metamarker
under GPLv3 license) (Koohi-Moghadam et al., 2019). Unlike the traditional OTU tables, it
is effective in identifying unknown bacterial sequences that may be important for disease.
Based on the whole-metagenome sequencing of fecal samples, they compared the
performance evaluation of RF modeling in multiple national datasets with metaMarker or
linear discriminant analysis of effect sizes (LEfSe) markers (Segata et al., 2011). The results
showed that MetaMarker has better performance than LEFSe in distinguishing CRC
samples from healthy individuals in a multiracial population. Upon pooling biomarkers
from MetaMarker and LEfSe, the ML model improved classification performance beyond
that of either model and the AUC could reach 0.91.

The colorectal adenoma (CRA) and inflammatory bowel disease (IBD) are the two
high-risk diseases for CRC at early screening. CRA is a precancerous lesion, and early
diagnosis can effectively prevent the development of CRC (CRA to CRC) (Bray et al.,
2017). Furthermore, the increase of some specific harmful bacteria, such as enterotoxigenic
Bacteroides fragilis and Escherichia coli, is associated with the chronic tissue inflammation,
release of pro-inflammatory mediators and oncogenic mediators, which may increase the
chance of CRC in patients with IBD (inflammation-anisoplasia-cancer) (Quaglio et al.,
2022). Zackular et al. (2014) first used the Kruskal-Wallis test to identify OTUs with
significant differences, and then performed linear discriminant analysis (LDA) to
determine the effect sizes of these specific attributes. The largest differences between
adenoma and healthy groups included age, race and five OTUs (including Clostridiales,
Clostridium, Lachnospiraceae and Bacteroides). The authors used the above screened
feature variables to build a Naïve Bayesian (NB) model. It was found that modeling with
the NB algorithm could increase the probability of adenoma detection by more than 50
times, with an AUC as high as 0.969. The model showed that when at least one of these five
OTUs was not detected, it was a signal for the presence of adenoma. The differential
microorganisms identified by their studies are also supported by previous evidence
(Castellarin et al., 2012; Kostic et al., 2013; Rubinstein et al., 2013). For example, Bacteroides
fragilis, a pathogenic variant that is a common commensal, has been shown to directly
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influence the development of CRC in a mouse genetic model by producing a
metalloproteinase toxin (Sears et al., 2008). Similarly, Zeller et al. (2014) developed a CRC
diagnostic model using metagenomic data from feces of CRC patients vs. CRA patients
(Zeller et al., 2014). First, the authors assessed the predictive ability of microorganisms that
differed significantly between the two groups and found that individual species already had
some predictive ability (AUC up to 0.75). Next, the authors selected the top 22 species to
build the last absolute shrinkage and selection operator (LASSO)-LR model, whose AUC
could be raised to 0.84. Among those significantly enriched in CRC were Fusobacterium,
Porphyromonas asaccharolytica and Peptostreptococcus stomatis. Although it is not clear
which microorganisms are directly associated with CRC, recent evidence has shown that
Fusobacterium species are prevalent CRC-associated (Castellarin et al., 2012) and
tumor-accelerating (Kostic et al., 2012) microorganisms. Meanwhile, when the fecal
metagenome was combined with FOBT, the accuracy of the model could be improved
(AUC of 0.87). The patients included in the control group of this study were patients with
small colorectal adenomas (diameter <10 mm), and thus the model developed in this study
is a good predictor of microadenomas that are not easily detected by colonoscopy. In other
words, for smaller colorectal adenomas, microbiomics can be used as a complementary test
to colonoscopy to reduce the probability of their being missed. In addition, Seo et al.
(2022). developed a gradient boosting machine (GBM)model for CRC and IBD differential
diagnosis. Model evaluation showed that the IBD risk model (AUC of 0.84, specificity of
74%, and sensitivity of 91%) performed slightly better than the CRC risk model (AUC of
0.80, specificity of 84%, and sensitivity of 71%) for disease classification. In the IBD risk
model, the most important genera were Dorea, Blautia, Enhydrobacter. Meanwhile, in the
CRC risk model, the most important genera were Parvimonas, Peptostreptococcus,
Psychrilyobacter.

Some oral-associated microorganisms have been reported to be present in the fecal and
colonic mucosal microbiota associated with CRC (Baxter et al., 2016; Flemer et al., 2017;
Zeller et al., 2014), which may also be candidates for CRC biomarkers. Flemer et al. (2018)
analyzed microbiota in oral, colonic mucosa, and feces from CRC patients (n = 99),
colorectal polyp patients (n = 32), and healthy controls (n = 103). The authors first filtered
out features that appeared in less than 5% of the individuals. Then in each iteration of the
10-fold cross-validation, LASSO algorithm was used to select features for 90% of the data
set. Finally, The highest accuracy, with an AUC of 0.94, specificity of 95%, and sensitivity
of 76%, was achieved when combining fecal and oral microbiota data to create a diagnostic
model for RF. This study shows that simultaneous analysis of oral and fecal microbiomes
can enhance the diagnostic efficacy of CRC.

CRC carrying the BRAFV600E mutation has been reported to have a low response to
conventional therapy and a poor prognosis (De Sousa et al., 2013; Ursem, Atreya & Van
Loon, 2018). Trivieri et al. (2020) found that unique microbiota signatures can distinguish
cases of BRAF mutations in CRC. They first studied fecal microbiota characteristics in
CRC-carrying mice, a cohort of human CRC subjects, and a tumor-free control group by
performing bacterial 16S rRNA sequencing. All of these data confirmed that a distinctive
microbiota’s fingerprint could be distinguished between serrated BRAFV600E and BRAF wt

Feng et al. (2023), PeerJ, DOI 10.7717/peerj.16304 11/28

http://dx.doi.org/10.7717/peerj.16304
https://peerj.com/


CRC’s patients, with the former strongly resembling healthy subjects. They then detected
10 candidate species that were differentially expressed in the two CRC groups with good
predictive potential to distinguish patients with BRAFV600E from those with BRAF wt.
Finally, the authors constructed an RF model based on these bacterial markers, which
performed well in discriminating serrated CRC driven by BRAF mutation from BRAF
wild-type CRC cases (AUROC = 0.85, 95% confidence interval [0.69–1.01]), with
Prevotella enoeca and Ruthenibacterium lactatiformans contributing the most.
In conclusion, this RF model can differentiate the BRAF status of CRC patients, and thus
microbiomics may be a potential non-invasive test for it.

However, focusing on one disease may not detect biomarkers specific to that disease
because the host’s gut microbial community may be susceptible to a variety of diseases
simultaneously (Kinross, Darzi & Nicholson, 2011). Therefore, using the gut microbiota to
explore multiple diseases simultaneously may provide a more comprehensive diagnostic
value for clinical purposes. Bang et al. (2019) developed diagnostic models for CRC and
other diseases (multiple sclerosis, idiopathic arthritis, myalgic myelitis, acquired
immunodeficiency syndrome and stroke) from five classification levels (phylum, class,
order, family and genus), four classifiers (LogitBoost, SVM, K nearest neighbor and logistic
model tree) and two feature selection methods (forward selection and backward
elimination). The LogitBoost model performed best when built using genus level and
backward elimination, where the diagnostic accuracy for CRC was 96.84%. However, the
subset of features selected in this study may not contain all microorganisms associated
with the six diseases, which could introduce errors into the study results. The
characteristics selected for the study can distinguish these six diseases simultaneously, and
PSBM3 is one of the important biomarkers. PSBM3 belongs to a family of bacteria known
as Erysipelotrichaceae associated with the immune system, and its abundance is positively
correlated with tumor necrosis factor alpha levels (Dinh et al., 2015; Kaakoush, 2015; Palm
et al., 2014). Not coincidentally, Wirbel et al. (2019) developed a cross-regional CRC
diagnostic model by analyzing eight geographically and technologically distinct CRC fecal
metagenomic studies. At first, the authors identified 94 differentially abundant
microorganisms from the 849 species. Then, among these markers, the analysis was
focused on the most important core group consisting of 29 species such as Fusobacterium,
Porphyromonas, Parvimonas, Peptostreptococcus, Gemella, Prevotella, and Solobacterium.
Most of these species are from the orphyromonas and Dialister genera and the Clostridiales
order, which is strongly enriched in the CRC group and usually undetectable in controls
(including type two diabetes, Parkinson’s disease, and inflammatory bowel disease). Next,
the authors applied differential microbial species to the LASSO-LR classifier for CRC
diagnostic modeling, which can reach an AUC of 0.92. The results show that this
polymicrobial CRC classifier can overcome technical and geographic research differences
and has the potential to expand its applicability through validation in other regions.

Metabolic changes can be more directly observed in the state of caner cells than genomic
and proteomic changes, and therefore can be used as a promising cancer marker (Patel &
Ahmed, 2015). Chen et al. (2022) developed a panel of gut microbiome-associated serum
metabolites (GMSM) that can accurately predict CRC and colorectal adenoma from
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normal healthy population (N) through a combined analysis of serum metabolomic and
faeces metagenomic. In this study, they first performed a PCA of differential metabolites
(CRC vs. CRA, CRA vs. N, CRC vs. N) in the discovery dataset and found that the pattern
was similar in both CRA and CRC patients, while the healthy population could be clearly
distinguished from both populations. Subsequently, through an integrated
microbiome–metabolome associated analysis, they found that these correlated
species-metabolite pairs included bacterial species that were reported to be associated with
CRC initiation and progression (such as CRC-promoting P. micra, F. nucleatum,
Odoribacter splanchnicus and Alistipes finegoldii) and probiotics (such as Parabacteroides
distasonis and B. longum). Based on these differential GMSM, 32 metabolite characteristics
were initially screened after 200 LASSO experiments. Of these, eight metabolites were
reliably identified in both non-targeted and targeted metabolomics assays, and both assays
could accurately distinguish between normal and abnormal colorectal patients in the
discovery cohort, with an AUC of 0.95 (95% CI [0.85–1.00]). PCA analysis based on the
abundance of eight GMSM was still able to clearly separate normal individuals from
abnormal colorectal patients. Then, a GMSM panel-based logistic regression model to
predict CRC and CRA was built and yielded an AUC of 0.98 (95% CI [0.94–1.00]) in the
modelling cohort. In the validation cohort, the GMSM model was significantly better than
the clinical marker CEA (AUC = 0.92 vs. 0.72, sensitivity = 83.5% vs. 35.8%,
specificity = 84.9% vs. 86.4%), and in CRA (AUC = 0.84 sensitivity = 63.2%) and early CRC
(AUC = 0.93 sensitive = 88.2%) also performed well. In addition, the GMSM model was
superior to the FOBT/FIT test (65.2% sensitivity) in detecting CRC. This study confirms
the potential application of GMSM in CRC and CRA.

ML algorithms in lung cancer (LC)
Although the lung was previously thought to be sterile, the presence of a diverse
microbiome in the lower respiratory tract has been confirmed (Wang et al., 2021). Based
on metagenomic data, Jin et al. (2019) and Chen et al. (2023) analyzed lower respiratory
tract microbiome profiles of LC patients, non-malignant lung disease patients, or healthy
individuals. They all found that microbiota abundance was significantly lower in the lower
respiratory tract of LC patients compared to controls. Furthermore, Jin et al. (2019)
developed a RF model based on age, years of smoking, and 11 bacterial species (including
Streptococcus sp. I-P16, Prevotella melaninogenica, Acidovorax sp. KKS102,
Corynebacterium urealyticum, Streptococcus sanguinis, Pseudomonas aeruginosa,
Streptococcus pseudopneumoniae, H. influenzae, Campylobacter concisus, Bacteroides
salanitronis, and B. japonicum) with an AUC of 0. 882. Particularly, Bradyrhizobium
japonicum was only present in patients with LC, yet Acidovorax was only present in
patients with lung disease. Bradyrhizobium japonicum has been associated with
inflammatory bowel disease in previous studies (Bhatt et al., 2013), further suggesting the
relevance of inflammation to cancer. Then, Chen et al. (2023) based on five key genera
(Prevotella, Klebsiella, Pedobacter, Mycobacterium, and Xanthomonas) and one tumor
marker (neuron-specific enolase) as variables, the best diagnostic model for LC was
constructed using the RF classifier (AUC = 0.959). These model-related genera are

Feng et al. (2023), PeerJ, DOI 10.7717/peerj.16304 13/28

http://dx.doi.org/10.7717/peerj.16304
https://peerj.com/


speculated to be related to LC. For example, Klebsiella is usually associated with lung
infections (Paudel et al., 2020). Mycobacterium is a well-defined pathogen that causes
tuberculosis, and a history of tuberculosis has been clinically shown to be strongly
associated with an increased risk of LC (Hadifar et al., 2021). Prevotella was significantly
more abundant in LC patients than in patients with benign lung disease, which is
consistent with previous studies (Tsay et al., 2018). Xanthomonas has also been reported to
have antitumor effects (Ma et al., 2020). These key microorganisms are of great value in the
study of cancer mechanisms and have the potential to become new targets for LC therapy.

In addition, the gut microbiota can also be used to develop a diagnostic model for lung
cancer. Based on 16S rRNA sequencing data from early-stage LC patients and healthy
individuals, Zheng et al. (2020) screened 13 OTUs for SVM modeling using
minimum-redundancy maximum-relevancy (mRMR), which had a high diagnostic
accuracy for LC (AUC = 0.976) (Alshamlan, Badr & Alohali, 2015; Zheng et al., 2020).
Among them, Roseburia spp. has been shown to influence immune maintenance and
anti-inflammatory effects through multiple metabolic pathways (Louis & Flint, 2009),
Ruminococcus bromii-related microorganisms promote intestinal health by degrading
starch and short-chain fatty acids (Abell et al., 2008), Streptococcus infantismodulates lung
intrinsic immunity by detoxifying polycycles (Hosgood et al., 2014), and Veillonella is
associated with Th17-mediated immunity in the lung (Mur et al., 2018). However, this
study is only a preliminary study and the detailed link between the enteropulmonary axis
and lung immunity or cancer development remains to be further elucidated.

ML algorithms in other cancers
In previous studies, brain cancer was a disease that could not be linked to the microbiome
because microorganisms usually cannot cross the blood-brain barrier, which was present
throughout various regions of the brain. However, some nanoscale extracellular vesicles
released by microorganisms can cross the blood-brain barrier into the brain (Cattaneo
et al., 2017), and thus extracellular vesicle microbiome data in the blood may be a powerful
biomarker for assessing brain disease. Yang collected serum specimens from 152 brain
cancer patients and 198 healthy controls, and performed genomic analysis of microbial
extracellular vesicle components (Yang et al., 2020). This study used the relative
abundance of OTUs at the genus level as a model variable. The highest diagnostic
performance was achieved when GBM was combined with Logistic regression to build a
model with an AUC of 0.99. It was found that Dialister and E. rectale were significantly
decreased in the blood of brain cancer patients, while Lachnospiraceae NK4A136 was
significantly increased. This is consistent with the findings of several previous studies,
which suggested that the abundance of Dialister, E. rectale, and Lachnospiraceae NK4A136
in the intestine was associated with several neurological disorders (Cattaneo et al., 2017;
Jiang et al., 2015; Strati et al., 2017; Vogt et al., 2017). For example, E. rectale abundance is
lower in amyloid-positive (or negative) patients with mild cognitive impairment (Cattaneo
et al., 2017), yet Dialister abundance is lower in patients with Alzheimer’s disease, autism,
and depression, compared to healthy controls (Jiang et al., 2015; Strati et al., 2017; Vogt
et al., 2017). This study is the first to analyze extracellular vesicles in blood as a biomarker
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for brain cancer diagnosis, and its findings are relevant as a new and accurate method for
brain cancer diagnosis.

Due to the absence of effective screening methods for early detection of ovarian cancer
at this stage and the fact that early ovarian cancer symptoms are usually reported as
non-specific (stomach upset, bloating and constipation), this results in more than 60% of
patients being diagnosed at an advanced stage (Gaona-Luviano, Medina-Gaona &
Magaña-Pérez, 2020). Miao subjected peritoneal fluid from patients with ovarian cancer
and benign ovarian masses to next-generation sequencing assays, and the obtained OTUs
were evaluated by a series of feature selection methods, including Lasso coefficients, RF
variable significance, distance correlation, t-test, and Mann-Whitney test (Miao et al.,
2020). when using the top 18 OTUs in combination with age, BMI and serum tumor
markers (cancer antigen 125 and human epididymis protein 4) to build the RF diagnostic
model can greatly improve the accuracy of ovarian cancer diagnosis (AUC of 0.94).
Through the above ML algorithm analysis, three different microbial characteristics were
identified and may be related to the diagnosis and pathogenesis of ovarian cancer. They are
anti-inflammatory properties (Akkermansia and muciniphila), estrogenic response
(Rikenellaceae) and vascular permeability (Alphaproteobacteria). Reaserch has comfirmed
that Akkermansia has a clear anti-inflammatory effect and may increase immunotherapy
effectiveness in cancer patients (van Passel et al., 2011). Rikenellaceae is considered to be
fecal microbiota related to ESR1 function, mainly involved in breast cancer prediction,
prognosis and metastasis (Carausu et al., 2019; Javurek et al., 2016; Li et al., 2022b).

It has been reported that the development of gastric cancer is associated with
microorganisms, and in addition to H. pylori, which is currently known to be a high risk
factor for gastric cancer, other microorganisms may also serve as potential biomarkers for
gastric cancer (Eun et al., 2014; Lertpiriyapong et al., 2014; Sha et al., 2020). Wei et al.
(2023) collected gastric juice from healthy individuals (n = 61) and gastric cancer patients
(early stage n = 48, late stage n = 30) and sequenced the 16S rRNA V1–V4 region. They
adopted six ML algorithms, SVM, RF, LR, Catboost, neural network, and gradient boosting
tree, to construct a risk prediction model for gastric cancer, among which the RF
prediction model had the highest accuracy of 82.73%. In this model, the bacteria with the
highest predictive value were Streptococcus, Lactobacillus and Ochrobactrum. Among
them, Streptococcus is the bacteria with the highest proportion in early and advanced
gastric cancer, which is consistent with the results of Zhou et al. (2022). Study has
confirmed that Streptococcus can promote the development of gastric cancer in a number
of ways, including increasing N-nitroso compounds that cause DNA damage, and
regulating the expression of key molecules important in cancer development (San-Millán
& Brooks, 2017). In contrast, Lactobacillus induces anti-cancer effects by enhancing cancer
cell apoptosis and protecting against oxidative stress (Badgeley et al., 2021).

THE CHALLENGES AND FUTURE OUTLOOK OF ML IN
CANCER MICROBIOMICS APPLICATIONS
Although ML has made great achievements in microbiological research, its application in
cancer microbiomics still faces many difficulties. Only through in-depth research and
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analysis of these issues can we facilitate the application of ML in cancer microbiomics and
accelerate the pace of its clinical translation. These difficulties are mainly manifested in the
following aspects. The first aspect is the amount of data. The accuracy of a ML model is
highly dependent on the amount of data it is trained on. Due to some objective factors, the
sample size included in modeling is very small, such as expensive genomic sequencing
data.. Therefore, in microbiome research, the current situation of reducing sequencing
costs and increasing the amount of sequencing data is still worthy of strong appeal.
The second aspect is the quantity and quality of input features. In a typical microbiome
study, there are often thousands of features from the otus, and the number of features
greatly exceeds the number of included samples, making it difficult to accurately include
key features, leading to overfitting of the model and reducing the accuracy of the model
classification. Although a large number of efficient feature selection methods are used to
select the most relevant features as input to the model, it is difficult to overcome this
dilemma. However, overfitting can often be prevented by fitting multiple models and using
multiple validation sets or cross-validation to compare their predictive accuracy on the test
data. Alternatively, overfitting can be reduced by training the model on a larger number of
data points. The third challenge is the generalization ability of the ML model, that is, the
model developed should apply not only to the training data set, but also to other similar
data sets. At present, relatively few studies on the application of ML in cancer
microbiomics involve validation of training models with external data and multi-center
datasets. Therefore, model validation in multiple external data sets or multi-center data
sets will be an effective means to avoid the generation of overfitting models and evaluate
the generalization ability of models efficiently. Finally, due to the limitation of detection
technology, the microbial information in a large number of solid tumors has not been
deeply mined, so high-precision detection technology is still expected.

In addition to the challenges mentioned above, there is a greater requirement to focus
on analyzing the quality of the data and the processing of research results with high AUC.
In a study by Poore et al. (2020), the authors demonstrated the ability to differentiate
between multiple cancer types using only nucleic acids from blood and tissue microbes by
using ML algorithms, with most of their models exceeding 95% accuracy. Due to the large
size of the study, its methodology was fairly rigorous from the description of the article,
while obtaining very satisfactory results, thus making it susceptible to imitation by a large
number of scholars. However, the study did make some errors in the analysis of the data.
First, there were significant errors in the normalization of the raw data read counts. Poore
et al. (2020) used normalization rather than raw data to construct their machine learning
classifier to eliminate batch effects. However, during the standardization process, many
cancer types were labeled with incorrect values, and these incorrect manual labels were
used to create highly accurate classifiers. The Voom-SNM normalization approach used by
Poore et al. (2020) would inadvertently append a priori information about tumor type to
the normalized data. In order to address such false-positive events, it is necessary to ensure
the credibility of the results by choosing the appropriate standardized approach for
different data types, as well as appropriate pre-experiments to verify their feasibility.
Secondly, Poore et al. (2020) incorrectly categorized human reads as bacteria. These human
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readings matched to bacteria were unrelated to the actual presence of bacteria in the tumor
samples, leading to millions of false-positive findings for bacterial readings. To eliminate
this interference, reads not mapped to the human genome can be compared to the
complete CHM13 human genome using a sequence comparison tool such as Bowtie2 to
exclude additional reads with human matches. Beyond that, a great deal of the data and
findings in this article need to be confirmed one by one. Similar major data analysis errors
need to be reduced in future studies of the microbiome and ML to avoid invalid findings.

In cancer and microbiota-related studies, more attention should be paid to regions other
than the gut microbiota, such as the oral cavity, skin, breast, abdominal cavity, urine, and
reproductive tract, because studies of these specific microbiota are still scarce. Also, there is
a need to think about how to use ML tools to process microbiome data and how to describe
the relationship between training data, test data, overfitting and generalization. In the
future, researchers should actively embrace the artificial intelligence revolution and
become ML practitioners, leveraging research findings in computer science to achieve the
use of microbiota analysis as a powerful tool for disease prevention, prediction, diagnosis
and treatment.

CONCLUSION
Despite the many challenges, ML remains an important tool in the study of cancer and
microbiota, and it represents a critical step in the search for sensitive, specific and
non-invasive methods of cancer diagnosis. In short, researchers have used machine
learning to excavate a large number of microorganisms with potential links to the
development of a variety of tumors, which will promote the development of new tumor
markers.

ABBREVIATIONS
ML Machine learning

NGS Next generation sequencing

mNGS Metagenomic NGS

OTU Operational taxonomic unit

RF Random forest

LR Logistic regression

SVM Support vector machine

DL Deep learning

ANN Artificial neural networks

SOM Self-organizing map

PCA Principal components analysis

PCoA Principal coordinate analysis

t-SNE T-distributed stochastic neighbor embedding

TCGA The Cancer Genome Atlas

WGS Whole genome sequencing

TL Transfer learning

CRC Colorectal cancer
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FOBT Fecal occult blood testing

CEA Carcinoembryonic antigen

LEfSe Linear discriminant analysis of effect sizes

CRA Colorectal adenoma

IBD Inflammatory bowel disease

LDA Linear discriminant analysis

NB Naïve Bayesian

LASSO Last absolute shrinkage and selection operator

GBM Gradient boosting machine; FDR, false discovery rate

GMSM Gut microbiome-associated serum metabolites

N Normal healthy population

LC Lung cancer

mRMR Minimum-redundancy maximum-relevancy

rRNA Ribosomal RNA

ROC Receiver operating characteristic

AUC Area under the curve
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