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Background. Osteoporosis is a significant co-morbidity of type 1 diabetes mellitus (DM1)
leading to increased fracture risk. Exercise-induced hormone 'irisin' in low dosage has
been shown to have a beneficial effect on bone metabolism by increasing osteoblast
differentiation and reducing osteoclast maturation, and inhibiting apoptosis and
inflammation. We investigated the role of irisin in treating diabetic osteopathy by
observing its effect on trabecular bone. Methods. DM1 was induced by intraperitoneal
injection of streptozotocin 60 mg/kg body weight. Irisin in low dosage (5 µg twice a week
for 6 weeks I/P) was injected into half of the control and 4-week diabetic male Wistar rats.
Animals were sacrificed six months after induction of diabetes. The trabecular bone in the
femoral head and neck was analyzed using a micro-CT technique. Bone turnover markers
were measured using ELISA, Western blot, and RT-PCR techniques. Results. It was found
that DM1 deteriorates the trabecular bone microstructure by increasing trabecular
separation (Tb-Sp) and decreasing trabecular thickness (Tb-Th), bone volume fraction
(BV/TV), and bone mineral density (BMD). Irisin treatment positively affects bone quality
by increasing trabecular number p < 0.05 and improves the BMD, Tb-Sp, and BV/TV by
21-28%. The deterioration in bone microarchitecture is mainly attributed to decreased
bone formation observed as low osteocalcin and high sclerostin levels in diabetic bone
samples p < 0.001. The irisin treatment significantly suppressed the serum and bone
sclerostin levels p < 0.001, increased the serum CTX1 levels p < 0.05, and also showed
non-significant improvement in osteocalcin levels. Conclusions. This is the first pilot study
to our knowledge that shows that a low dose of irisin marginally improves the trabecular
bone in DM and is an effective peptide in reducing sclerostin levels.
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40 Abstract

41 Background. Osteoporosis is a significant co-morbidity of type 1 diabetes mellitus (DM1) 

42 leading to increased fracture risk. Exercise-induced hormone 'irisin' in low dosage has been 

43 shown to have a beneficial effect on bone metabolism by increasing osteoblast differentiation 

44 and reducing osteoclast maturation, and inhibiting apoptosis and inflammation. We investigated 

45 the role of irisin in treating diabetic osteopathy by observing its effect on trabecular bone. 

46 Methods. DM1 was induced by intraperitoneal injection of streptozotocin 60 mg/kg body 

47 weight. Irisin in low dosage (5 µg twice a week for 6 weeks I/P) was injected into half of the 

48 control and 4-week diabetic male Wistar rats. Animals were sacrificed six months after induction 

49 of diabetes. The trabecular bone in the femoral head and neck was analyzed using a micro-CT 

50 technique. Bone turnover markers were measured using ELISA, Western blot, and RT-PCR 

51 techniques.

52 Results. It was found that DM1 deteriorates the trabecular bone microstructure by increasing 

53 trabecular separation (Tb-Sp) and decreasing trabecular thickness (Tb-Th), bone volume fraction 

54 (BV/TV), and bone mineral density (BMD). Irisin treatment positively affects bone quality by 

55 increasing trabecular number p < 0.05 and improves the BMD, Tb-Sp, and BV/TV by 21-28%. 

56 The deterioration in bone microarchitecture is mainly attributed to decreased bone formation 

57 observed as low osteocalcin and high sclerostin levels in diabetic bone samples p < 0.001. The 

58 irisin treatment significantly suppressed the serum and bone sclerostin levels p < 0.001, 

59 increased the serum CTX1 levels p < 0.05, and also showed non-significant improvement in 

60 osteocalcin levels. 

61 Conclusions. This is the first pilot study to our knowledge that shows that a low dose of irisin 

62 marginally improves the trabecular bone in DM and is an effective peptide in reducing sclerostin 

63 levels.
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80

81

82 Introduction

83 Type 1 diabetes mellitus (DM1) is associated with increased skeletal fragility, due to a decrease in 

84 both bone mineral density (BMD) and altered bone quality (Janghorbani et al. 2006; Janghorbani 

85 et al. 2007; Lebiedz-Odrobina & Kay 2010; Napoli et al. 2017). Patients with DM1 are at greater 

86 risk of fracture due to an increasing tendency to fall not only as a result of peripheral neuropathy, 

87 poor vision, and stroke but also due to increased bone loss and/or altered bone matrix and strength 

88 (Janghorbani et al. 2006; Mohsin et al. 2019a; Vestergaard 2007).  

89 DM1 not only affects bone mineral density but also affects bone quality, including bone turnover, 

90 microarchitecture, mineralization, microdamage, and bone mineral composition (Hough et al. 

91 2016; Mohsin et al. 2019a; Saito et al. 2006). Animal studies have shown changes in the bone 

92 tissue as early as four to eight weeks after the onset of DM1 (Mohsin et al. 2019a). An increased 

93 number of apoptotic osteocytes were found in diabetic rat bones, which explains the imbalance of 

94 the remodeling cycle in DM1. Low levels of serum markers for bone formation such as osteocalcin 

95 and bone alkaline phosphatase and increased levels of advanced glycation end products (AGEs) 

96 were found in the streptozotocin-induced model of DM1 rats (Hygum et al. 2019; Khan & Fraser 

97 2015; Miyake et al. 2018). Reports on bone resorption in DM1 are particularly controversial, being 

98 reported as unchanged, decreased, or increased in animal and human population studies (Gallacher 

99 et al. 1993; Maggio et al. 2010; Motyl & McCabe 2009; Motyl et al. 2009). The major pathogenetic 

100 mechanism involved in DM1-induced bone deficit is insulin deficiency, along with glucose 

101 toxicity, marrow adiposity, inflammation, adipokine, and other metabolic alterations (Hough et al. 

102 2016). 

103 Regular exercise improves the quality of life through its beneficial effects on various systems in 

104 the body. Exercise also increases bone and muscle strength and helps prevent bone loss (Benedetti 

105 et al. 2018). In turn, increasing physical activity in children with diabetes as well as good 

106 glycaemic control appears to provide some improvement in bone parameters (Colberg et al. 2016). 

107 Irisin peptide expressed in the skeletal muscle and released after physical activity is reported to 

108 increase bone tissue mass and strength (Boström et al. 2012; Colaianni et al. 2015; Khan & Fraser 

109 2015). It can improve insulin resistance, lower blood glucose and promote weight loss. Studies 

110 have shown that irisin also helps in cell proliferation and inhibits cell apoptosis (Liu et al. 2017).

111 The role of irisin in diabetes is still unclear due to contradictory findings (Mahgoub et al. 2018). 

112 A recent study (Tentolouris et al. 2018) has shown that circulating irisin levels were lower in 

113 subjects with DM1 in comparison with healthy-matched controls. The low circulating irisin levels 

114 is associated with advanced glycation end products (AGEs) accumulation and vascular 

115 complications in diabetic patients (Rana et al. 2017), and irisin has been reported to have potent 

116 anti-inflammatory properties (Mazur-Bialy et al. 2017). 

117 Browning of adipose tissue is reported with a higher irisin dose (3,500 μg. kg−1 per week) but this 

118 effect was not seen with low-dose recombinant irisin (r-irisin) in young male mice (Colaianni et 

119 al. 2015). More recently it has been shown that irisin in a low dose of 100 μg. kg�1 has anabolic 
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120 effects on bone tissue without browning of adipose tissue. Irisin in low dose modulated the skeletal 

121 genes, Opn (osteopontin) and Sost (Sclerostin) (Colaianni et al. 2015; Holmes 2015). Cortical bone 

122 mass and strength were markedly increased in irisin-treated mice, compared with control mice 

123 (Colaianni et al. 2015). However, this beneficial effect was only seen in cortical bone and no 

124 changes were observed in the trabecular compartment of bone in mice. A marked increase in 

125 cortical bone mass was attributed to the suppression of sclerostin which inhibits bone formation 

126 through the Wnt signaling pathway, and stimulation of �osteoblasts� (bone-forming cells) 

127 (Colaianni et al. 2015). Moreover, it deters bone resorption by inhibiting osteoclast differentiation 

128 (Ma et al. 2018). Due to these actions on bone, irisin is known to enhance the mechanical properties 

129 of bone (Gallacher et al. 1993). 

130 Trabecular bone quality is significantly lower in adults with DM1 (Shah et al. 2018) and to our 

131 knowledge, the effect of a low dose of irisin on the trabecular bone in DM has not yet been 

132 investigated. This pilot study aimed to investigate the role of a very low dose of irisin in 

133 ameliorating bone fragility associated with DM, by examining its effect on bone turnover markers 

134 and, trabecular bone microstructure using a non-destructive microcomputed tomography (micro-

135 CT) technique in a single high-dose streptozotocin-induced model of DM1.

136

137

138 Materials & Methods

139 Animal Handling, Induction of Diabetes, and Irisin Treatment

140 Forty healthy male Wistar rats weighing between, 270 and 300 g were obtained from the Animal 

141 House Facility at United Arab Emirates University (UAEU). National Institute of Health (NIH) 

142 guidelines for the care and use of laboratory animals were followed for all experiments and 

143 procedures carried out in this study after being approved by the Animal Research Ethics 

144 Committee of the College of Medicine and Health Sciences (CMHS), UAE University 

145 ERA_2018_5833. 

146 The animals were housed singly in cages under standard conditions with a 12 h alternating light 

147 and dark cycle, at 22�24 °C and 50�60% humidity, and provided with free access to standard rat 

148 chow and water ad libitum during the two weeks of acclimatization and for the experimental 

149 period. All efforts were made to minimize animal suffering and to limit the number of animals 

150 used (Mohsin et al. 2019a). No adverse event was recorded during the period of the experiment.

151

152 A single intraperitoneal (I/P) injection of streptozotocin [STZ, Santa Cruz (U-9889) 60 mg/kg 

153 body weight] dissolved in a freshly prepared citrate buffer (0.1 M, pH 4.5) was given to 12 

154 normal Wistar rats to induce experimental DM1 (Furman 2015). The control rats were injected 

155 with equal volumes of the vehicle. Diabetic animals had mean random blood glucose levels of 

156 more than 24 mmol/l (Supl Fig 1). Irisin was injected into the treatment groups at 5 µg twice a 

157 week for 6 weeks I/P. The animals were euthanized by CO2 overdose using commercially 

158 supplied compressed CO2 in cylinders fitted with Murex Saffire 300 Bar Argon/C02 Mixed Gas 

159 Regulator Gauge by a vet and trained staff in the animal facility at CMHS. 
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160

161  (100% CO2 was introduced to the chamber at a fill rate of 50% of the chamber volume per 

162 minute) followed by thoracotomy, 6 months after the induction of diabetes (Figure 1). 

163

164 Figure 1: A streptozotocin-induced rat model of type 1 diabetic osteopathy injected with a low 

165 dose of irisin.

166

167 Blood and bones were collected for ELISA, PCR, western blotting, and imaging using micro-CT. 

168 Only 24 animals were used for this pilot study keeping in mind the 3Rs principle to see the effect 

169 of the low dose of irisin if any in treating diabetic osteopathy and the rest of the animals were 

170 shared with other researchers in the institution for future studies on other systems. Power 

171 calculations were not carried out as it was a pilot study to test the effect of a very small dose of 

172 irisin on the trabecular bone that was not reported before in the literature. 

173 The experimental animals were equally allocated to different groups at random for treatments 

174 and all procedures. 

175 a) Control+vehicle (Normal untreated NUT) 

176 b) Control+irisin (Normal treated NT) 

177 c) Diabetic+vehicle (Diabetic untreated DMUT 

178 d) Diabetic+irisin (Diabetic treated DMT). 

179

180 They were further subdivided for micro-CT, and bone turnover marker analysis at the end of the 

181 experimental period (n=3 to 5) for each analysis. PI and research assistant was aware of the 

182 group allocation at different stages of the experiment.

183

184 Data Acquisition Using Microcomputed Tomography

185 The bone microarchitecture of the neck of the femur was examined non-invasively using a 

186 micro-CT (n=3/Gp). The area of the Ward triangle (Bouxsein et al. 2010b; Courtney et al. 1995) 

187 was scanned to detect any early changes in bone mineral density. Each specimen was scanned 

188 using a Nikon Metrology XT H225 (X-Tek Systems Ltd, Tring, Hertfordshire, UK) cone-beam 

189 μCT scanner operated at 65 kV, and 63 μA, with an exposure time of 1000 ms. The geometric 

190 magnification produced a voxel dimension of ca. 23 μm for all the specimens. The software was 

191 set to optimize projections (typically 1571), with 2 frames collected per projection. Noise 

192 reduction and beam hardening corrections were applied to the data. 

193 To determine the trabecular bone microarchitecture in the femoral head and neck area, bone 

194 volume fraction (bone volume/total volume, BV/TV, %), trabecular bone thickness (Tb-Th, 

195 mm), trabecular bone separation (Tb-Sp, mm), and trabecular bone number (Tb-N, mm-1), the 

196 ratio of segmented bone surface to the total volume of the region of interest (BS/BV, mm-1), and 

197 bone mineral density (BMD, g cm-3) were measured using VG Studio Max 2.2 (Volume 

198 Graphics GmbH, Heidelberg, Germany) software. All trabecular bone microarchitectural 

199 measurements of the femoral head and neck area excluded the cortical bone as in the earlier 

200 study (Greenwood et al. 2018).
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201 vTMD values were used to determine volumetric bone mineral density values (vBMD) according 

202 to: - vBMD = vTMD × BV/TV. vTMD refers to the density measurement restricted to within the 

203 volume of calcified bone tissue and excludes any surrounding soft tissue, whereas vBMD is the 

204 combined density in a well-defined volume (Estell et al. 2020).

205 A standard BMD phantom (QRM-microCT-HA, QRM GmbH, Moehrendorf, Germany) was 

206 used to quantify density within the micro-CT images. The phantom used consists of five 

207 cylindrical inserts of known densities of calcium hydroxyapatite (Ca-HA), Ca10(PO4)6(OH)2. 

208 Proprietary epoxy resin is uniformly filled as the base material. The BMD values of the 

209 cylindrical inserts were 1.13 gcm-3, 50, 200, 800, and 1200 mgcm-3. 

210

211

212 Real-time PCR analysis and Western blots

213 Real-time PCR analysis and western blots were carried out in three to four randomly selected 

214 rats from each experimental group, to estimate the levels of SOST/sclerostin expression in bone 

215 samples at both transcriptional and translational levels. Real-time PCR was carried out by 

216 extracting RNA from tibiae by following the trizol method of RNA extraction (Kelly et al. 

217 2014). The high-capacity cDNA reverse transcription kit (Applied Biosystems, 4368813) was 

218 used to synthesize cDNA from the extracted RNA. Real-time PCR analysis was performed using 

219 the TaqMan primers specific for SOST gene (Thermo Scientific, 4331182) detection and was 

220 normalized to β-actin (Thermo Scientific, 4331182) expression levels.

221 For western blots, a total protein was extracted from bone samples using a standard protocol. 

222 Briefly, bones were powdered in liquid nitrogen and extracted using 1X RIPA buffer containing 

223 protease and phosphatase inhibitors. Following centrifugation, the supernatant was collected and 

224 assayed by western blot analysis. 20µg proteins were separated in a 4-12% SDS-PAGE 

225 (Genscript, M00654) and transferred to the PVDF (Polyvinylidene fluoride) blotting membrane. 

226 Following blocking with 5% milk in TBST (Tris Buffered Saline with Tween), the membrane 

227 was probed using a primary antibody against sclerostin (AF 1589, Mouse SOST/sclerostin 

228 antibody, 1:1000 dilution in 5%milk in TBST) and Rabbit anti-goat IgG secondary antibody 

229 (Peroxidase conjugated, Cat# A4174, Sigma Aldrich, 1:6000 in TBST). The blots were 

230 developed, and the images were captured on an X-ray film. The sclerostin western blot band 

231 intensities were normalized to the expression of GAPDH estimated by western blot analysis of 

232 the same samples using mouse monoclonal antibody against GAPDH (Sc-32233, Santa Cruz 

233 Biotechnology, 1:3000 in 5% milk in TBST) and goat anti-mouse HRP- conjugated secondary 

234 antibody (ab205719, 1:5000 in TBST) and shown as relative SOST expression. 

235

236 Enzyme-linked Immunosorbent Assay

237 ELISA was carried out to estimate the bone turnover markers osteocalcin and C-terminal 

238 telopeptide (CTX1) levels in serum and bone samples in three to five randomly selected rats 

239 from each experimental group using a readymade kit from Abbkine Scientific (Osteocalcin, 

240 KTE1010153) and Cloud-Clone (CTX-1, CEA665Ra) respectively and following the standard 
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241 manufacturer's protocol. Briefly, 50 μl of the samples (for bone lysates, approximately 600μg 

242 protein) or standards were applied to 96 well microtiter plates pre-coated with the ELISA capture 

243 antibody, mixed with 50 μl of 1:100 diluted biotin-conjugated competitor and further incubated 

244 for 1hr at 37oC. The plates were washed thrice with the wash solution, incubated for 30 minutes 

245 with 100 μl of 1:100 diluted streptavidin-HRP, and washed five times with the wash solution. 

246 The plates were incubated with 90μl of HRP substrate in the dark at 37oC and the colorimetric 

247 reaction was quenched using a stop solution.  The absorbance of the plate was measured at 450 

248 nm spectrophotometrically (Tecan Infinite M200 Pro).

249

250 Statistical Analysis

251 The data were analyzed using One-way or Two-way ANOVA with Turkey or Bonferroni post-

252 test multiple comparison tests using commercially available software GraphPad Prism 9.0.0 for 

253 Windows, San Diego, California. Adjusted p-value (∗p < 0:05, ∗∗p < 0:01). Data is presented as 

254 mean ± standard error (SE).

255

256 Results

257

258 Trabecular bone morphometry using microcomputed tomography (micro-CT) 

259 Data for all the measured trabecular bone structural parameters is presented in Table 1 as mean ± 

260 SE while Figure 2 displays the 3D images of the micro-CT scans for each of the four 

261 experimental groups along with the plots depicting changes in various structural parameters of 

262 trabecular bone. 

263

264 The untreated diabetic group (DMUT) demonstrated an increase in the mean distance between 

265 trabeculae, resulting in larger marrow spaces (Table 1, Figure 2). The trabecular separation 

266 showed a significant 59% increase between the control group NUT (mean ± SE: 0.09867 ± 

267 0.007) and DMUT (mean ± SE: 0.1570 ± 0.008). Treatment with irisin reduced the trabecular 

268 separation to 28% in the diabetic samples (mean ± SE: 0.1137 ± 0.008), although this change 

269 was not statistically significant (p > 0.05).

270

271 In terms of trabecular count, DMUT (mean ± SE: 4.243 ± 0.24) had a lower value compared to 

272 NUT (mean ± SE: 4.910 ± 0.082), although the difference was not statistically significant. 

273 Treatment with irisin resulted in a significant increase (p < 0.05) in the number of trabeculae in 

274 the diabetic samples (mean ± SE: 5.222 ± 0.268), with a recorded difference of 23%. Trabecular 

275 thickness decreased by 23% in DMUT (mean ± SE: 0.0803 ± 0.008) compared to the control 

276 NUT samples, and the irisin treatment did not show a significant improvement in this parameter 

277 (DMT: mean ± SE: 0.0789 ± 0.0023).

278 DM had a negative impact on bone volume fraction (BV/TV), as evident in the comparison 

279 between NUT, NT, and DMUT, with a significant decrease of 34.5% in DMUT compared to the 

280 untreated controls (NUT). Notably, the irisin treatment led to a 21.7% improvement in bone 
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281 volume. Bone mineral density (BMD) exhibited a significant decrease in DM, with a statistically 

282 significant change of 39% calculated between the control NUT (mean ± SE: 0.7527 ± 0.05921) 

283 and DMUT (mean ± SE: 0.4580 ± 0.042) samples. The irisin treatment showed an increase of 

284 27% in BMD (mean ± SE: 0.5820 ± 0.021) for the diabetic samples.

285  

286 Table 1: Mean ± S.E between different groups related to trabecular bone parameters obtained 

287 using micro-CT. normal un-treated/ NUT, normally treated (NT), diabetic un-treated (DMUT), and 

288 diabetic treated (DMT). Trabecular separation Tb-Sp (NUT-DMUT = P < 0.05: Trabecular 

289 thickness Tb-Th (NT-DMUT; NT-DMT = P <0.05):  Trabecular number Tb-N Gp (DMUT-DMT = P 

290 < 0.05): bone volume/total volume BV/TV Gp (NUT-DMUT; NT-DMUT = P < 0.05): bone surface 

291 density BS/ BV Gp (NT-DMUT; NT-DMT P <0.05): Bone mineral density BMD Gp (NUT-DMUT; 

292 NT-DMUT = P < 0.05).  n=3/Gp. 

293

294

295 Figure 2: Representation of 3D microarchitecture of the trabecular bone at the proximal end of 

296 the femur is shown in frontal (A, C, E, and G) and cross-sectional (B, D, F, and H) images from 

297 four groups: A and B (Normal un-treated/ NUT), C & D (Normal treated / NT), E and F (diabetic 

298 un-treated / DMUT), and G & H (treated / DMT) obtained by using the micro-CT. The image I is 

299 the magnified image of (A) to show the region of interest for frontal (red box) and cross-sectional 

300 (blue line) images. Plots of changes in various structural parameters of trabecular bone n=3/Gp: 

301 (J) Trabecular separation (Tb-Sp) (K) Trabecular thickness (Tb-Th) (L) Trabecular number (Tb-

302 N) (M) Bone volume/total volume BV/TV, (N) Bone surface density (BS/TV) (O) mean 1 (BMD), 

303 from NUT, NT, DMUT, DMT compared. P values are indicated in brackets.

304

305

306

307 Effect of irisin on bone turnover markers

308

309 Bone formation decreased significantly in diabetes as indicated by the decreased osteocalcin 

310 levels in sera and bone samples in DMUT (Figures 3A and 3B). 

311

312

313 Figure 3: Plots of changes in bone markers in sera and bone tissue is shown (A-E) in all four 

314 groups (Normal un-treated NUT: Normal Treated NT: Diabetic untreated DMUT: Diabetic treated 

315 DMT) n= 3-5/Gp; F (n=3-4/Gp): (A) Serum osteocalcin (ng/ml) (B) Bone osteocalcin (pg/ml) (C) 

316 Serum CTX1 (ng/ml(D) Bone CTX1 (pg/ml). Relative SOST expression is shown by PCR (E), 

317 Western blot (F). P values are indicated in brackets. Error bars = Mean ± SE.

318

319 Irisin treatment has anabolic action and it improved the osteoblastic activity reflected in raised 

320 osteocalcin levels, although the change was not statistically significant. Bone resorption as 

321 indicated by measuring CTX-1 in serum and bone samples indicates that resorption increases 

322 significantly in diabetes. Treatment with irisin further increased osteoclastic activity and this 
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323 effect was significant in NT bone samples when compared with those of NUT (Figures 3C and 

324 3D). 

325

326 We also observed that SOST levels were increased significantly in DMUT compared to NUT 

327 bone samples (Figure 3F) p < 0.01and were significantly down-regulated with irisin treatment in 

328 diabetic samples (p < 0.01) in both serum and bone samples (Figure 3E and 3F and Suppl data 

329 1a, 1b)

330

331

332 Discussion

333 DM1 is associated with poor bone health and a 6-fold increase in the overall incidence of hip 

334 fractures (Janghorbani et al. 2006; Janghorbani et al. 2007). Exercise improves many diabetic 

335 complications (Colberg et al. 2016). Physical activity stimulates the production of PGC-1α 

336 (peroxisome proliferator-activated receptor-γ co-activator 1α) in skeletal muscles, which in turn 

337 leads to the synthesis of FNDC5 (fibronectin type III domain-containing protein 5), a membrane 

338 protein abundantly found in skeletal muscles. Following exercise, there is an observed increase 

339 in the levels of irisin peptide, which is derived from the cleavage of its precursor protein FNDC5, 

340 as demonstrated in the research by Boström et al. in 2012. 

341 The research conducted by Faienza et al. in 2018 revealed a significant inverse correlation 

342 between levels of irisin and the duration of diabetes. Another study found that the circulating 

343 irisin levels were lower in patients with diabetes when compared with healthy-matched controls 

344 (Tentolouris et al. 2018). Colaianni et al.  2015 and Faienza et al. 2018 have shown that irisin is 

345 directly involved in bone metabolism, by promoting the differentiation of bone marrow stromal 

346 cells into mature osteoblasts. We specifically used a very small dose of irisin in this pilot study 

347 that has not been previously reported for bone tissue research. This decision was based on 

348 previous evidence showing that even a low dose of irisin, as low as 15 ng/ml, can increase 

349 AMPK levels in cells. Additionally, it has been demonstrated that 15 ng/ml is the observed 

350 serum level of irisin in diabetic rats after exercise (Formigari et al., 2022). Other studies have 

351 utilized doses of 50 ng and 100 ng of irisin to effectively stimulate significant increases in 

352 rodents (Kutlu et al., 2023). Furthermore, a recent study reported that irisin at a dose of 10 ng/ml 

353 can inhibit cell death and prevent mineral loss in bone tissue (Cariati et al., 2023).

354 Our study investigated the effect of DM1 on trabecular bone microstructure in the proximal 

355 femur obtained from mature male Wistar rats using a micro-CT. Furthermore, we examined the 

356 potential therapeutic effects of irisin in mitigating type 1 diabetic osteopathy induced by STZ. 

357 Additionally, the study evaluated changes in bone turnover markers after irisin treatment, 

358 including those specifically related to DM1.  

359 Wistar rats are commonly used in animal research due to similarities in pathophysiologic 

360 responses between the human and rat skeleton, combined with the husbandry and financial 

361 advantages (Lelovas et al. 2008). Micro-CT is the most powerful non-invasive technique that has 

362 completely revolutionized the assessment of bone architecture ex vivo. It is considered a gold 
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363 standard technique for evaluating bone microstructure in small animal models. In a previous 

364 study by Mohsin et al. in 2019b, we successfully utilized micro-CT to analyze bone 

365 microarchitecture in type 2 diabetes, specifically focusing on the head and neck of the femur at a 

366 high resolution without causing specimen damage. By acquiring X-ray attenuation data from 

367 multiple angles, micro-CT reconstructs a detailed 3D representation of the specimen. The 

368 scanning and data analyses adhered to established guidelines for assessing bone microstructure in 

369 rodents, as outlined by Bouxsein et al. in 2010a. 

370 In this study, the Ward area was also included in the trabecular and BMD measurements. Ward�s 

371 triangle is situated at the base of the femoral neck and is regarded as an area of minor resistance. 

372 It is defined by the joining of trabeculae of varying lengths and widths depending on the 

373 dimensions of the femoral neck which varies with age. The change in bone mineral density 

374 occurs early at Ward�s triangle; therefore, evaluation of bone mineral density in this area 

375 contributes to an understanding of femoral neck bone mass distribution and any imbalance is 

376 particularly important to assess the risk of bone fragility (Bouxsein et al. 2010b; Furman 2015).

377 DM adversely affects bone tissue making it porous and causing a decrease in bone volume/total 

378 volume, an increase in bone turnover (BS/BV), and a significant decrease in BMD (Chen et al. 

379 2018). However, a case-control study comparing the results of iliac biopsies taken from diabetic 

380 subjects with those from healthy age- and sex-matched non-diabetic controls found no 

381 differences in bone histomorphometric or micro-CT measurements (Armas et al. 2012).

382 Our study revealed several significant findings regarding the impact of diabetes on trabecular 

383 bone microstructure. We observed a notable increase in the distance between adjacent trabeculae, 

384 as indicated by increased trabecular separation (Tb-Sp), along with thinning of trabeculae in the 

385 DMUT group. Furthermore, we found an elevated bone surface-to-bone volume ratio (BS/BV) in 

386 the diabetic groups, suggesting increased osteoclast activity in diabetes. Although the number of 

387 trabeculae decreased in the DMUT group compared to the NUT group, the decrease was not 

388 statistically significant. 

389 Bone volume fraction (BV/TV) is the percentage ratio of the mineralized bone volume to the 

390 total volume of the region of interest in a sample is negatively affected by DM1 in this study. 

391 Trabecular BV/TV is lower in patients who have sustained vertebral and hip fractures (Boutroy 

392 et al. 2011; Ciarelli et al. 2000; Legrand et al. 2000; Milovanovic et al. 2012). The reduced 

393 BV/TV is most likely due to decreases in Tb-N and increases in Tb-Sp which is often found in 

394 age-related trabecular bone loss with or without thinning of trabeculae (McCalden et al. 1997; 

395 Thomsen et al. 2002). The trabecular bone strength is dependent on the meshwork of intact 

396 trabecular plates of normal width (Thomsen et al. 2002). Treatment with a low dose of irisin 5 µg 

397 twice a week for 6 weeks I/P increased the BV/TV by 21.7% in GP IV-DMT irisin-treated group 

398 as compared with the saline-treated group DMUT. Tb-Sp also decreased (28%) in the DMT 

399 however the treatment did not improve the Tb-Th or BS/BV in DMT. The number of trabeculae 

400 significantly increased with irisin treatment DMT. It is most likely that irisin results in improved 

401 BV/TV due to an increase in trabecular number and reduced trabecular separation. Reduction in 

402 BV/TV is a key structural alteration observed in osteoporotic bone, and it has been correlated 
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403 with overall bone strength in various studies, including those conducted by Riggs & Parfitt in 

404 2005, Thomsen et al. in 1998, and Zhang et al. in 2010. 

405 A measure of bone mineral density (BMD, mg cm-3) is important in the evaluation of 

406 osteoporosis and other bone-related conditions. Low bone mineral density along with poor bone 

407 quality is a risk factor for fragility fractures (Ciarelli et al. 2000; Marshall et al. 1996; Siris et al. 

408 2001; Zhang et al. 2010). In this study, we observed that BMD significantly decreased in the 

409 untreated diabetic group of animals and irisin treatment improved the bone mineral density by 

410 27%.  

411 This study did not find a statistically significant change in the trabecular bone parameters in 

412 irisin-treated healthy animals in the control group. This is in agreement with a previously 

413 published study (Colaianni et al. 2015) which found no change in trabecular bone morphology 

414 related to Tb. Th, Tb-N, and Tb-Sp in mice treated with a low dose of r-irisin compared with the 

415 control mice. However, that study reported increased cortical bone mineral density and a positive 

416 effect on cortical bone geometry following irisin treatment (Colaianni et al. 2015). Nevertheless, 

417 a recent study of micro-CT analysis of femurs (Colaianni et al. 2017) showed that r-irisin 

418 maintained bone mineral density in both cortical and trabecular bone, and prevented a significant 

419 decrease of the trabecular bone volume fraction in hind-limb suspended mice. The thickening of 

420 the cortical bones after the irisin treatment is also evident in our experiments (Figures 2D and 

421 2H). 

422 The alteration in the bone microstructure is attributed to changes in the remodeling cycle. 

423 Homeostasis in bone requires a balance between bone formation and resorption. Proper 

424 vascularisation is indispensable to maintain homeostasis. The impairment of blood supply to the 

425 bone tissue as occurs in diabetes could change the proliferation and differentiation of bone 

426 precursors in the bone marrow resulting in an altered bone remodeling cycle (Oikawa et al. 

427 2010). RANK-ligand (RANKL) expressed by osteoblasts activates pre-osteoclasts to become 

428 mature osteoclasts through binding to receptor activator of nuclear factor-κB (RANK) receptors 

429 (Poole et al. 2005; Wijenayaka et al. 2011). Sclerostin, released by osteocytes in response to 

430 mechanical forces, has been reported to increase in diabetes (Hie et al. 2007; Kim et al. 2015). 

431 Sclerostin inhibits osteoblast differentiation and bone formation by antagonizing the canonical 

432 Wnt pathway. It also upregulates RANKL and downregulates OPG, leading to increased 

433 osteoclast activity and bone resorption. Our study showed that irisin treatment significantly 

434 decreased sclerostin levels in both normal and diabetic samples as shown in earlier studies 

435 (Colaianni et al. 2015; Klangjareonchai et al. 2014; Zhang et al. 2018). Sclerostin inhibits 

436 osteoblast differentiation and bone formation by antagonizing the canonical Wnt pathway 

437 (Delgado-Calle et al. 2017). It also upregulates RANKL and downregulates OPG, leading to 

438 increased osteoclast activity and bone resorption (Poole et al. 2005). In osteoclasts, the 

439 expression of cathepsin K, TRAP (tartrate-resistant acid phosphatase), and carbonic anhydrase-2 

440 proteins, involved in the remodeling of the extracellular matrix are upregulated by sclerostin 

441 (Wijenayaka et al. 2011). 
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442 The osteoblastic activity was estimated by measuring the osteocalcin levels in serum and bone 

443 samples. Our study also found that untreated diabetic samples had reduced osteocalcin levels, 

444 indicating decreased osteoblastic activity. Treatment with irisin showed anabolic effects, 

445 although not statistically significant, by increasing osteocalcin release. Suppression of sclerostin 

446 in treated samples likely contributed to improved bone formation. The data obtained from this 

447 study is consistent with others which also demonstrated decreased bone formation in diabetes by 

448 the significantly decreased level of osteocalcin (Horcajada-Molteni et al. 2001; Li et al. 2005). 

449 Hyperglycemia in diabetes inhibits osteoblast proliferation, promotes osteoclast differentiation, 

450 decreases osteocalcin and OPG expression, and reduces bone mineral density. Irisin directly acts 

451 on osteoblasts, stimulating proliferation and differentiation through the p38 MAPK and ERK 

452 pathways (Qiao et al. 2016). 

453 Bone resorption was investigated in this study by measuring carboxy-terminal collagen 

454 crosslinks (CTX-1) levels in bone and serum samples and consistent with other studies, (Khan & 

455 Fraser 2015; Qiao et al. 2016) it was found that bone resorption significantly increases in DM. 

456 Further, irisin treatment did not significantly affect the osteoclastic activity in the diabetic 

457 samples possibly due to the limited number of samples. A significant change was, however, 

458 recorded in the bones of normal rats as irisin treatment further increases the osteoclastic activity 

459 as shown by(Ng et al. 2018). Irisin was shown in an earlier study to induce osteoclastogenesis by 

460 acting on integrin which, subsequently acts as the receptor for irisin on osteoclasts. Irisin-

461 induced osteoclastogenesis led to the release of carboxy-terminal collagen crosslinks (CTX) and 

462 enhanced bone resorption (Kim et al. 2018).

463 To our knowledge, this is the first study to report the positive effect of irisin on the trabecular 

464 bone microstructure in DM1. Irisin treatment significantly improves the Tb. N and improves Tb. 

465 Sp, BV/TV, and BMD by 22%-28%. The small change could be attributed to a very low dose of 

466 irisin and the small number of animals used in this pilot study. However, the study also found 

467 that low doses of irisin significantly decreased sclerostin, an anti-anabolic osteokine in diabetic 

468 osteopathy.

469

470

471 Conclusions

472 The data obtained using a micro-CT analysis corroborates that DM deteriorates the trabecular 

473 bone microstructure in the proximal end of the femur which is only partially improved by irisin. 

474 Bone formation is adversely affected in STZ-induced diabetic osteopathy which is shown in this 

475 study by decreased osteocalcin and increased CTX1 and sclerostin levels. Irisin is a regulator of 

476 bone remodeling by acting on all the key players of the bone remodeling cycle. Irisin 

477 significantly decreases sclerostin levels in diabetic rats which most likely promotes osteoblast 

478 differentiation and bone formation enhancing the trabecular bone quality. However, regarding 

479 trabecular bone parameters, statistically significant improvement with the irisin treatment is 

480 observed only in the trabecular number. Bone mineral density, bone volume fraction, and 

481 trabecular separation improved by 22%-28% only and this could be due to the small sample size 
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482 and a small dose of irisin used for this pilot study. Conversely, irisin also promotes osteoclastic 

483 activity, therefore, would help to treat diabetic osteopathy where low bone turnover is the 

484 underlying pathology. However, the changes reported here with irisin treatment were marginal 

485 and further work with variable doses of irisin is required to establish the role of irisin in diabetic 

486 osteopathy.  
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Figure 1
A streptozotocin-induced rat model of type 1 diabetic osteopathy injected with a low
dose of irisin.

Figure Prepared using Canva software
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Figure 2
Representation of 3D microarchitecture of the trabecular bone obtained by using the
micro-CT. Plots of changes in various structural parameters of trabecular bone in all
experimental groups is shown.

Representation of 3D microarchitecture of the trabecular bone at the proximal end of the
femur is shown in frontal (A, C, E, and G) and cross-sectional (B, D, F, and H) images from
four groups: A and B (Normal un-treated/ NUT), C & D (Normal treated / NT), E and F (diabetic
un-treated / DMUT), and G & H (treated / DMT) obtained by using the micro-CT. The image I is
the magnified image of (A) to show the region of interest for frontal (red box) and cross-
sectional (blue line) images. Plots of changes in various structural parameters of trabecular
bone n=3/Gp: (J) Trabecular separation (Tb-Sp) (K) Trabecular thickness (Tb-Th) (L)
Trabecular number (Tb-N) (M) Bone volume/total volume BV/TV, (N) Bone surface density
(BS/TV) (O) mean 1 (BMD), from NUT, NT, DMUT, DMT compared. P values are indicated in
brackets.
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Figure 3
Plots of changes in bone markers in sera and bone tissue

Plots of changes in bone markers in sera and bone tissue is shown (A-E) in all four groups
(Normal un-treated NUT: Normal Treated NT: Diabetic untreated DMUT: Diabetic treated
DMT) n= 3-5/Gp; F (n=3-4/Gp): (A) Serum osteocalcin (ng/ml) (B) Bone osteocalcin (pg/ml)
(C) Serum CTX1 (ng/ml(D) Bone CTX1 (pg/ml). Relative SOST expression is shown by PCR (E),
Western blot (F). P values are indicated in brackets. Error bars = Mean ± SE.
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Table 1(on next page)

Mean ± S.E between different groups related to trabecular bone parameters

Mean ± S.E between different groups related to trabecular bone parameters obtained using
micro-CT. Gp. I—normal un-treated/ NUT, Gp. II— normally treated (NT), Gp. III—diabetic un-
treated (DMUT), and Gp. IV—diabetic treated (DMT). Trabecular separation Tb-Sp Gp (I-III = P
< 0.05: Trabecular thickness Tb-Th Gp (II-III; II-IV = P <0.05): Trabecular number Tb-N Gp (III-
IV = P < 0.05): bone volume/total volume BV/TV Gp (I-III; II-III = P < 0.05): bone surface
density BS/ BV Gp (II-III; II-IV P <0.05): Bone mineral density BMD Gp (I-III; II-III = P < 0.05).
n=3/Gp.
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1 o *= p<0.05

2 o  Normal untreated NUT (Control+vehicle) 

3 o  Normal treated NT (Control+irisin)

4 o  Diabetic untreated DMUT (Diabetic+vehicle) 

5 o  Gp IV Diabetic treated DMT Diabetic+irisin

6

7

8

Mean ± S.E in the experimental GroupsParameters

NUT NT DMUT DMT

Tb-Sp (mm)

0.09867 ± 

0.007781

0.1079 ±0.01554

* with DMUT

0.1570 ± 

0.008653

* with NUT

0.1137±

0.008182

Tb-Th (mm)

0.1051 ± 0.007647 0.1189 ±0.01297

0.0803 ± 

0.008294

* with NT

0.0789 ± 

0.002389

* with NT

Tb-N (1/mm)

4.910 ± 0.08251 4.422 ± 0.1725 4.243 ± 0.2492
5.222 ± 0.2683

* with DMUT

BV/TV %

0.5159 ± 0.03683

0.5255 ± 

0.05855

* with DMUT

0.3376 ± 0.02096

* with NUT
0.4109 ± 0.01061

BS/BV 1/mm

19.24 ± 1.478 17.19 ± 1.704
25.39 ± 2.427

* with NT

25.39 ± 0.7572

* with NT

BMD g/cm2

0.7527 ± 0.05921
0.7847 ± 0.1022

* with NUT

0.4580 ± 0.04238

* with NUT
0.5820 ± 0.02126
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