

Gill monogeneans of 'Gnathochromis' and Limnochromis (Teleostei, Cichlidae) in Burundi: do the parasites mirror host ecology and phylogenetic history?

Nikol Kmentová, Milan Gelnar, Stephan Koblmüller, Maarten P.M. Vanhove

Monogenea is one of the most species-rich groups of parasitic flatworms. Research on this taxon in Africa has been recently intensified. For example, already more than 100 nominal species belong to Cichlidogyrus, a genus mostly occurring on cichlids. Twenty-two of these were described from Lake Tanganyika which is a biodiversity hotspot in which many vertebrate and invertebrate taxa underwent unique evolutionary radiations. Parasites were also used as a potential tool to uncover host species relationships. This study presents the first investigation of the monogenean fauna occurring on the gills of endemic Gnathochromis species along the Burundese coastlines. We test whether their monogenean fauna reflects the different phylogenetic position and ecological niche of 'G.' pfefferi and G. permaxillaris. Worms collected from specimens of Limnochromis auritus, a cichlid belonging to the same tribe as *G. permaxillaris*, were used for comparison. Morphological as well as genetic characterisation was used for parasite identification. In total, all 73 Cichlidogyrus individuals collected from 'G.' pfefferi were identified as C. irenae. This is the only representative of Cichlidogyrus previously described from 'G.' pfefferi, its type host. Gnathochromis permaxillaris is infected by a species of Cichlidogyrus morphologically very similar to C. gillardinae. The monogenean species collected from L. auritus is considered as new for science, but sufficient specimens lack for a formal description. Our results confirm previous suggestions about 'G.' pfefferi as a good disperser infected by a single monogenean species. Although G. permaxillaris and L. auritus are placed in the same tribe, there is closer morphological similarity between species of Cichlidogyrus occurring on G. permaxillaris and C. irenae from 'G.' pfefferi, compared to the monogeneans of *L. auritus*. This pattern therefore can be caused by various processes in the parasite-host system's evolutionary history, such as hostswitching or duplication events. Additional samples, allowing phylogenetic analysis, from the species of Cichlidogyrus occurring on G. permaxillaris and L. auritus are needed to reveal their history.

- Gill monogeneans of 'Gnathochromis' and Limnochromis (Teleostei, Cichlidae) in Burundi:
- 2 do the parasites mirror host ecology and phylogenetic history?

4 Nikol Kmentová¹, Milan Gelnar¹, Stephan Koblmüller², Maarten P. M. Vanhove^{1,3,4,5}

5

- 6 ¹ Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611
- 7 37 Brno, Czech Republic
- 8 ² Institute of Zoology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
- 9 ³ Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080
- 10 Tervuren, Belgium
- ⁴ Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of
- 12 Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
- 13 ⁵ Present address: Capacities for Biodiversity and Sustainable Development, Operational
- 14 Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Vautierstraat
- 15 29, B-1000 Brussels, Belgium

16

- 17 Corresponding author:
- 18 Nikol Kmentová
- 19 Kamenice 5, Brno-Bohunice, 625 00, Czech Republic
- 20 Email address: kmentovan@mail.muni.cz

21 Abstract

22	Monogenea is one of the most species-rich groups of parasitic flatworms. Research on this taxon
23	in Africa has been recently intensified. For example, already more than 100 nominal species
24	belong to Cichlidogyrus, a genus mostly occurring on cichlids. Twenty-two of these were
25	described from Lake Tanganyika which is a biodiversity hotspot in which many vertebrate and
26	invertebrate taxa underwent unique evolutionary radiations. Parasites were also used as a
27	potential tool to uncover host species relationships. This study presents the first investigation of
28	the monogenean fauna occurring on the gills of endemic Gnathochromis species along the
29	Burundese coastlines. We test whether their monogenean fauna reflects the different
30	phylogenetic position and ecological niche of 'G.' pfefferi and G. permaxillaris. Worms
31	collected from specimens of <i>Limnochromis auritus</i> , a cichlid belonging to the same tribe as G.
32	permaxillaris, were used for comparison. Morphological as well as genetic characterisation was
33	used for parasite identification. In total, all 73 Cichlidogyrus individuals collected from 'G.'
34	pfefferi were identified as C. irenae. This is the only representative of Cichlidogyrus previously
35	described from 'G.' pfefferi, its type host. Gnathochromis permaxillaris is infected by a species
36	of Cichlidogyrus morphologically very similar to C. gillardinae. The monogenean species
37	collected from L. auritus is considered as new for science, but sufficient specimens lack for a
38	formal description. Our results confirm previous suggestions about 'G.' pfefferi as a good
39	disperser infected by a single monogenean species. Although G. permaxillaris and L. auritus are
40	placed in the same tribe, there is closer morphological similarity between species of
41	Cichlidogyrus occurring on G. permaxillaris and C. irenae from 'G.' pfefferi, compared to the
42	monogeneans of L . auritus. This pattern therefore can be caused by various processes in the
43	parasite-host system's evolutionary history, such as host-switching or duplication events.

- 44 Additional samples, allowing phylogenetic analysis, from the species of *Cichlidogyrus* occurring
- on *G. permaxillaris* and *L. auritus* are needed to reveal their history.

Introduction

47

46

- 48 Cichlids are a unique target group for biologists because of their remarkable evolutionary history
- 49 characterized by diverse speciation and adaptive radiation processes (Salzburger et al., 2005;
- 50 Turner, 2007; Muschick, Indermaur & Salzburger, 2012). Studies about cichlid adaptation
- 51 mechanisms provided important information, generally applicable in evolutionary biology
- 52 (Kocher, 2004; Koblmüller, Sefc & Sturmbauer, 2008). Cichlids range from Central and South
- 53 America, across Africa, Iran, the Middle East and Madagascar to India and Sri Lanka, but most
- 54 species are concentrated in the Neotropics and in Africa (Chakrabarty, 2004). A place famous for
- its extraordinary cichlid diversity is Lake Tanganyika (Koblmüller, Sefc & Sturmbauer, 2008). It
- is considered a prime study area for evolutionary research because it shows the greatest diversity
- in speciation mechanisms of the African Great Lakes (Salzburger et al., 2002; Salzburger, 2009).
- In Lake Tanganyika, there are more than 200 described cichlid species belonging to 53 genera
- 59 (Snoeks, 2000; Takahashi, 2003; Koblmüller, Sefc & Sturmbauer, 2008), usually classified into
- 60 16 tribes (Takahashi, 2003, 2014).
- Although cichlids have been subjects of interest for many decades, there are still gaps in the
- 62 understanding of their phylogenetic history and taxonomy (Koblmüller, Sefc & Sturmbauer,
- 63 2008). According to recent molecular findings, the two species of *Gnathochromis*, G.
- 64 permaxillaris (L. R. David 1936) and 'G.' pfefferi (G. A. Boulenger 1898) belong to different
- 65 cichlid tribes (Limnochromini, Tropheini, respectively) and their classification therefore needs
- 66 revision (Salzburger et al., 2002; Duftner, Koblmüller & Sturmbauer, 2005; Koblmüller et al.,

67	2010; Muschick, Indermaur & Salzburger, 2012; Kirchberger et al., 2014). A possible source for
68	a better understanding of cichlid taxonomy and phylogeny, and a particularly diverse group of
69	organisms in Lake Tanganyika, are monogenean parasites (Mendlová et al., 2012; Vanhove et
70	al., 2015; Van Steenberge et al., 2015). Monogenea E. J. M. van Beneden 1858 is a group of
71	parasitic flatworms mainly occurring on fish gills, skin and fins (Pugachev et al., 2009). These
72	often tiny animals have a direct life cycle. Relatively strong host specificity was reported on
73	cichlid hosts (Pariselle & Euzet, 2009; Gillardin et al., 2012; Muterezi Bukinga et al., 2012;
74	Řehulková, Mendlová & Šimková, 2013). These characteristics make them an ideal model for
75	investigating co-evolutionary processes in host-parasite systems (Pouyaud et al., 2006). While
76	there is no record characterizing the monogenean fauna on any of the tribe members of
77	Limochromini, most of the species of Tropheini were already investigated. Earlier studies
78	suggested 'G.' pfefferi, Limnotilapia dardennii (G. A. Boulenger 1899) and 'Ctenochromis'
79	horei (A. Günther 1894) are infected by a single dactylogyridean monogenean species each:
80	Cichlidogyrus irenae, C. steenbergei and C. gistelincki C. Gillardin, M. P. M. Vanhove, A.
81	Pariselle et al. 2012, respectively (Gillardin et al., 2012). The closely related Astatotilapia
82	burtoni (A. Günther 1894) is infected by C. gillardinae F. Muterezi Bukinga, M. P. M. Vanhove,
83	M. Van Steenberge et al. 2012 (Gillardin et al., 2012; Muterezi Bukinga et al., 2012). These
84	observations are hitherto only based on reports from several localities along the Congolese and
85	Zambian coasts of the lake (Gillardin et al., 2012; Muterezi Bukinga et al., 2012; Vanhove et al.,
86	2015). Thorough sampling covering as many host localities as possible is however needed to
87	conclude about the full extent of a species' parasite fauna (Price & Clancy, 1983; Brooks et al.,
88	2006; Caro, Combes & Euzet, 2009).
89	

- As mentioned above, '*Gnathochromis*' is a polyphyletic genus and no comparison of the parasite fauna of its two species has been performed to date. Do the parasites reflect the phylogenetic and ecological situation of their hosts? We investigate the monogenean fauna of both *Gnathochromis* species to answer the following questions:
 - (1) Does the Burundese population of 'G.' pfefferi confirm that this host is only infected by a single species of *Cichlidogyrus*?
 - (2) Since *Gnathochromis* is considered polyphyletic, is the dissimilarity between its two representatives reflected in their parasite fauna?

Material & Methods

Sampling

Fish specimens were obtained from commercial fishermen along the Burundese coastline. We examined two 'G.' pfefferi individuals from Mvugo (4°15' S, 29°34' E) and four from Mukuruka (4'14' S, 29°33' E), as well as seven hosts belonging to *G. permaxillaris* and six *Limnochromis auritus* (G. A. Boulenger 1901) individuals from Bujumbura (3°23'S 29°22'E) (Fig. 1). The latter species was included to allow a comparison between the monogeneans of *G. permaxillaris* and another member of Limnochromini, a tribe from which no monogeneans have been described previously. Fish were sacrificed by severing the spinal cord and dissected immediately. Gills were removed according to the standard protocol of Ergens & Lom (1970) and immediately preserved in pure ethanol in plastic tubes until further inspection in the lab. Some fresh gills were also inspected *in situ* for monogenean parasites using dissecting needles and a stereomicroscope. Slides prepared *in situ* were stained in GAP (glycerine ammonium picrate) (Malmberg, 1957) or

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

in Hoyer's solution (Humason, 1979). Monogeneans were isolated in the lab using a dissecting needle and an Olympus SZX7 stereomicroscope. They were mounted on a slide under a cover slip. Parasite individuals utilized for genetic characterisation were identified using an Olympus BX51 microscope with incorporated phase contrast at a magnification of 100x (oil immersion, 10x ocular) with Micro Image software and photographed for post hoc confirmation of species identity. They were stored in 1.2 ml Eppendorf tubes with 99,8 % ethanol for subsequent DNA isolation. The research was approved by the Ethics Committee of Masaryk University. The approval number which allows us to work with vertebrate animals is CZ01308. **Morphometrics** The morphometrics part was based on 26 different metrics measured according to Řehulková, Mendlová & Šimková (2013) and Gillardin et al. (2012). Measurements and photos were taken using the same configuration as above. In some cases an extra magnification of 2x had to be used. Voucher specimens were deposited in the invertebrate collection of the Royal Museum for Central Africa under accession numbers 37792-802. DNA extraction and genetic characterisation Ethanol evaporation took place in a vacuum centrifuge. DNA was extracted using the Qiagen Blood and Tissue Isolation Kit according to the manufacturer's instructions with some modifications (samples in ATL buffer (180H) with protein kinase (20H) were kept in 1.5 ml Eppendorf tubes overnight at room temperature). The DNA extract was then concentrated to a volume of 80µl in 1.5 ml Eppendorf tubes using a vacuum centrifuge and stored at a temperature of -20°C until polymerase chain reaction amplification. Part of the 18S nuclear ribosomal DNA gene, together with the first Internal Transcribed Spacer (ITS-1) region was amplified for 5 individuals using the S1 (5'-ATTCCGATAACGAACGAGACT-3') (Matějusová et al., 2001)

and IR8 (5'-GCAGCTGCGTTCTTCATCGA-3') (Šimková et al., 2003) primers. Each amplification reaction contained 1.5 unit of *Taq* Polymerase, 1X buffer containing 0.1 mg/ml BSA, 1.5 mM MgCl₂, 200 mM dNTPs, 0.5 mM of each primer and 30 ng of genomic DNA in a total reaction volume of 30 μl under the following conditions: 2 min at 94°C, 39 cycles of 1 min at 94°C, 1 min at 53°C and 1 min and 30 sec at 72°C, and finally 10 min at 72°C. The obtained nucleic acid sequences were aligned using MUSCLE (Edgar, 2004) under default distance measures and sequence weighting schemes, implemented in MEGA 6.06 (Tamura et al., 2013), together with GenBank sequences of *Cichlidogyrus* retrieved from hosts belonging to '*G*.' *pfefferi* (KT037169-73). Sequences and their alignment were visually inspected and corrected using the same software. Uncorrected pairwise distances were calculated in MEGA. The newly obtained haplotype sequence was deposited in GenBank under accession number KT692939.

Results

All 73 adult monogeneans collected from 'G.' pfefferi specimens were identified as *C. trenae* on the basis of Gillardin et al. (2012). The prevalence was 83.3%, infection intensity 18.2 and abundance 15.1 (calculated using adult monogeneans only). Our set of measurements matches with the original description of *C. irenae* (Gillardin et al., 2012) (Table 1). Differences in heel length are caused by different metrics (measuring up to the base of the heel *versus* to the base of the copulatory tube).

Only one specimen of *G. permaxillaris* showed a monogenean infection. It was infected by a single representative of a species of *Cichlidogyrus* similar in prophology as well as

morphometries (Table 2) to an already described species from *A. burtoni* ealled *C. gillardinae*. Unfortunately, we cannot confidently confirm conspecificity based on only one specimen and therefore we refer to it as *C.* cf. *gillardinae*. Its pairs of anchors are asymmetrical: the dorsal anchor has a much longer guard than shaft while in the ventral anchor, guard and shaft are equal in size. The auricles and ventral bar branches are relatively short. Its male copulatory organ is characterized by a short heel, a simple copulatory tube with constant diameter and an accessory piece with easily overlooked distal bulb. No sclerotized vagina was observed. Despite these similarities with *C. gillardinae*, we can see some differences compared to the original description. *Cichlidogyrus* cf. *gillardinae* from *G. permaxillaris* has a more slender heel and a shorter ventral anchor root.

Two monogenean specimens of an undescribed species of *Cichlidogyrus* were collected from one individual of *L. auritus*. One of the most noticeable structures within this parasite's haptor are the relatively long auricles of the dorsal transverse bar. There is no visible difference between the length of guard and shaft in any of the anchors. The copulatory tube is thin with a constant diameter; a heel was not recognized. The accessory piece is robust and thick with a fork-shaped ending. No clerotized vagina was observed. Micrographs of the collected monogenean species are presented in Fig. 2.

The rDNA dataset included four successfully amplified sequences of parasites collected from 'G.' pfefferi. Only one haplotype (1060 base pairs) was recognised. The maximum overlap with sequences of more southern specimens of *C. irenae* obtained from GenBank was 571 base pairs, situated within ITS-1. The uncorrected pairwise genetic distance reached a maximum of 0.8%,

which is below the species-level cut-off of 1%, suggested for this region for the best-studied monogenean, *Gyrodactylus*(Zietara & Lumme, 2002). This result confirms the identification, based on morphology and morphometrics, of a single monogenean species infecting '*G*.' *pfefferi*, namely *C. irenae*.

Discussion

The monogenean fauna of the cichlid 'G.' pfefferi in Burundi was characterised morphologically and genetically. We confirmed the occurrence of *C. irenae*, representing the first record of this species in Burundi. According to previous results, the species richness of *Cichlidogyrus* on Tanganyika cichlids is influenced by the dispersal ability or isolation of the host species (Pariselle et al., 2015a; Grégoir et al., 2015). Our results therefore support previous suggestions about 'G.' pfefferi as a cichlid with good dispersal ability hosting only a single representative of *Cichlidogyrus*, now recorded from several localities in the northern as well as the southern part of the Lake (Vanhove et al., 2016).

Monogenean parasites belonging to *Cichlidogyrus* were also used as an additional way to look at species interrelationships within *Gnathochromis*. The parasite from *G. permaxillaris* was identified as *C.* cf. *gillardinae*. Since *C. gillardinae* was originally described from the haplochromine *A. burtoni*, a fish also occurring in aquatic systems along Lake Tanganyika's shores, it is most likely a generalist parasite infecting representatives of two unrelated cichlid genera with different habitat preferences (Konings, 1998; Muterezi Bukinga et al., 2012). Although the limnochromine *G. permaxillaris* is hence infected by a monogenean species different from *C. irenae* described from '*G.' pfefferi*, its parasite seems more similar to its

205	congeners infecting tropheine hosts like 'G.' pfefferi (Gillardin et al., 2012; Pariselle et al.,
206	2015a). Cichlidogyrus can be divided into main lineages based on the configuration of the
207	haptoral hard parts, in particular the relative length of the pairs of hooks (also termed uncinuli)
208	(Pariselle & Euzet, 2003; Vignon, Pariselle & Vanhove, 2011). Indeed, both parasites' haptor
209	shares important characteristics: asymmetry between anchors, small (sensu Pariselle & Euzet,
210	2009) hooks. Cichlidogyrus cf. gillardinae differs substantially from the Cichlidogyrus species
211	collected from the closely related host L. auritus, also a limnochromine cichlid. In the latter
212	flatworm, the extremely long dorsal bar auricles represent an evident similarity with C .
213	vandekerkhovei M. P. M. Vanhove, F. A. M. Volckaert and A. Pariselle 2011 and C. makasai M.
214	P. M. Vanhove, F. A. M. Volckaert and A. Pariselle 2011 (Vanhove, Volckaert & Pariselle,
215	2011) collected from species of <i>Ophthalmotilapia</i> J. Pellegrin 1904, belonging to the endemic
216	Ectodini. This feature was hitherto never found in other monogenean congeners. The gill
217	monogenean retrieved from Limnochromis hence seems to belong to an endemic Tanganyika
218	lineage. There is still discussion about the evolution of the haptoral sclerotized structures of these
219	monogeneans. Morand et al. (2002) assume that haptoral structures do not reflect a phylogenetic
220	pattern as a result of adaptation to microhabitat within the host. Moreover, Messu Mandeng et
221	al.(in press) reveal an adaptive component presented in attachment organ morphology of
222	Cichlidogyrus. However, other studies suggest the existence of a phylogenetic signal in sclerite
223	morphology and shape within dactylogyridean monogeneans (Šimková et al., 2002, 2006) and
224	specifically within Cichlidogyrus (Vignon, Pariselle & Vanhove, 2011). Possible explanations
225	for the affinities of monogenean species on <i>Gnathochromis</i> are host history as well as habitat
226	characteristics. While 'G.' pfefferi is a typical rock dwelling littoral cichlid occurring at depths
227	between 1 and 15 metres with maternal mouthbrooding care, G. permaxillaris is a biparental

228	mouthbrooder occurring over muddy bottoms rarely seen in water shallower than 30 metres
229	(Maréchal & Poll, 1991; Konings, 1998). <i>Limnochromis auritus</i> is placed together with <i>G</i> .
230	permaxillaris in Limnochromini (Muschick, Indermaur & Salzburger, 2012), prefers a similar
231	habitat with muddy bottoms at depths ranging from 5 to 125 metres and also exhibits biparental
232	mouthbrooding care (Maréchal & Poll, 1991; Konings, 1998). According to Mendlová &
233	Šimková (2014) the host specifity of Cichlidogyrus parasitizing African cichlid fishes is
234	significantly influenced by fish phylogeny and by the form of parental care. No Cichlidogyrus
235	species was hitherto observed to infect cichlid species with different parental care systems (i.e.
236	substrate brooders as well as mouthbrooders) (Pouyaud et al., 2006). Given that the
237	haplochromine A. burtoni is a maternal mouthbrooder mainly occurring in wetlands adjacent to
238	the lake, it is unclear how it came to share a species with G. permaxillaris from which it differs
239	ecologically, phylogenetically and in reproductive behaviour. Due to the lack of genetic data, we
240	cannot perform (co-)phylogenetic analyses. According to Mendlová et al. (2012) duplication and
241	host-switching events have played the most important role in the evolutionary history of African
242	cichlid dactylogyrideans. Vanhove et al. (2015), however, also observed a role for co-speciation
243	in species of Cichlidogyrus infecting Lake Tanganyika tropheine cichlids. Although
244	representatives of Cichlidogyrus occuring on littoral cichlid assemblages including Tropheini
245	display strong host specificity (Gillardin et al., 2012; Muterezi Bukinga et al., 2012; Vanhove et
246	al., 2015), a lower specificity was observed within members of Bathybatini in the deepwater
247	habitat (Pariselle et al., 2015b). Hence, some lineages of Cichlidogyrus in Lake Tanganyika were
248	already shown to have a wide host range. Given the low prevalence and infection intensities
249	observed in this study, and the deepwater habitat of the limnochromine hosts, it is a challenge to

250	retrieve additional material for species identification and molecular analyses. These are needed	
251	to uncover the whole co-phylogenetic history of <i>Gnathochromis</i> and its monogenean fauna.	
252		
253	ADDITIONAL INFORMATION AND DECLARATIONS	
254		
255	Competing Interests	
256	The authors declare there are no competing interests.	
257	Author Contributions	
258	Nikol Kmentová prepared samples, obtained and analysed the data and wrote the paper. Milan	
259	Gelnar provided experience in monogenean taxonomy and revised the manuscript. Stephan	
260	Koblmüller identified the hosts, provided experience in cichlid biology and revised the	
261	manuscript. Maarten P. M. Vanhove designed and led the study, analysed the data and wrote the	
262	paper.	
263	Funding	
264	This study was realized with financial support from the Czech Science Foundation	
265	(GBP505/12/G112 – ECIP).	
266		
267	ACKNOWLEDGEMENTS	
268	We would like to thank Maarten Van Steenberge, Tine Huyse, Antoine Pariselle and the	
269	parasitology group at Masaryk University, Brno for their hospitality and cooperation. Eva	
270	Řehulková, Šárka Mašová, Iva Přikrylová, Radim Blažek, Veronika Nezhybová, Gaspard	
271	Banyankimbona and the Schreyen-Brichard family and the technical staff of Fishes of Burundi	
272	are thanked for their help in collecting samples, and Wolfgang Gessl for providing fish pictures.	

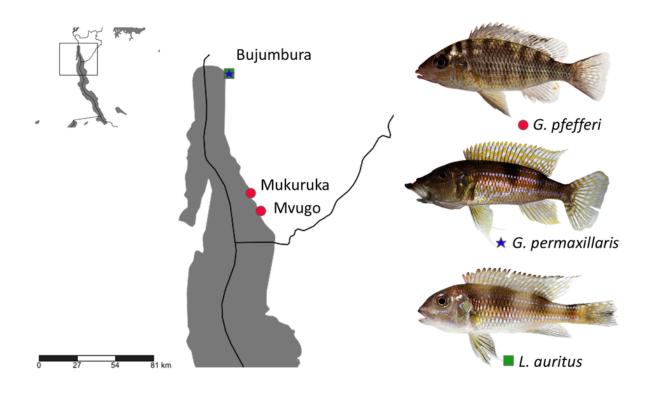
273	REFERENCES
274	Brooks DR., León-Règagnon V., McLennan DA., Zelmer D. 2006. Ecological fitting as a
275	determinant of the community structure of platyhelminth parasites of anurans. Ecology
276	87:76–85.
277	Caro A., Combes C., Euzet L. 2009. What makes a fish a suitable host for Monogenea in the
278	Mediterranean? Journal of Helminthology 71:203.
279	Duftner N., Koblmüller S., Sturmbauer C. 2005. Evolutionary relationships of the
280	Limnochromini, a tribe of benthic deepwater cichlid fish endemic to Lake Tanganyika, East
281	Africa. Journal of Molecular Evolution 60:277–289.
282	Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high
283	throughput. Nucleic acids research 32:1792–7.
284	Ergens R., Lom J. 1970. Causative agents of fish diseases. Prague: Academia.
285	Gillardin C., Vanhove MPM., Pariselle A., Huyse T., Volckaert FAM. 2012. Ancyrocephalidae
286	(Monogenea) of Lake Tanganyika: II: description of the first Cichlidogyrus spp. parasites
287	from Tropheini fish hosts (Teleostei, Cichlidae). Parasitology Research 110:305-313.
288	Grégoir AF., Hablützel PI., Vanhove MPM., Pariselle A., Bamps J., Volckaert FAM.,
289	Raeymaekers JAM. 2015. A link between host dispersal and parasite diversity in two
290	sympatric cichlids of Lake Tanganyika. Freshwater Biology 60:323–335.
291	Humason GL. 1979. Animal Fissue Fechniques: 4th. San Francisco: Freeman and Company.
292	Chakrabarty P. 2004. Cichlid biogeography: Comment and review. Fish and Fisheries 5:97–119
293	Kirchberger PC., Sefc KM., Sturmbauer C., Koblmüller S. 2014. Outgroup effects on root

294	position and tree topology in the AFLP phylogeny of a rapidly radiating lineage of cichlid
295	fish. Molecular Phylogenetics and Evolution 70:57–62.
296	Koblmüller S., Egger B., Sturmbauer C., Sefc KM. 2010. Rapid radiation, ancient incomplete
297	lineage sorting and ancient hybridization in the endemic Lake Tanganyika cichlid tribe
298	Tropheini. Molecular Phylogenetics and Evolution 55:318–34.
299	Koblmüller S., Sefc KM., Sturmbauer C. 2008. The Lake Tanganyika cichlid species
300	assemblage: Recent advances in molecular phylogenetics. <i>Hydrobiologia</i> 615:5–20.
301	Kocher TD. 2004. Adaptive evolution and explosive speciation: the cichlid fish model. <i>Nature</i>
302	reviews. Genetics 5:288–298.
303	Konings A. 1998. Guide to Tanganyika Cichlids. El Paso: Cichlid Press.
304	Malmberg G. 1957. On the occurrence of <i>Gyrodactylus</i> on Swedish fishes. <i>Skrifter utgivna av</i>
305	Södra Sveriges Fiskeriföreningen:19–76.
306	Maréchal C., Poll M. 1991. Bathybates, Hemibates. In: Daget J, Gosse J-P, Teugels GG, Thys
307	van den Audenaerde DFE eds. Checklist of the Freshwater Fishes of Africa (CLOFFA).
308	Tervuren: Royal Museum for Central Africa, 21–24,186.
309	Matějusová I., Gelnar M., McBeath AJA., Collins CM., Cunningham CO. 2001. Molecular
310	markers for gyrodactylids (Gyrodactylidae: Monogenea) from five fish families (Teleostei)
311	International Journal for Parasitology 31:738–745.
312	Mendlová M., Desdevises Y., Civáňová K., Pariselle A., Šimková A. 2012. Monogeneans of
313	west African cichlid fish: Evolution and cophylogenetic interactions. <i>PLoS ONE</i> 7:e37268.
314	Mendlová M., Šimková A. 2014. Evolution of host specificity in monogeneans parasitizing

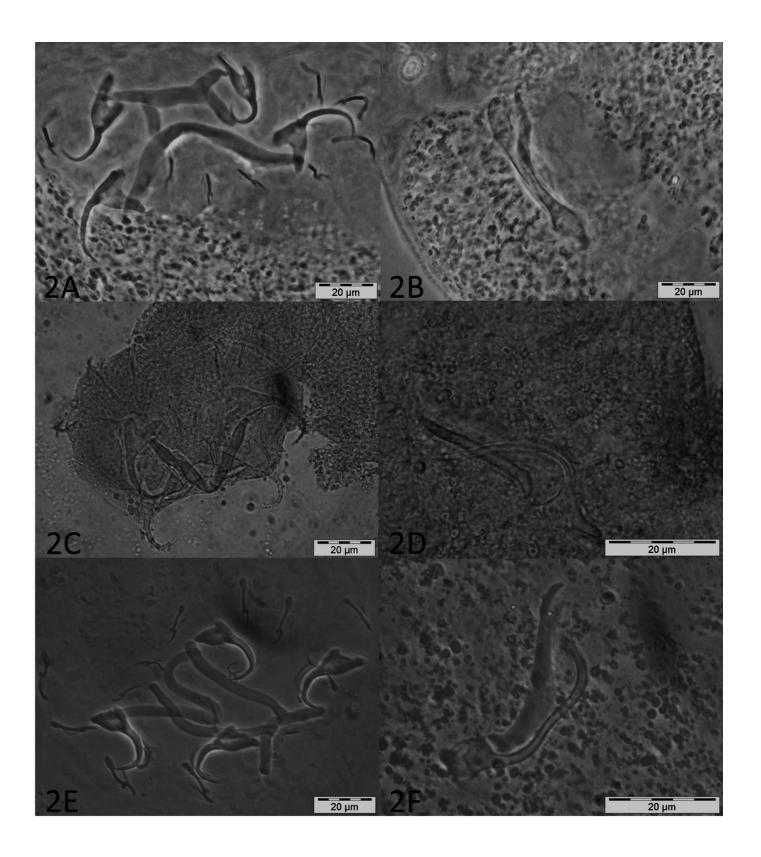
315	African cichlid fish. Parasites & Vectors 7:69.	
316	Messu Mandeng FD., Bilong Bilong CF., Pariselle A., Vanhove MPM., Bitja Nyom AR.,	
317	Agnèse J-F. A phylogeny of Ciehlidogyrus species (Monogenea, Dactylogyridea) clarifies a	
318	host switch between fish families and reveals an adaptive component to attachment organ	
319	morphology of this parasite genus. Parasites & Vectors: (in press).	
320	Morand S., Šimková A., Matějusová I., Plaisance L., Verneau O., Desdevises Y. 2002.	
321	Investigating patterns may reveal processes: evolutionary ecology of ectoparasitic	
322	monogeneans. International Journal for Parasitology 32:111–119.	
323	Muschick M., Indermaur A., Salzburger W. 2012. Convergent Evolution within an Adaptive	
324	Radiation of Cichlid Fishes. Current Biology 22:2362–2368.	
325	Muterezi Bukinga F., Vanhove MPM., Van Steenberge M., Pariselle A. 2012. Ancyrocephalidae	
326	(Monogenea) of Lake Tanganyika: III: Cichlidogyrus infecting the world's biggest cichlid	
327	and the non-endemic tribes Haplochromini, Oreochromini and Tylochromini (Teleostei,	
328	Cichlidae). Parasitology Research 111:2049–2061.	
329	Pariselle A., Van Steenberge M., Snoeks J., Volckaert FAM., Huyse T., Vanhove MPM. 2015a.	
330	Ancyrocephalidae (Monogenea) of Lake Tanganyika: Does the Cichlidogyrus parasite	
331	fauna of Interochromis loocki (Teleostei, Cichlidae) reflect its host's phylogenetic	
332	affinities? Contributions to Zoology 84:25–38.	
333	Pariselle A., Muterezi Bukinga F., Van Steenberge M., Vanhove MPM. 2015b.	
334	Ancyrocephalidae (Monogenea) of Lake Tanganyika: IV: Cichlidogyrus parasitizing	
335	species of Bathybatini (Teleostei, Cichlidae): reduced host-specificity in the deepwater	
336	realm? <i>Hydrobiologia</i> 748:99–119.	

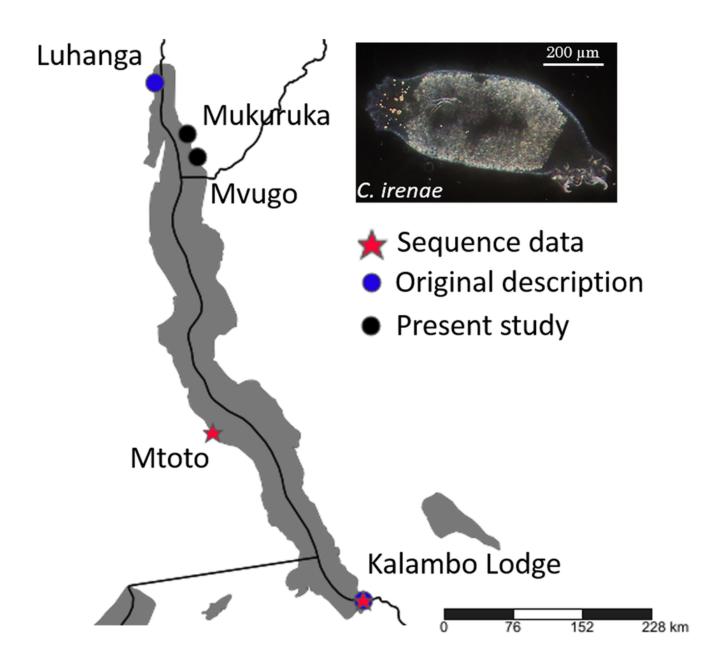
337	Pariselle A., Euzet L. 2003. Four new species of Cichlidogyrus (Monogenea: Ancyrocephalidae),	
338	gill parasites of Tilapia cabrae (Teleostei: Cichlidae), with discussion on relative length of	
339	haptoral sclerites. Folia Parasitologica 50:195–201.	
340	Pariselle A., Euzet L. 2009. Systematic revision of dactylogyridean parasites (Monogenea) from	
341	cichlid fishes in Africa, the Levant and Madagascar. Zoosystema 31:849-898.	
342	Pouyaud L., Desmarais E., Deveney M., Pariselle A. 2006. Phylogenetic relationships among	
343	monogenean gill parasites (Dactylogyridea, Ancyrocephalidae) infesting tilapiine hosts	
344	(Cichlidae): Systematic and evolutionary implications. Molecular Phylogenetics and	
345	Evolution 38:241–249.	
346	Price PW., Clancy KM. 1983. Patterns in Number of Helminth Parasite Species in Freshwater	
347	Fishes. The Journal of Parasitology 69:449–454.	
348	Pugachev ON., Gerasev PI., Gussev A V., Ergens R., Khotenowsky I. 2009. Guide to	
349	Monogenoidea of freshwater fish of Palaeartic and Amur regions. Milan: Ledizione-	
350	LediPublishing.	
351	Řehulková E., Mendlová M., Šimková A. 2013. Two new species of <i>Cichlidogyrus</i> (Monogenea:	
352	Dactylogyridae) parasitizing the gills of African cichlid fishes (Perciformes) from Senegal:	
353	Morphometric and molecular characterization. <i>Parasitology Research</i> 112:1399–1410.	
354	Salzburger W., Meyer A., Baric S., Verheyen E., Sturmbauer C. 2002. Phylogeny of the Lake	
355	Tanganyika cichlid species flock and its relationship to the Central and East African	
356	haplochromine cichlid fish faunas. Systematic Biology 51:113–135.	
357	Salzburger W., Mack T., Verheyen E., Meyer A. 2005. Out of Tanganyika: genesis, explosive	
358	speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC	

359	Evolutionary Biology 5:17.		
360	Salzburger W. 2009. The interaction of sexually and naturally selected traits in the adaptive		
361	radiations of cichlid fishes. <i>Molecular Ecology</i> 18:169–185.		
362	Snoeks J. 2000. Ancient Łakes: Biodiversity, Łcology and Łvolution. Elsevier.		
363	Šimková A., Ondráčková M., Gelnar M., Morand S. 2002. Morphology and coexistence of		
364	congeneric ectoparasite species: reinforcement of reproductive isolation? Biological Journal		
865	of the Linnean Society 76:125–135.		
866	Šimková A., Plaisance L., Matějusová I., Morand S., Verneau O. 2003. Phylogenetic		
367	relationships of the Dactylogyridae Bychowsky, 1933 (Monogenea: Dactylogyridea): The		
368	need for the systematic revision of the Ancyrocephalinae Bychowsky, 1937. Systematic		
369	Parasitology 54:1–11.		
370	Šimková A., Verneau O., Gelnar M., Morand S. 2006. Specificity and specialization of		
371	congeneric monogeneans parasitizing cyprinid fish. Evolution 60:1023.		
372	Takahashi T. 2003. Systematics of Tanganyikan cichlid fishes (Teleostei: Perciformes).		
373	Ichthyological Research 50:367–382.		
374	Takahashi T. 2014. Greenwoodochromini Takahashi from Lake Tanganyika is a junior synonym		
375	of Limnochromini Poll (Perciformes: Cichlidae). Journal of Fish Biology 84:929–36.		
376	Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA6: Molecular		
377	Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30:2725-		
378	2729.		
379	Turner GF. 2007. Adaptive radiation of cichlid fish. <i>Current Biology</i> 17:827–831.		



380	Vanhove MPM., Pariselle A., Van Steenberge M., Raeymaekers JAM., Hablützel PI., Gillardin		
381	C., Hellemans B., Breman FC., Koblmüller S., Sturmbauer C., Snoeks J., Volckaert FAM.,		
382	Huyse T. 2015. Hidden biodiversity in an ancient lake: phylogenetic congruence between		
383	Lake Tanganyika tropheine cichlids and their monogenean flatworm parasites. Scientific		
384	Reports 5:13669.		
385	Vanhove MPM., Volckaert FAM., Pariselle A. 2011. Ancyrocephalidae (Monogenea) of Lake		
386	Tanganyika: I: Four new species of Cichlidogyrus from Ophthalmotilapia ventralis		
387	(Teleostei: Cichlidae), the first record of this parasite family in the basin. Zoologia		
388	(Curitiba, Impresso) 28:253–263.		
389	Vignon M., Pariselle A., Vanhove MPM. 2011. Modularity in attachment organs of African		
390	Cichlidogyrus (Platyhelminthes: Monogenea: Ancyrocephalidae) reflects phylogeny rather		
391	than host specificity or geographic distribution. Biological Journal of the Linnean Society		
392	102:694–706.		
393	Zietara MS., Lumme J. 2002. Speciation by host switch and adaptive radiation in a fish parasite		
394	genus Gyrodactylus (Monogenea, Gyrodactylidae). Evolution; International Journal of		
395	Organic Evolution 56:2445–58.		
396			
397			
398			


Sampling localities in Lake Tanganyika with indication of host species (photos by Wolfgang Gessl).



Microgram of haptoral and male genital sclerotized structures from monogenean species belonging to *Cichlidogyrus*.

Host species: A) 'G.' pfefferi (opisthaptor, Hoyer's medium, phasecontrast); B) 'G.' pfefferi (MCO, Hoyer's medium, phasecontrast); C) G. permaxillaris (opisthaptor, GAP); D) G. permaxillaris (MCO, GAP); E) L. auritus (opisthaptor, Hoyer's medium, phasecontrast); F) L. auritus (MCO, Hoyer's medium, phasecontrast).

Geographical position of records of *C. irenae*, monogeneans infecting 'G.' pfefferi.

Table 1(on next page)

Table 1

Comparison of measurements (in $\mu m)$ on Burundese C. irenae with the original description.

1 Comparison of measurements (in μ m) on Burundese *C. irenae* with the original description.

	C. irenae from Burundi (n=30a)	C. irenae (Gillardin et al., 2012)
Ventral anchor		
Total length	30,3±2,3 ^b (n=28) ^c ; (26,9-36,4) ^d	31,4±1,6 (n=14); (29,3-34,6)
Length to notch	25,7±0,9 (n=25); (22,6-29,8)	28,5±1,4 (n=14); (26,1-30,2)
Inner root length	8,7±1,7 (n=24); (5,6-10,8)	8,1±1,3 (n=14); (5,9-10,1)
Outer root length	5,5±0,7 (n=18); (4,9-6,8)	5,4±1,2 (n=14); (3,2-7,8)
Point length	8,5±1,1 (n=25); (6,9-10,4)	10,0±1,5 (n=14); (7,9-12,8)
Dorsal anchor		
Total length	30,5±2,6 (n=22); (27-37,5)	35,0±2,8 (n=15); (30,0-38,5)
Length to notch	21,8±1,1 (n=16); (19,8-23,9)	25,8±1,6 (n=15); (22,4-28,8)
Inner root length	10,6±1,3 (n=16); (7,9-13,4)	12,3±1,5 (n=15); (9,6-14,7)
Outer root length	5,3±0,9 (n=16); (4,1-7,2)	4,6±0,7 (n=15); (3,6-5,9)
Point length	7,1±1 (n=12); (5,7-8,7)	9,1±1,0 (n=15); (6,9-11,1)
Ventral bar		
Branch length	38,4±4,4 (n=22); (32-49,5)	31,6±4,6 (n=15); (24,8-39,5)
Branch maximum	6±0,9 (n=28); (3,6-8,1)	4,8±0,9 (n=15); (3,2-6,5)
width	0_0,5 (20,, (5,0 0,1,	1,0_0,0 (1. 10), (0,2 0,0)
Dorsal bar		
Maximum straight	40,1±4,1 (n=14); (35-48,6)	32,7±7,0 (n=15); (17,9-45,8)
width	, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,
Thickness at middle	7,5±1,2 (n=28); (5,7-10,3)	6,1±1,1 (n=15); (4,2-8,2)
length		
Distance between auricles	15,2±1,9 (n=28); (12,1-18,4)	11,5±1,8 (n=15); (8,3-15,2)
Auricle length	15,3±2,3 (n=15); (12,2-19,9)	14,2±2,4 (n=15); (9,6-19,0)
Hooks	13,3±2,3 (11–13), (12,2-19,9)	14,212,4 (11–13), (9,0-19,0)
Pair I	12,3±0,6 (n=26); (11,5-13,2)	11,6±0,4 (n=15); (10,8-12,1)
Pair II	18,5±2,1 (n=28); (14,8-22,8)	-
Pair #	20,6±1,2 (n=25); (18,4-22,2)	_
Pair IV	21,1±1,5 (n=25); (19,4-25)	_
Pair V	10,1±0,9 (n=10); (9,4-12,2)	11,4±0,9 (n=15); (9,2-12,6)
Pair VI	21,4±2,4 (n=10); (16,1-22,8)	
Pair VII	20,6±3,3 (n=18); (17,5-25,7)	-
Average size of pairs		
II, III, IV, VI, VII	20,2 2,5 (n=105); (13,3-27,3)	16,3±2,1 (n=15); (11,9-19,3)
Medium size		
Copulatory tube	CO O F 2 /2 20\ /50 2 04 4\	CO F. F. 7 (* 20), (40 0 72 2)
curved length	69,9±5,3 (n=30); (59,3-81,4)	69,5±5,7 (n=20); (48,0-73,3)
Accessory piece	60 0±0 2 (n=20). (F4 01)	E0 E1E 0 (n=20): /27 0 64 0)
curved length	68,8±8,2 (n=30); (54-91)	59,5±5,8 (n=20); (37,8-64,8)
Heel straight length	11,1±3,9 (n=30); (6-22,6)	4,1±0,2 (n=20); (3,6-4,4)

Table 2(on next page)

Table 2

Comparison of measurements (in $\mu m)$ on Burundese C. cf gillardinae with the original description.

- 1 Comparison of measurements (in μ m) on Burundese *C. cf gillardinae* with the original
- 2 description.

	C. cf. gillardinae from Burundi	C. gillardinae (Muterezi Bukinga
	(n=30°)	et al., 2012)
Ventral anchor		
Total length	30,3±2,3 ^b (n=28) ^c ; (26,9-36,4) ^d	32 (27–37)
Length to notch	25,7±0,9 (n=25); (22,6-29,8)	28 (23–32)
Inner root length	8,7±1,7 (n=24); (5,6-10,8)	10 (8–13)
Outer root length	5,5±0,7 (n=18); (4,9-6,8)	6 (4–9)
Point length	8,5±1,1 (n=25); (6,9-10,4)	8 (6–11)
Dorsal anchor		
Total length	30,5±2,6 (n=22); (27-37,5)	33 (29–38)
Length to notch	21,8±1,1 (n=16); (19,8-23,9)	23 (19–29)
Inner root length	10,6±1,3 (n=16); (7,9-13,4)	12 (9–16)
Outer root length	5,3±0,9 (n=16); (4,1-7,2)	5 (4–7)
Point length	7,1±1 (n=12); (5,7-8,7)	7 (5–8)
Ventral bar		
Branch length	38,4±4,4 (n=22); (32-49,5)	31 (27–35)
Branch maximum width	6±0,9 (n=28); (3,6-8,1)	5 (3–6)
Dorsal bar		
Maximum straight width	40,1±4,1 (n=14); (35-48,6)	33 (27–39)
Thickness at middle length	7,5±1,2 (n=28); (5,7-10,3)	6 (4–8)
Distance between auricles	15,2±1,9 (n=28); (12,1-18,4)	12 (9–15)
Auricle length	15,3±2,3 (n=15); (12,2-19,9)	11 (8–14)
Hooks		
Pair I	12,3±0,6 (n=26); (11,5-13,2)	11 (9–13)
Pair II	18,5±2,1 (n=28); (14,8-22,8)	22 (19–24)
Pair III	20,6±1,2 (n=25); (18,4-22,2)	15 (13–17)
Pair IV	21,1±1,5 (n=25); (19,4-25)	17 (15–21)
Pair V	10,1±0,9 (n=10); (9,4-12,2)	10 (8–12)
Pair VI	21,4±2,4 (n=10); (16,1-22,8)	21 (18–26)
Pair VII	20,6±3,3 (n=18); (17,5-25,7)	14 (11–17)
Copulatory tube curved length	69,9±5,3 (n=30); (59,3-81,4)	47 (42–55)
Accessory piece curved length	68,8±8,2 (n=30); (54-91)	35 (29–42)
Heel straight length	11,1±3,9 (n=30); (6-22	5 (4–7)