Genome-wide identification and expression analysis of gibberellin synthesis related genes during pod development in peanut (#86034)

First submission

Guidance from your Editor

Please submit by 21 Jun 2023 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

Q Custom checks

9 Figure file(s)

7 Table file(s)

DNA data checks

Have you checked the authors data deposition statement?

Can you access the deposited data?

Has the data been deposited correctly?

Is the deposition information noted in the manuscript?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Т	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Genome-wide identification and expression analysis of gibberellin synthesis related genes during pod development in peanut

Jie Sun Equal first author, 1, 2, Xiaoqian Zhang 1, 2, Chun Fu 3, Naveed Ahmad 4, Chuanzhi Zhao 2, Lei Hou 2, Muhammad Naeem 4, Jiaowen Pan 2, Xingjun Wang 1, 2, Shuzhen Zhao Corresp. Equal first author, 1, 2

Corresponding Author: Shuzhen Zhao Email address: zhaoshuzhen51@126.com

Background. Gibberellin (GA) plays an important role in regulating peanut growth and development. GA20ox and GA3ox are the key enzymes known to be involved in GA biosynthesis. These enzymes encoded by a multigene family belong to the 20G-Fe (II) oxygenase superfamily. To date, no genome-wide comparative analysis of peanut AhGA20ox and AhGA3ox-encoding genes has been performed, and the roles of these genes in pod development of peanut are not clear. **Methods.** A whole-genome analysis of the AhGA20ox and AhGA3ox gene families in peanut were identified, and their gene structure, phylogenetic analysis, chromosomal localization, promoter and protein-protein interaction network were analyzed using multiple bioinformatics methods. gRT-PCR was performed to examine the expression pattern of AhGA20ox and AhGA3ox genes at different stages of peanut pod development. **Results.** In this study, a total of 15 AhGA20ox and 5 AhGA3ox genes were identified in peanut genome, which were randomly distributed across the twenty chromosomes. Phylogenetic analysis divided these members of AhGA20ox and AhGA3ox families into three main groups. The conserved pattern of gene structure, cis-elements, and protein motifs further confirmed their evolutionary relationship in peanut. In addition, the expression analysis of AhGA20ox and AhGA3ox genes at various pod developmental stages in peanut suggested their differential expression pattern during pod development. The strong expression of AhGA20ox1/ AhGA20ox4, AhGA20ox12/AhGA20ox15, AhGA3ox1 and AhGA3ox4/AhGA3ox5 in S1-stage indicated that these genes could have a key role in controlling peg elongation and growth. Furthermore, the expression of AhGA20ox and AhGA3ox also suggested a diverse pattern in different peanut tissues including leaves, main stems, flowers and inflorescences. PeerJ reviewing PDF | (2023:05:86034:0:1:NEW 5 Jun 2023)

College of Life Sciences, Shandong Normal University, Jinan, China

² Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China

Weifang Academy of Agricultural Sciences, Weifang, China

⁴ Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China

Noticeably, the expression of *AhGA20ox9/AhGA20ox11* and *AhGA3o4/AhGA3ox5* were upregulated in the main stem, whereas the expression of *AhGA3ox1* and *AhGA20ox10* were enhanced in the inflorescence. Similarly, the expression levels of *AhGA20ox2/AhGA20ox3*, *AhGA20ox5/AhGA20ox6*, *AhGA20ox7/AhGA20ox8*, *AhGA20ox13/AhGA20ox14* and *AhGA3ox2/AhGA3ox3* were high in the flower tissues, suggesting that these genes might be involved in the regulation of flower development. Our findings provide a strong basis for deciphering the GA-induced molecular mechanisms governing plant growth and development, as well as for elucidating the functional characteristics of the AhGA20ox and AhGA3ox genes in peanut.

- Genome-wide identification and expression analysis of gibberellin synthesis related genes 1
- during pod development in peanut 2
- 3 Jie Sun^{1,2}, Xiaoqian Zhang^{1,2}, Chun Fu³, Naveed Ahmad⁴, Chuanzhi Zhao¹, Lei Hou¹, Muhammad Naeem⁴,
- Jiaowen Pan¹, Xingjun Wang^{1,2}, Shuzhen Zhao^{1,2*}
- ¹ Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences; Shandong Provincial Key
- Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
- 7 ² College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
- 8 ³ Weifang Academy of Agricultural Sciences, Weifang 261071, PR China
- 9 ⁴Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of
- 10 Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- 12

- sunjie9811@163.com (J.S.); zhang033097@163.com (X.Z.); nkyhssf@163.com; naveedjlau@gmail.com;
- 13 chuanzhiz@126.com (C.Z.); houlei9042@163.com (L.H.); naeembbt@gmail.com; jwpan01@126.com (J.P.);
- 14 xingjunw@hotmail.com
- 15 *Correspondence:
- 16 Shuzhen Zhao
- 17 #Gongye Bei 23788, Jinan, Shandong Province, 250100, China
- 18 Email address: zhaoshuzhen51@126.com
- 19 **ABSTRACT**
- 20 **Background.** Gibberellin (GA) plays an important role in regulating peanut growth and
- 21 development. GA20ox and GA3ox are the key enzymes known to be involved in GA
- biosynthesis. These enzymes encoded by a multigene family belong to the 2OG-Fe (II) 22
- oxygenase superfamily. To date, no genome-wide comparative analysis of peanut AhGA20ox 23
- 24 and AhGA3ox-encoding genes has been performed, and the roles of these genes in pod
- 25 development of peanut are not clear.
- **Methods.** A whole-genome analysis of the AhGA20ox and AhGA3ox gene families in peanut 26
- 27 were identified, and their gene structure, phylogenetic analysis, chromosomal localization,
- promoter and protein-protein interaction network were analyzed using multiple bioinformatics 28
- 29 methods, qRT-PCR was performed to examine the expression pattern of AhGA20ox and
- AhGA3ox genes at different stages of peanut pod development. 30
- **Results.** In this study, a total of 15 AhGA20ox and 5 AhGA3ox genes were identified in peanut 31
- 32 genome, which were randomly distributed across the twenty chromosomes. Phylogenetic

- analysis divided these members of AhGA20ox and AhGA3ox families into three main groups.
- 34 The conserved pattern of gene structure, cis-elements, and protein motifs further confirmed their
- evolutionary relationship in peanut. In addition, the expression analysis of AhGA20ox and
- 36 AhGA3ox genes at various pod developmental stages in peanut suggested their differential
- expression pattern during pod development. The strong expression of AhGA20ox1/AhGA20ox4,
- 38 AhGA20ox12/AhGA20ox15, AhGA3ox1 and AhGA3ox4/AhGA3ox5 in S1-stage indicated that
- 39 these genes could have a key role in controlling peg elongation and growth. Furthermore, the
- 40 expression of AhGA20ox and AhGA3ox also suggested a diverse pattern in different peanut
- 41 tissues including leaves, main stems, flowers and inflorescences. Noticeably, the expression of
- 42 AhGA20ox9/AhGA20ox11 and AhGA3o4/AhGA3ox5 were up-regulated in the main stem,
- 43 whereas the expression of AhGA3ox1 and AhGA20ox10 were enhanced in the inflorescence.
- 44 Similarly, the expression levels of *AhGA20ox2/AhGA20ox3*, *AhGA20ox5/AhGA20ox6*,
- 45 AhGA20ox7/AhGA20ox8, AhGA20ox13/AhGA20ox14 and AhGA3ox2/ AhGA3ox3 were high in
- 46 the flower tissues, suggesting that these genes might be involved in the regulation of flower
- 47 development. Our findings provide a strong basis for deciphering the GA-induced molecular
- 48 mechanisms governing plant growth and development, as well as for elucidating the functional
- 49 characteristics of the AhGA20ox and AhGA3ox genes in peanut.
- 50 **Keywords:** Arachis hypogaea; Gibberellin biosynthesis; Gene expression analysis; Pod
- 51 development

INTRODUCTION

- Gibberellins (GAs) are the endogenous hormones of diterpenes with the largest variety and
- 54 the widest physiological function. GAs are widely involved in various stages of plant growth and
- development (*Binenbaum, Weinstain & Shani, 2018*), such as seed germination (*Xu et al., 2020*),
- stem elongation (*Zhang, Wang & Huang, 2021*), shade response (*Yang & Li, 2017*), flowering
- 57 regulation (*Bao, Hua & Shen, 2020*), and fruit development (*Hu et al., 2018*). So far, 136 GAs
- with definite structures have been identified in plants, bacteria and fungi. Although there are
- 59 many kinds of GAs, only a few GAs have physiological effects on plant development, such as


```
GA<sub>1</sub>, GA<sub>3</sub>, GA<sub>4</sub> and GA<sub>7</sub> (Giacomelli et al., 2013; MacMillan, 2001).
60
          The GA20 oxidase (GA20ox) and GA3 oxidase (GA3ox) are key rate-limiting enzymes in
61
62
     GA synthesis, catalyzing successive steps of GA biosynthesis to produce bioactive GA. At the
     later stage of GA synthesis, GA20ox catalyzed inactive GA12 and GA53 to remove C-20 and
63
     convert them into GA9 and GA20. Subsequently, GA9 and GA20 were catalyzed by GA3ox to
64
     produce bioactive GA4 and GA1 through 3β-hydroxylation (Hedden, 2020; Salazar et al., 2018).
65
66
     It was found that GA20ox and GA3ox are the members of 2OG-Fe (II) oxygenase superfamily
     and are generally encoded by multiple genes in plants. Rice sd1 (semi-dwarf 1) gene encodes
67
     GA20ox2 in the gibberellin biosynthesis pathway, and mutation of this gene can inhibit GA
68
     biosynthesis and lead to semi-dwarfing in rice (Sasaki et al., 2002). In addition, the ga3ox1
69
70
     single mutant of Arabidopsis thaliana showed semi-dwarfism while the GA3ox1 and GA3ox2
71
     double mutants were more significantly dwarfed than the ga3ox1 single mutant (Mitchum et al.,
     2006).
72
          Fruit setting is a key process in agricultural production and is usually triggered by ovule
73
     fertilization. Plant hormones play an important role in fruit development, especially IAA and GA,
74
75
     which are the main hormones promoting fruit development (Liu et al., 2018). DELLA protein is
     a key negative regulator of GA signaling pathway and acts as a fruit growth inhibitor prior to
76
     fertilization. In pollinated ovaries, the increased transcription level of GA20ox promotes the
77
78
     increase of GA content, leading to the degradation of DELLA protein through the 26S
79
     proteasome pathway, thus releasing the inhibitory effect of DELLA protein on fruit development
     (Fuentes et al., 2018). Further studies have shown that the application of GA, independent of
80
     pollination and fertilization, can promote fruit-setting and paraphyletic outcomes in some crops,
81
     as has been demonstrated in pears, apricots, strawberries and grapes. After GA3 treatment, the
82
     expressions of ARF2 and ARF8 were inhibited, suggesting that GA-induced parthenogenesis
83
     might be caused by the downregulation of ARF2 and ARF8 (Maaike, Mariani & Vriezen, 2009).
84
          Peanut, a leguminous dicotyledonous plant, rich in protein, oil, vitamins and other nutrients,
85
     has become one of the world's top five oil crops (Toomer, 2018). The development of the pod
86
```


87	directly determines the yield and quality of peanut. After flowering and fertilization, the
88	fertilized egg only divides several times to form the proembryo and then stops dividing. While
89	the stalk of the ovary extends continuously with the unexpanded ovary after fertilization to form
90	a peg growing toward the ground. The peg expands horizontally after the ovules are buried in the
91	soil (Zhang et al., 2016). The development of peanut pod is regulated by a variety of hormones
92	such as auxin, GA, brassinosteroids (BR), abscisic acid (ABA), ethylene and cytokinin. In the
93	early stage of peanut pod development, auxin promotes the elongation and growth of peg, while
94	cytokinin regulates the cell division of peg (<i>Edgar</i> , 2003). GA promoted not only the elongation
95	and growth of peg in the early stage of pod development, but also nutrient accumulation in the
96	middle and late stage of peanut pod development. In addition, ethylene and ABA were involved
97	in the accumulation of peanut pod at the later stage of development. Taken together, these
98	studies suggested that various hormones regulate the development of peanut pod (Kumar et al.,
99	2019). However, the genome-wide identification and function of the AhGA20ox and AhGA3ox
100	families in peanut have not been reported. The functions of GA20ox and GA3ox family genes in
101	pod development of peanut are not clear.
102	In the current study, all members of the AhGA20ox and AhGA3ox gene families were
103	identified in peanut genome, and their gene structure, chromosomal localization, promoter and
104	protein-protein interaction network were analyzed using multiple bioinformatics resources. The
105	phylogenetic analysis was also carried out to investigate their evolutionary relationship with
106	other plant species. In order to explore the regulation of GA synthesis related genes on peanut
107	pod development, qRT-PCR was performed to examine the expression pattern of AhGA20ox and
108	AhGA3ox genes at different stages of peanut pod development. The results will further enrich the
109	concept of hormonal regulation of fruit development. In addition, the expression patterns of
110	AhGA20ox and AhGA3ox genes in different tissues of peanut cultivar JH8 were also studied by
111	qRT-PCR, which laid a foundation to study the functions of AhGA20ox and AhGA3ox genes.
112	MATERIALS AND METHODS
113	Plant materials and treatment conditions

114	The peanut cultivar JH8 with high oleic acid developed by our lab is used in this study.
115	Stems, leaves, flowers, inflorescences and pods at different stages of development were collected
116	from plants grown in the field. All the materials were frozen immediately in liquid nitrogen and
117	stored at -80°C for RNA extraction and gene expression analysis.
118	Identification of AhGA20ox and AhGA3ox gene family members in peanut
119	All sequences were downloaded from four databases: TAIR (Arabidopsis Information
120	Resource, http://www.arabidopsis.org/), Rice (Rice Information Resource,
121	http://www.rice.plantbiology.msu.edu/), Soybean Genome Annotation Project Database
122	(http://www.phytozome.net/soybean/) and NCBI Genome Database
123	(https://www.ncbi.nlm.nih.gov/) (Honi et al., 2020). The Arabidopsis GA20ox and GA3ox gene
124	sequences were first downloaded from the TAIR website. Subsequently, gene sequences of
125	AhGA20oxs and AhGA3oxs were searched against the NCBI genome database using the amino
126	acid sequences of five Arabidopsis GA20oxs and four GA3oxs as queries, respectively. The
127	resulting sequences were further validated in SMART (http://smart.embl.de) and Pfam
128	(http://pfam.xfam.org) to obtain all members of AhGA20ox and AhGA3ox encoding genes in
129	peanut genome. The predicted physical properties of the GA20ox and GA3ox proteins, such as
130	protein isoelectric point (pI), molecular weight (Mw), amino acid number (aa), were analyzed
131	using the ProtPram tool in ExPASy (https://www.expasy.org/).
132	Phylogenetic analysis of AhGA20ox and AhGA3ox in peanut
133	Multiple sequence alignment of AhGA20ox and AhGA3ox amino acid sequences from
134	peanut and homologous sequences from Arabidopsis thaliana, rice, and soybean was performed
135	using the DNAMAN software (Vers7; Lynnon Corporation, Montreal, QC, Canada) using the
136	default settings. Then, phylogenetic analysis was performed by AhGA20ox and AhGA3ox
137	protein sequences from peanut together with other plant species by using neighbor-joining
138	method in MRGA 7.0 with bootstrap value of 1000. Finally, iTOL (https://itol.embl.de/) online
139	software.
140	Chromosomal distribution and gene structure analysis of AhGA20ox and AhGA3ox-

141	encoding genes in peanut
142	The loci of GA20ox and GA3ox genes were downloaded from the genome annotation file
143	obtained from the Peanutbase in order to obtain chromosome location information. Then, the
144	chromosome map was generated using Mapchart (version2.2) (http://mg2c.iask.in/mg2c_v2.1/)
145	software. For gene structure analysis, the online tools GSDS (version2.0)
146	(http://gsds.cbi.pku.edu.cn) was employed to analyze the genomic sequences AhGA20ox and
147	AhGA3ox genes for the exon and intron distribution.
148	Analysis of the conserved protein motifs and cis-acting elements
149	The online webserver of MEME software was used to analyze the conserved protein motifs
150	of peanut AhGA20ox and AhGA3ox family members. The occurrence of top 8 conserved protein
151	motifs in AhGA20ox and AhGA3ox sequences were further screened and analyzed.
152	The 2000 bp sequence upstream of the start codon of the AhGA20ox and AhGA3ox genes
153	was downloaded from the peanut genome database, and the cis-acting elements were predicted
154	and analyzed by PlantCARE (http://bioinformatics.psb.ugent.be/).
155	AhGA20ox and AhGA3ox protein interaction networks prediction
156	The online webtool of STRING network (https://string-db.org/), was utilized to predict the
157	functional protein interaction network of AhGA20ox and AhGA3ox proteins. All possible
158	interacting proteins including experimental and hypothetical proteins constituting a hierarchical
159	network with AhGA20ox and AhGA3ox proteins were further classified and shown graphically
160	in STRING-generated network.
161	Expression analysis of AhGA20ox and AhGA3ox gene family members in peanut
162	Total RNA was extracted by using FastPure Plant Total RNA isolation kit (AG RNAex Pro
163	Reagent, Changsha, China). The extracted RNA was used as template for reverse transcription
164	reaction using Hiscrip II Q RT SuperMix for qPCR (Vazyme, Nanjing, China).
165	The primers of qPCR were designed by Primer Premier software (Premier Biosoft International,
166	Palo Alto, CA, USA) (Table S1). An ABI 7500 real-time PCR instrument (Thermo Fisher
167	Scientific, Waltham, USA) and ChamQ SYBR qPCR Master Mix (Vazyme, Nanjing, China) was

used for subsequent quantitative fluorescence reaction. The reaction mixture consisted of 10 uL 168 ChamQ SYBR qPCR Master Mix, 0.5 µL of each primer (10 µM), 2 µL cDNA template, and 7 169 170 μL RNase-free H₂O. Reaction conditions include pre-denaturation (95°C, 30s), cyclic reaction 171 (95°C, 10s; 60 °C, 30 s; 40 cycles) and other parameters retain the default values. According to 2 $\Delta\Delta CT$, and the relative expression of target genes in different samples was quantitatively analyzed. 172 **RESULTS** 173 174 Identification and physicochemical characterization of AhGA20ox and AhGA3ox genes in 175 peanut Based on the amino acid sequences of five Arabidopsis GA20oxs and four GA3oxs, 176 candidate gibberellin-dioxygenases genes were explored through searching against the NCBI 177 genome database using BLASTP (e-value ≤0.001) methods. After removing redundant 178 179 sequences and confirming the presence of gibberellin-dioxygenases domains by SMART and 180 Pfam, 20 Gibberellin-dioxygenases genes were finally retained and used for further analysis, including 15 GA20ox genes (AhGA20ox1-15) and 5 GA3ox (ZmGA3ox1-5) genes, respectively. 181 Further analysis showed that the length of amino acid encoded by AhGA20ox genes varied from 182 183 363 aa (AhGA20ox15) to 428 aa (AhGA20ox4), and the molecular weight was 41.3 kDa-49.2 kDa. The isoelectric point (pI) values were between 5.14 (AhGA20ox10) and 7.09 184 (AhGA20ox8). The amino acid length of GA3oxs varied from 352 aa (AhGA3ox2) to 375 aa 185 186 (AhGA3ox1), the molecular weight is 40 kDa -41.7 kDa, and the pI values varied from 6.49 187 (AhGA3ox3) to 8.11 (AhGA3ox1) (Table 1). Phylogenetic analysis of AhGA20ox and AhGA3ox in peanut 188 In order to further analyze the phylogenetic relationship of GA20ox and GA3ox gene 189 190 family, the phylogenetic tree was constructed using the protein sequences of GA20ox and GA3ox from peanut, Arabidopsis thaliana, rice, and soybean (Table S2). The results showed that 191 the GA20oxs and GA3oxs were divided into three groups (group A-C). The largest group was 192 group C with 32 members of GA20ox and GA3ox gene family, including all AhGA20ox family 193 members. While groups A was the smallest ones only with four members of rice GA20ox family 194

195	(Fig. 1). Group B contains 17 members, all of which were members of the GA3ox family.
196	Moreover, most of the genes related to GA synthesis in the same species were clustered together.
197	Further analysis revealed that the GA20ox and GA3ox family members in peanut are closely
198	related to those in soybean, but distantly related to those in rice (Fig. 1).
199	Gene structure and conserved motifs of AhGA20ox and AhGA3ox genes
200	The exon-intron diversity of the gene family members plays a crucial role in the evolution of
201	multiple gene families. The exon-intron structure analysis of 15 AhGA20ox and 5 AhGA3ox
202	genes showed that except that AhGA20ox4 had four exons and three introns, the other AhGA20ox
203	genes contain three exons and two introns. Furthermore, AhGA20ox4 had one longest intron. All
204	AhGA3ox genes contain two exons and one intron (Fig. 2).
205	The conserved motifs of AhGA20ox and AhGA3ox proteins in peanut were predicted to
206	further understand their sequence diversity. In the predicted eight motifs, the E value of each
207	motif was significant, and the length of motif was 36-50 conserved amino acids. Motif 1, motif 2,
208	motif 3 and motif 5 were distributed in all AhGA20ox and AhGA3ox sequences (Fig. 3),
209	suggesting that these four motifs may be the core conserved domain of AhGA20ox and
210	AhGA3ox. This indicated that the AhGA20ox and AhGA3ox families were highly conserved
211	and presumably had some degree of functional redundancy. Further analysis showed that
212	members of AhGA3ox gene family presented in group B (Fig. 1). In addition, motif 8 exists only
213	in the AhGA3ox gene family (Fig. 3). All members of the AhGA20ox gene family exist in the
214	group C (Fig. 1), while motif 6 and 7 exist only in the AhGA20ox gene family (Fig. 3).
215	Therefore, it can be inferred that motif 6 and 7 are conserved domains specific to the group C.
216	AhGA20ox and AhGA3ox genes contain key cis-acting elements
217	The analysis of conserved cis-regulatory units in the promoter region of AhGA20ox and
218	AhGA3ox genes were investigated using the 2 kb sequence upstream of the start codon. The
219	results showed the presence of widely known eight key cis-elements in the promoter of
220	AhGA20ox and AhGA3ox genes (Fig. 4, raw data is shown in Table S3). The most abundantly
221	presented cis-elements mainly included gibberellin-responsive unit (TATC-box), light-

222	responsive units such as G-box (TACGTG), GATA-motif (AAGATAAGATT), and GARE-
223	motif (TCTGTTG). Similarly, hormone-responsive units such ABA responsive-motif (ACGTG)
224	low-temperature responsive units (TATC-box), transcription regulatory units such as (TATA-
225	box) and MYB-responsive motifs (TAACTG) were also identified. The occurrence of these well
226	known cis-elements suggested that AhGA20ox and AhGA3ox genes are strongly linked to plant
227	growth, development, and tolerance to varied stresses, as well as other crucial signaling
228	pathways in peanut.
229	Chromosome mapping of AhGA20ox and AhGA3ox genes
230	Chromosomal mapping of AhGA20ox and AhGA3ox genes based on peanut genome
231	information showed that AhGA20ox and AhGA3ox genes were distributed on 14 chromosomes.
232	AhGA20ox1 and AhGA20ox2 were localized at chr.2. Similarly, AhGA20ox9 and AhGA20ox10
233	were localized at chr.5, whereas AhGA20ox12 and AhGA3ox2 were mapped to chr.8.
234	AhGA20ox13 and AhGA3ox4 was positioned at chr.9, while AhGA20ox3 and AhGA20ox4 were
235	found at chr.12. AhGA20ox14 and AhGA3ox5 were located at chr.19. Notably, most of
236	AhGA20ox and AhGA3ox genes located at the distal ends of chromosomes (Fig. 5, raw data is
237	shown in Table S4).
238	Interactive protein network of AhGA20ox and AhGA3ox encoding proteins
239	We investigated the protein-protein interaction (PPI) network of the AhGA20ox and
240	AhGA3ox encoding proteins by employing the STRING database. The major interacting partners
241	of AhGA20ox AhGA3ox proteins were predicted as Fe2OG dioxygenase domain containing
242	protein, which is a key component of iron-ascorbate dependent oxidoreductase family. This
243	Fe2OG enzyme is known to catalyze a wide range of oxidative reactions crucial to plant
244	metabolisms. In addition, other proteins such as ABC transporter, and protein kinase were also
245	co-associated with the AhGA20-ox and AhGA3-ox proteins. (Fig. 6). The prediction of PPI
246	network of GA-ox-encoding proteins in peanut provides important insights into understanding
247	the orchestrated regulatory mechanism underlying gibberellin biosynthesis.
248	Expression analysis of AhGA20ox and AhGA3ox genes during different pod developmental

PeerJ

249

stages

250	The spatio-temporal expressions of GA20ox and GA3ox genes during peanut pod
251	development were investigated using quantitative real-time polymerase chain reaction (qRT-
252	PCR). Peanut pod development was S1divided into six stages including green or purple aerial-
253	grown pegs (Stage 1, S1), white pegs that had been embedded in the soil for approximately 3
254	days and in which pod enlargement was not detected (Stage 2, S2); pegs that had been buried in
255	the soil for approximately 9 days and in which pod enlargement had been initiated (Stage 3, S3)
256	pegs that had been buried in the soil for approximately 12 days (Stage 4, S4); pegs that had been
257	buried in the soil for approximately 20 days (Stage 5, S5); pegs that had been buried in the soil
258	for approximately 30 days (Stage 6, S6) (Fig. 7).
259	Both AhGA20ox and AhGA3ox were expressed ubiquitously at different stages of pod
260	development, but had different expression patterns at different stages. The expressions of
261	AhGA20ox2/AhGA20ox3, AhGA20ox6/AhGA20ox5, AhGA20ox7/AhGA20ox8 and GA20ox10
262	gradually increased with the development of peanut pod, reaching the highest level at S6 (Fig. 8
263	raw data is shown in Table S5). Interestingly, AhGA20ox2/AhGA20ox3, AhGA20ox6/
264	AhGA20ox5 and AhGA20ox10 were closer evolutionarily than other AhGA20ox members,
265	implying a potential functional redundancy or synergistic effect of these AhGA20ox genes. On
266	the contrary, AhGA20ox15/AhGA20ox12 and AhGA3ox1 gradually decreased with the
267	development of peanut pod, indicating different members of the GA20ox and AhGA3ox family
268	have different functions in pod development. AhGA20ox1/AhGA20ox4,
269	AhGA20ox12/AhGA20ox15, AhGA3ox1 and AhGA3ox4/AhGA3ox5 showed high expression
270	levels in S1 (Fig. 6), suggesting that these genes may be involved in regulating the elongation of
271	the peg. Other genes may be involved in regulating the expansion and growth of peanut pod,
272	even though they showed different expression patterns during the expansion and growth of
273	peanut pod. For example, AhGA3ox1 and AhGA3ox2/AhGA3ox3 showed high expression levels
274	in S2, and AhGA20ox13/AhGA20ox14 showed the highest expression level in S3. The

expression levels of AhGA20ox1/AhGA20ox4 and AhGA20ox19/11 were the highest in S4 (Fig. 8, 275 raw data is shown in Table S5). 276 277 Expression analysis of AhGA200x and AhGA30x genes in different tissues of peanut 278 We analyzed the expressions of AhGA20ox and AhGA3ox genes in peanut leaves, main stems, flowers and inflorescences. The results showed that AhGA20ox and AhGA3ox were 279 expressed in different tissues, but the expression patterns were differential. The expression levels 280 281 of AhGA20ox9/AhGA20ox11 and AhGA3ox4/AhGA3ox5 were the highest in the main stem, and 282 the expression levels of AhGA20ox12/AhGA20ox15 were the lowest in the main stem (Fig. 9, raw data is shown in Table S6). Except AhGA20ox9/AhGA20ox11, AhGA3ox1 and 283 AhGA3ox4/AhGA20ox5, other genes showed high expression levels in peanut flowers (Fig. 7), 284 285 implying that these genes may be involved in the regulation of flower development. 286 AhGA20ox2/AhGA20ox3, AhGA20ox5/AhGA20ox6, AhGA20ox7/AhGA20ox8, AhGA20ox13/AhGA20ox14 and AhGA3ox2/AhGA3ox3 were highly expressed in inflorescence 287 (Fig. 7). AhGA20ox1/AhGA20ox4, AhGA20ox12/AhGA20ox15 and AhGA3ox1 showed high 288 expression levels in leaves (Fig. 9, raw data is shown in Table S6). These results indicated that 289 290 different genes may play different roles in specific tissues or organs. **DISCUSSION** 291 Gibberellin is one of the important hormones that regulate plant growth and development. 292 293 The proteins encoded by the GA20ox and GA3ox genes play a key role in GA biosynthesis. In 294 recent years, GA20ox and GA3ox genes have been identified in many higher plants, such as 9 members of Arabidopsis (Han & Zhu, 2011), 10 members of rice (Han & Zhu, 2011), 14 295 members of soybean (Han & Zhu, 2011), 13 members of grape (He et al., 2019), 9 members of 296 297 Phyllostachys edulis (Ye et al., 2019) and 14 members of maize (Ci et al., 2021). In this study, a total of 15 AhGA20ox and 5 AhGA3ox family members were identified from peanuts. The 298 evolutionary properties of the gibberellin oxidase gene family in Arabidopsis, rice, soybean and 299 peanut showed that functionally different GA3ox and GA20ox clusters were distributed in 300 separate groups. AhGA20ox and AhGA3ox genes in peanut were more closely related to those in 301

302	soybean, while far related to those in rice. In addition, the DIOX_N and 2OG-FeII_Oxy
303	superfamily domains contained in the protein sequences of GA20ox and GA3ox are conserved
304	domains shared by all species (Honi et al., 2020).
305	SD1 (OsGA20ox2) is a gene of the rice Green Revolution. It was found that the mutant of
306	this gene causes semi-dwarf of rice. It catalyzes the conversion of GA53, a precursor of
307	gibberellin synthesis, to GA20 (Sasaki et al., 2002). In this study, OsGA20ox2 and
308	AhGA20ox14 had the highest protein sequence similarity with 48.98%, followed by GA20ox9
309	and GA20ox11 with 48.73% and 48.48%, respectively. According to qRT-PCR analysis, the
310	expression levels of GA20ox9/ GA20ox11 in the main stem of were significantly higher than
311	those in other tissues. Therefore, it was speculated that GA20ox9/GA20ox11 may be the key
312	genes involved in regulating the development of main stem of peanut.
313	Although the biosynthetic pathway of GA has been widely studied, the evolutionary
314	analysis of this gene family has not been reported in details. It was found that members of the
315	GA20ox and GA3ox gene families have a certain degree of functional redundancy, but the
316	expression of each gene is spatio-temporal and tissue specific, and the function is different. For
317	example, there are five GA20ox genes in Arabidopsis thaliana, in which AtGA20ox1 and
318	AtGA20ox2 are expressed in vegetative growth phase, the former is mainly regulated by
319	biological clock and the latter is mainly regulated by far-red light. AtGA20ox3 is expressed in the
320	outer epidermis, seeds and fruits (Rieu et al., 2008; Phillips et al., 1995), AtGA20ox4 is
321	expressed in roots, and AtGA20ox5 is expressed in fruits (Xu et al., 1995). AtGA3ox1 and
322	AtGA3ox2 are mainly active in germination and vegetative growth, while AtGA3ox3 and
323	AtGA3ox4 are mainly active in reproductive growth (Mitchum et al., 2006). Our results also
324	showed that the expression patterns of AhGA20ox and AhGA3ox were different in different
325	tissues and pod development stages of peanut. For example, AhGA20ox1/AhGA20ox4,
326	AhGA20ox12/AhGA20ox15, AhGA3ox1 and AhGA3ox4/AhGA3ox5 may be involved in
327	regulating the elongation and growth of peanut pods, Other AhGA20ox and AhGA3ox genes may
328	be involved in the expansion and accumulation of peanut pod in the middle and late stages of

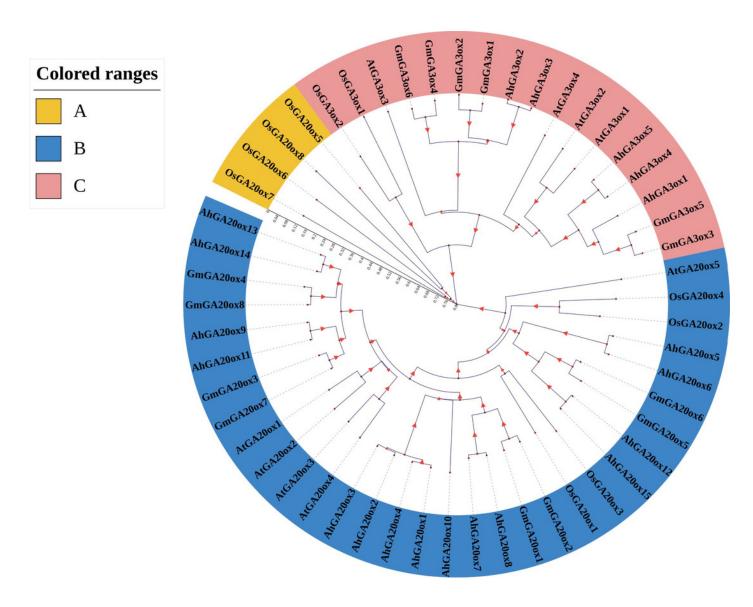
development. Therefore, the expression of AhGA20ox and AhGA3ox family members was not 329 only functionally complementary, but also spatio-temporal specific, indicating that the regulation 330 331 of GA on peanut plant growth and development was not the result of a single gene. Therefore, 332 more experiments are needed to further study the exact function of these genes and the gene regulation mechanism in peanut. 333 334 335 CONCLUSIONS 336 In this study, we identified 15 GA20ox and 5 GA3ox family members in peanut, which were scattered on 14 chromosomes and could be clustered into three groups. The expression 337 analysis showed that AhGA20oxs and AhGA3oxs were differentially expressed in different 338 339 tissues and pod of different developmental stages, suggesting their association with growth and 340 developmental of these processes in peanut. These results contribute to have a better 341 understanding the roles of GA20ox and AhGA3ox genes encoding the key enzymes involved in GA biosynthesis in peanut. 342 ADDITIONAL INFORMATION 343 **Data Availability** 344 The raw measurements are available in the Supplemental Files. 345 Figure Legend 346 347 Fig. 1 Phylogenetic analysis of GA2ox and GA3ox protein in Arabidopsis Thaliana (At), rice 348 (Os), soybean (Gm) and peanut (Ah). The phylogenetic tree was constructed using neighbor-349 joining method in MRGA 7.0 with bootstrap value of 1000. The numbers represent The scale of the evolutionary tree. Gene accession numbers of the sequences used in this 350 351 tree are listed in Table S2. 352 Fig. 2 Gene structure organization of peanut GA20ox and GA3ox family members. Exons (CDS) and UTR are represented by yellow boxes and blue boxes, respectively, and grey lines 353 between exons represents introns. 354 Fig. 3 Distribution of conserved motifs in GA20ox and GA3ox family members. The 355

- 356 sequence information of motifs marked different colors is represented at the bottom.
- Fig. 4 The organization of cis-acting elements in the promoter region of AhGA20ox and
- 358 AhGA3ox genes in peanut. Different colors were used to indicate different elements.
- Fig. 5 Chromosome mapping of AhGA20ox and AhGA3ox genes. Fifteen AhGA20ox and 5
- 360 AhGA3ox genes were unevenly distributed on the 14 chromosomes, with the exception of chr.
- 361 01, 06, 10, 11 and 16. The location on the chromosome of each AhGA20ox and AhGA3ox gene
- was indicated on the right side of the respective chromosome. The scale bar for chromosome
- length was showed at the left of all chromosomes.
- Fig. 6 The prediction of protein protein interaction network of AhGA20ox and AhGA3ox
- encoding proteins. Nodes represent proteins, and lines indicate that they have interaction
- 366 relationship between proteins.
- Fig. 7 The morphology peg and pod at different developmental stages. S1-S6 means different
- development stages of pod in peanut.
- Fig. 8 Expression analysis of AhGA200x and AhGA30x genes in different stages of peanut
- pod development. The heatmap was generated with the qRT-PCR values of 15 AhGA20ox and
- 5 AhGA3ox genes using the online tool, TBtools, and the color scale beside the heat map
- indicates gene expression levels, low transcript abundance indicated by blue color and high
- transcript abundance indicated by red color. Fifteen AhGA20ox and 5 AhGA3ox genes were
- classifed into three groups Group I, AhGA20ox15/12/4/1 and AhGA3ox 1/4/5; Group II,
- 375 AhGA20ox2/3/5/6 /10; Group III, AhGA20ox7/8/9/11/13/14 and AhGA3ox 2/3.
- Fig. 9 Expression analysis of AhGA20ox and AhGA3ox genes in different tissues of peanut
- plants. The heatmap was generated with the qRT-PCR values of 15 AhGA20ox and 5 AhGA3ox
- genes using the online tool, TBtools, and the color scale beside the heat map indicates gene
- expression levels, low transcript abundance indicated by blue color and high transcript
- abundance indicated by red color. Fifteen AhGA20ox and 5 AhGA3ox genes were classifed into
- two groups Group I, AhGA20ox9/11 and AhGA3ox 1/4/5; Group II, AhGA20ox1-AhGA20ox9,
- 382 *AhGA20ox10*, *AhGA20ox12-AhGA20ox15* and *AhGA3ox 2/3*.

383	
384	REFERENCES
385	Bao SJ, Hua CM, Shen LS, Yu H. 2020. New insights into gibberellin signaling in regulating flowering in
386	Arabidopsis. Journal of Integrative Plant Biology 62(1):118-131
387	DOI 10.1111/jipb.12892
388	Binenbaum J, Weinstain R, Shani E. 2018. Gibberellin Localization and Transport in Plants. Trends in Plant
389	Science 23(5):410-421 DOI 10.1016/j.tplants.2018.02.005.
390	Ci JB, Wang XY, Wang Q, Zhao FX, Yang W, Cui XY, Jiang LY, Ren XJ, Yang WG. 2021. Genome-
391	wide analysis of gibberellin-dioxygenases gene family and their responses to GA applications in maize.
392	PLoS One 16(5) :250-265. DOI 10.1371/journal.pone.0250349.
393	Edgar M. 2003. The peanut gynophore: a developmental and physiological perspective. Canadian Journal of
394	Botany 18(3) :52-56 DOI 10.1139/b03-024.
395	Fuentes S, Ljung K, Sorefan K, Alvey E, Harberd NP, Østergaard L. 2012. Fruit growth in Arabidopsis
396	occurs via DELLA-dependent and DELLA-independent gibberellin responses. Plant Cell 24(10):3982-
397	3996 DOI 10.1105/tpc.112.103192.
398	Giacomelli L,Omar RS, Masuero D, Acheampong AK, Moretto M, Caputi L, Vrhovsek U, Moser C.
399	2013. Gibberellin metabolism in Vitis vinifera L. during bloom and fruit-set: functional characterization
400	and evolution of grapevine gibberellin oxidases. Journal of Experimental Botany 64(14):4403-4419 DOI
401	10.1093/jxb/ert251.
402	Han FM, Zhu BG. 2011. Evolutionary analysis of three gibberellin oxidase genes in rice, Arabidopsis, and
403	soybean. Gene, 473(1) :23-35 DOI 10.1016/j.gene.2010.10.010.
404	He HH, Liang GP, Lu SX, Wang PP, Liu T, Ma ZH, Zuo CW, Sun XM, Chen BH, Mao J. 2019.
405	Vitisgenome-wide identification and expression analysis of GA2ox, GA3ox, and GA20ox are related to
406	gibberellin oxidase genes in Grape. Genes 10(9) :54-58
407	DOI 10.3390/genes10090680.
408	Hedden P. 2020. The Current Status of Research on Gibberellin Biosynthesis. Plant Cell Physiology
409	61(11):1832-1849 DOI 10.1093/pcp/pcaa092.

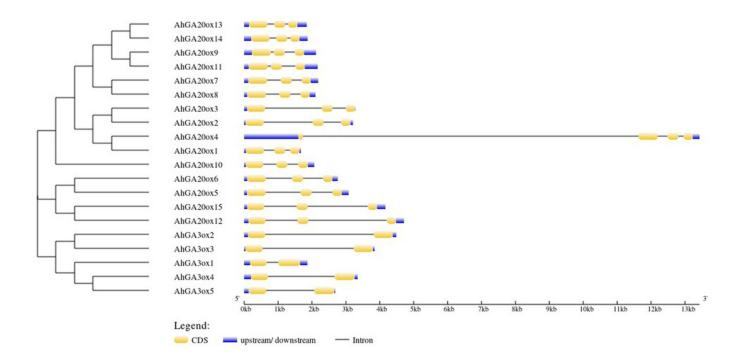
410	Honi U, Amin MR, Kabir MT, Bashar KK, Moniruzzaman M, Jahan R, Jahan S, Haque MS, Islam S.				
411	2020. Genome-wide identification, characterization and expression profiling of gibberellin metabolism				
412	genes in jute. BMC Plant Biology 20(1) :306				
413	DOI 10.1186/s12870-020-02512-2.				
414	Hu JH, Israeli A, Ori N, Sun TP. 2018. The Interaction between DELLA and ARF/IAA Mediates Crosstalk				
415	between Gibberellin and Auxin Signaling to Control Fruit Initiation in Tomato. Plant Cell 30(8):1710-				
416	1728 DOI 10.1105/tpc.18.00363.				
417	Kumar R, Pandey MK, Roychoudhry S, Nayyar H, Kepinski S, Varshney RK. 2019. Peg Biology:				
418	Deciphering the Molecular Regulations Involved During Peanut Peg Development. Frontiers in Plant				
419	Science, 10(2):1289 DOI 10.3389/fpls.2019.01289.				
420	Liu SY, Zhang YW, Feng QS, Qin L, Pan CT, Anthony T, Lu G. 2018. Tomato auxin response factor 5				
421	regulates fruit set and development via the mediation of auxin and gibberellin signaling. Scientific				
422	Reports 8(1) :2971 DOI 10.1038/s41598-018-21315-y.				
423	Maaike DJ, Mariani C, Vriezen WH. 2009. The role of auxin and gibberellin in tomato fruit set. Journal of				
424	Experimental Botany 60(5) :1523-1532 DOI 10.1093/jxb/erp094.				
425	MacMillan J. 2001. Occurrence of Gibberellins in Vascular Plants, Fungi, and Bacteria. Journal of Plant				
426	Growth Regulation 20(4) :387-442 DOI 10.1007/s003440010038.				
427	Mitchum MG, Yamaguchi S, Hanada A, Kuwahara A, Yoshioka Y, Kato T, Tabata S, Kamiya Y, Sun				
428	TP 2006. Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant				
429	Journal 45(5) , 804-818				
430	DOI 10.1111/j.1365-313X.2005.02642.x.				
431	Phillips AL, Ward DA, Uknes S, Appleford NE, Lange T, Huttly AK, Gaskin P, Graebe JE, Hedden P.				
432	1995. Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant				
433	Physiology 108(3) :1049-1057 DOI 10.1104/pp.108.3.1049.				
434	Rieu I, Omar RR, Nieves FG, Griffiths J, Powers SJ, Gong F, Linhartova T, Eriksson S, Nilsson O,				
435	Thomas SG, Phillips AL, Hedden P. 2008. The gibberellin biosynthetic genes AtGA20ox1 and				
436	AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis				

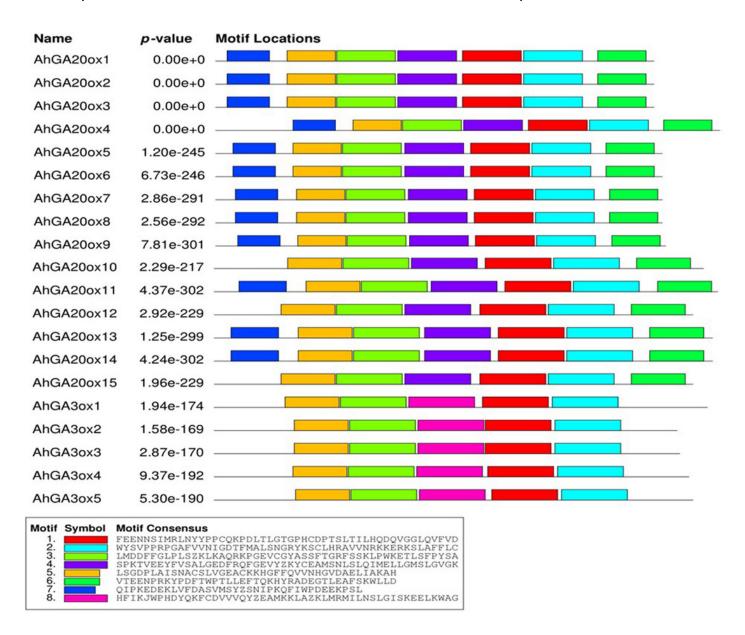
- life cycle. The Plant journal:for cell and molecular biology 53(3):61-66. DOI 10.1111/j.1365-
- 438 313X.2007.03356.x.
- 439 Sasaki A, Ashikari M, Ueguchi TM, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M,
- Khush GS, Kitano H, Matsuoka M. 2002. Green revolution: a mutant gibberellin-synthesis gene in rice.
- 441 Nature **416(6882)**:701-702 DOI 10.1038/416701a.
- 442 Sonia SC, Nancy MM, Jenny GS, Rocío PY, Rebeca MC. 2018. Gibberellin biosynthesis and metabolism:
- A convergent route for plants, fungi and bacteria. Microbiological Research 208(17):85-98 DOI
- 444 10.1016/j.micres.2018.01.010.
- 445 **Toomer OT. 2018.** Nutritional chemistry of the peanut (*Arachis hypogaea*). Critical Reviews in Food Science
- and Nutrition **58(17)**:3042-3053 DOI 10.1080/10408398.2017.1339015.
- 447 Xu H, Lantzouni O, Bruggink T, Benjamins R, Lanfermeijer F, Denby K, Schwechheimer C, Bassel GW.
- 2020. A Molecular Signal Integration Network Underpinning Arabidopsis Seed Germination. Current
- 449 Biology **30(19)**:3703-3712 DOI:10.1016/j.cub.2020.07.012.
- 450 Xu YL, Li L, Wu K, Peeters AJ, Gage DA, Zeevaart JA. 1995. The GA5 locus of Arabidopsis thaliana
- 451 encodes a multifunctional gibberellin 20-oxidase: molecular cloning and functional expression.
- Proceedings of the National Academy of Sciences of the United States of America 92(14):6640-6644 DOI
- 453 10.1073/pnas.92.14.6640.
- 454 Yang CW, Li L. 2017. Hormonal Regulation in Shade Avoidance. Frontiers in Plant Science 30(8):1527-1536
- 455 DOI 10.3389/fpls.2017.01527.
- 456 Ye JQ, Zhang YT, Fu Y, Zhou MB, Tang DQ. 2019. Genome-wide identification and expression analysis of
- 457 gibberellin biosynthesis, metabolism and signaling family genes in Phyllostachys edulis. Sheng Wu Gong
- 458 Cheng Xue Bao **35(4)**:647-666
- 459 DOI 10.13345/j.cjb.180424.
- Zhang HL, Wang W, Huang JF, Wang YT, Hu L, Yuan Y, Lyu M, Wu BH. 2021. Role of gibberellin and
- its three GID1 receptors in Jasminum sambac stem elongation and flowering. Planta 255(1):17-25 DOI
- 462 10.1007/s00425-021-03805-y.
- Zhang Y, Wang PF, Xia H, Zhao CZ, Hou L, Li CS, Gao C, Wang XJ, Zhao SZ. 2016. Erratum to:



464	Comparative transcriptome analysis of basal and zygote-located tip regions of peanut ovaries provides
465	insight into the mechanism of light regulation in peanut embryo and pod development. BMC Genomics
466	17(1) :836-842 DOI 10.1186/s12864-016-318-5.

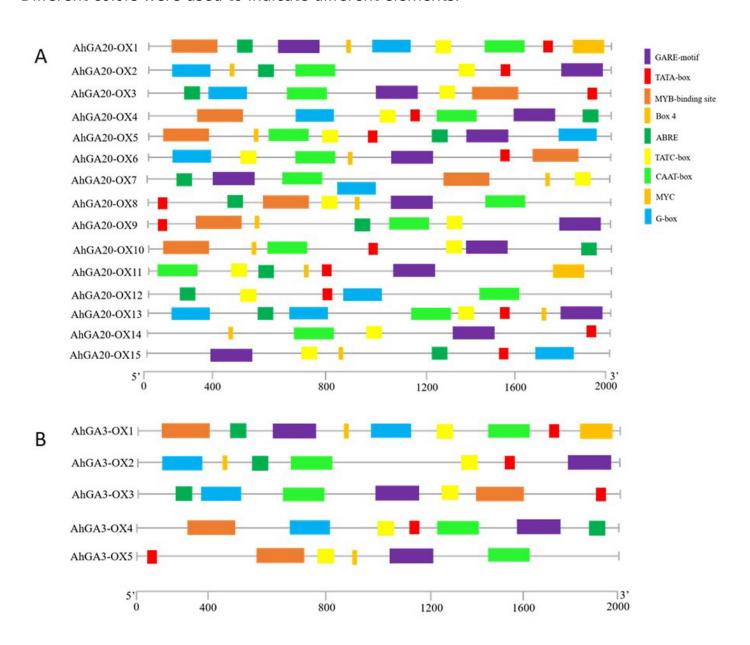
Phylogenetic analysis of GA2ox and GA3ox protein in *Arabidopsis Thaliana* (At), rice (Os), soybean (Gm) and peanut (Ah)


The phylogenetic tree was constructed using neighbor-joining method in MRGA 7.0 with bootstrap value of 1000. The numbers represent The scale of the evolutionary tree. Gene accession numbers of the sequences used in this tree are listed in Table S2.

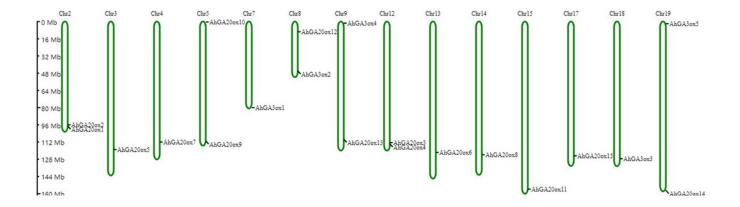

Gene structure organization of peanut GA20ox and GA3ox family members

Exons (CDS) and UTR are represented by yellow boxes and blue boxes, respectively, and grey lines between exons represents introns.

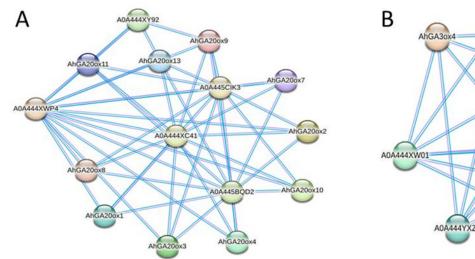
Gene structure organization of peanut GA20ox and GA3ox family members

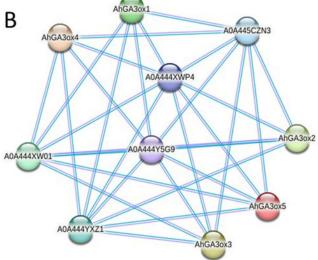

The sequence information of motifs marked different colors is represented at the bottom.

The organization of cis-acting elements in the promoter region of *AhGA20ox* and *AhGA3ox* genes in peanut.


Different colors were used to indicate different elements.

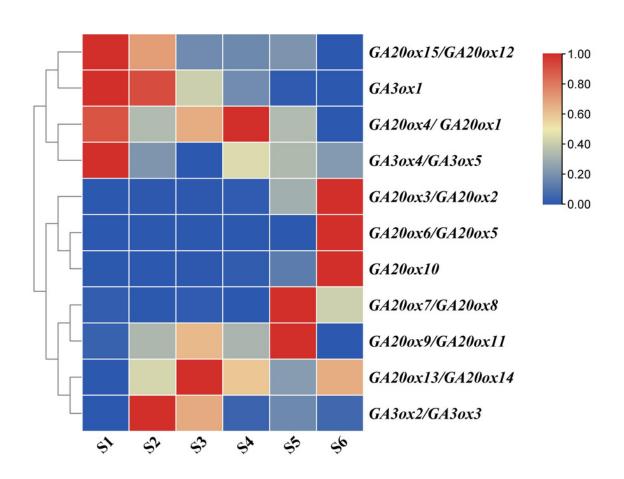
Chromosome mapping of AhGA20ox and AhGA3ox genes.


Fifteen AhGA20ox and 5 AhGA3ox genes were unevenly distributed on the 14 chromosomes, with the exception of chr. 01, 06, 10, 11 and 16. The location on the chromosome of each AhGA20ox and AhGA3ox gene was indicated on the right side of the respective chromosome. The scale bar for chromosome length was showed at the left of all chromosomes.

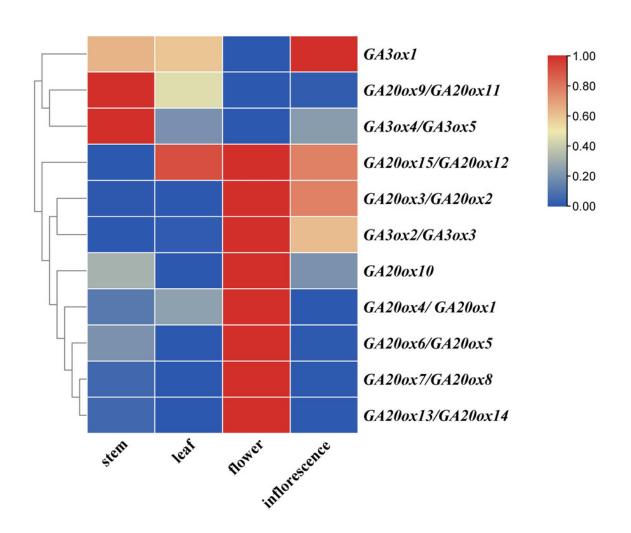


The prediction of protein- protein interaction network of AhGA20ox and AhGA3ox encoding proteins.

Nodes represent proteins, and lines indicate that they have interaction relationship between proteins.


The morphology peg and pod at different developmental stages.

S1-S6 means different development stages of pod in peanut.


Expression analysis of *AhGA20ox* and *AhGA3ox* genes in different stages of peanut pod development.

The heatmap was generated with the qRT-PCR values of 15 AhGA20ox and 5 AhGA3ox genes using the online tool, TBtools, and the color scale beside the heat map indicates gene expression levels, low transcript abundance indicated by blue color and high transcript abundance indicated by red color. Fifteen AhGA20ox and 5 AhGA3ox genes were classifed into three groups Group I, AhGA20ox15/12/4/1 and AhGA3ox 1/4/5; Group II, AhGA20ox2/3/5/6 /10; Group III, AhGA20ox7/8/9/11/13/14 and AhGA3ox 2/3.

Expression analysis of *AhGA20ox* and *AhGA3ox* genes in different tissues of peanut plants.

The heatmap was generated with the qRT-PCR values of 15 AhGA20ox and 5 AhGA3ox genes using the online tool, TBtools, and the color scale beside the heat map indicates gene expression levels, low transcript abundance indicated by blue color and high transcript abundance indicated by red color. Fifteen AhGA20ox and 5 AhGA3ox genes were classifed into two groups Group I, AhGA20ox9/11and AhGA3ox 1/4/5; Group II, AhGA20ox1-AhGA20ox10, AhGA20ox10, AhGA20ox12-AhGA20ox15 and AhGA3ox 2/3.

Table 1(on next page)

Physicochemical properties of AhGA20ox and AhGA3ox family members in peanut

1 Table 1 Physicochemical properties of AhGA20ox and AhGA3ox family members in

2 peanut.

3

Gene name	Gene accession number	Chrome	Length of CDS	Length of peptide	PI	MV
AhGA20ox1	LOC112755206	2	1119	372	6.14	42612.51
AhGA20ox2	LOC112754423	2	1119	372	5.70	42603.44
AhGA20ox3	LOC112728370	12	1119	372	5.70	42531.33
AhGA20ox4	LOC112728437	12	1287	428	6.20	49169.01
AhGA20ox5	LOC112791095	3	1140	379	6.16	42955.71
AhGA20ox6	LOC112733062	13	1140	379	5.73	42927.69
AhGA20ox7	LOC112794404	4	1140	379	6.76	43758.31
AhGA20ox8	LOC112740586	14	1140	379	7.09	43671.10
AhGA20ox9	LOC112802766	5	1149	382	5.80	43477.38
AhGA20ox10	LOC112799975	5	1116	371	5.14	42256.14
AhGA20ox11	LOC112751696	15	1149	382	6.27	43374.34
AhGA20ox12	LOC112706011	8	1092	363	6.94	41469.38
AhGA20ox13	LOC112711704	9	1137	378	6.16	42856.01
AhGA20ox14	LOC112779497	19	1137	378	6.16	42909.95
AhGA20ox15	LOC112767252	17	1092	363	6.94	41371.32
ATGA20ox1	AT4G25420	4	1428	377	5.77	43224.26
ATGA20ox2	AT5G51810	5	1358	378	4.90	33520.78
ATGA20ox3	AT5G07200	5	1323	380	6.90	43437.39
ATGA20ox4	AT1G60980	1	1568	376	7.14	43133.35
ATGA20ox5	AT1G44090	1	1810	385	8.04	43161.15
GmGA20ox1	Glyma03g02260	3	1149	383	6.15	43484.61
GmGA20ox2	Glyma07g08950	7	1191	397	6.50	44987.53
GmGA20ox3	Glyma09g27490	9	1149	383	5.63	43363.39
GmGA20ox4	Glyma10g38600	10	1098	366	5.64	41163.03
GmGA20ox5	Glyma13g09460	13	1128	376	6.27	42797.56
GmGA20ox6	Glyma14g25280	14	1047	349	6.37	39525.06
GmGA20ox7	Glyma16g32550	16	1026	342	5.85	38535.98
GmGA20ox8	Glyma20g29210	20	1152	384	5.85	43327.47
OsGA20ox1	Os03g63970	3	1854	372	5.98	42255.71
OsGA20ox2	Os01g66100	1	3123	389	5.73	42513.19
OsGA20ox3	Os07g07420	7	2744	367	5.75	40494.75
OsGA20ox4	Os05g34854	5	6929	444	6.70	47634.91

OsGA20ox5	Os03g42130	3	2008	352	5.17	39293.06
OsGA20ox6	Os04g39980	4	2123	300	5.51	32102.33
OsGA20ox7	Os08g44590	8	2380	383	5.96	41831.59
OsGA20ox8	Os04g55070	4	3640	326	5.34	35797.44
AhGA3ox1	LOC112703711	7	1128	375	8.11	41693.86
AhGA3ox2	LOC112707838	8	1059	352	7.30	40020.57
AhGA3ox3	LOC112769088	18	1065	354	6.49	40322.80
AhGA3ox4	LOC112709815	9	1086	361	8.07	40659.64
AhGA3ox5	LOC112777276	19	1095	364	8.08	41025.03
AtGA3ox1	At1g15550	1	1077	358	6.34	40161.81
AtGA3ox2	At1g80340	1	1044	347	6.56	38782.41
AtGA3ox3	At4g21690	4	1050	349	6.16	39210.76
AtGA3ox4	At1g80330	1	1068	355	5.49	39152.51
GmGA3ox1	Glyma04g07520	4	1026	342	6.62	38420.91
GmGA3ox2	Glyma06g07630	6	1044	348	6.18	39059.39
GmGA3ox3	Glyma13g43850	13	1059	353	8.52	39245.13
GmGA3ox4	Glyma14g16060	14	1044	348	6.45	38768.46
GmGA3ox5	Glyma15g01500	15	1062	354	7.72	39313.07
GmGA3ox6	Glyma17g30800	17	1053	351	6.65	39126.85
OsGA3ox1	Os05g08540	5	1155	385	5.95	41555.12
OsGA3ox2	Os01g08220	1	1122	374	6.47	40572.22