Evaluation of some triticale genotypes under different salt concentrations at germination and early seedling stage (#84031)

First submission

Guidance from your Editor

Please submit by 27 Apr 2023 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

- 8 Figure file(s)
- 9 Table file(s)
- 1 Raw data file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Evaluation of some triticale genotypes under different salt concentrations at germination and early seedling stage

Ebrahim Ramadan 1 , Haytham A. Freeg 1 , Nagwa Shalaby 1 , Mosa S. Rizk 1 , Jun Ma 2 , Wenhua Du 2 , Omar M. Ibrahim 3 , Ick-Hyun Jo $^{\text{Corresp.},4}$, Khairiah Alwutayd 5 , Hamada AbdElgawad 6 , Amira El-Tahan $^{\text{Corresp.},3}$

Corresponding Authors: Ick-Hyun Jo, Amira El-Tahan Email address: ntron@dankook.ac.kr, aeltahan@srtacity.sci.eq

The current investigation aims to study the effect of salinity on triticale genotypes at germination and early seedling stage. Nine triticale genotypes were used. Six salt concentrations i.e. control, 40, 80, 120, 160 and 200 mM NaCl were applied. Results indicated that increasing salinity concentrations negatively affected the studied traits. The genotypes Zhongsi 10841048, C6, C23, and C25, had better performance for germination rate, germination vigor index, germination percentage, mean daily germination, and relative salt injury. Highly significant positive correlations were revealed among the traits, including germination rate, germination vigor index, germination percentage, mean daily germination, seedling vigor index, and root length, indicating the importance of these traits for the selection of salt tolerance genotypes at the germination stage. PCA was able to group the most desirable genotypes into two clusters.

¹ Agricultural research center, Egypt, Kafr Elshiekh, Egypt

² Gansu Agricultural University, Gansu, China

³ city of scientific research and technological applications, Alexandria, Egypt

⁴ Dankook University, Cheonan, Republic of Korea

⁵ Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

⁶ Beni-Suef University, Beni-Suef, Egypt

Evaluation of some triticale genotypes under different salt concentrations at

germination and early seedling stage Ebrahim Ramadan¹, Haytham A. Freeg¹, Nagwa Shalaby¹, Mosa S. Rizk¹, Jun Ma², Wenhua Du², Omar M. Ibrahim³, Ick-Hyun Jo⁴, Khairiah Alwutayd⁵, Hamada AbdElgawad⁶, Amira M. El-Tahan^{3*} ¹Field Crops Research Institute, Agricultural Research Center, Egypt College of Grassland Science, Gansu Agricultural University (GASU), P. R. China Plant Production Department, Arid Lands Cultivation Research Institute, the City of Scientific Research and Technological Applications, SRTA-City. Borg El Arab, Alexandria, Egypt.

- 9 ⁴Department of Crop Science and Biotechnology, Dankook University, Cheonan 31116, Republic of Korea
- ⁵Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671,
- 11 Saudi Arabia.
- 12 ⁶Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni Suef, Egypt.

13

16

18

19

20

21

22

23

2425

26

27

28

- 14 Correspondence: Amira M. El-Tahan e-mail: aeltahan@srtacity.sci.eg
- 15 Ick-Hyun Jo e-mail: <u>ntron@dankook.ac.kr</u>

17 Abstract

The current investigation aims to study the effect of salinity on triticale genotypes at germination and early seedling stage. Nine triticale genotypes were used. Six salt concentrations i.e. control, 40, 80, 120, 160 and 200 mM NaCl were applied. Results indicated that increasing salinity concentrations negatively affected the studied traits. The genotypes Zhongsi 10841048, C6, C23, and C25, had better performance for germination rate, germination vigor index, germination percentage, mean daily germination, and relative salt injury. Highly significant positive correlations were revealed among the traits, including germination rate, germination vigor index, germination percentage, mean daily germination, seedling vigor index, and root length, indicating the importance of these traits for the selection of salt tolerance genotypes at the germination stage. PCA was able to group the most desirable genotypes into two clusters.

2930

1. Introduction

Keywords: salinity, triticale, genotype edding stage, PCA

Triticale (x *Triticosecale* Wittmack) is a cereal crop that belongs to the grass family Poaceae. It is derived from the hybridization between wheat (genus Triticum) and rye (genus Secale). It possessed the ability to grow in poorer soils than rye and productivity and grain quality from wheat (Cooper, 1985). It has a strong fibrous root system and a high ability to grow efficiently in poor soils. It is also known for higher yields on marginal lands, a good source of protein, and tolerance to drought and biotic stresses (Hill 1990 and Cantale et al., 2016). There are two types of triticale, i.e., hexaploid and octoploid triticale (Bushuk and Larter, 1980).

It is estimated that the global population will be more than 9 billion in 2050 (Godfray et al., 2010); this increasing human population will require more food from more than double the production of crops (Ray et al., 2013). Population increase from one side and reduction in land available for cultivation from another are two threats to agricultural sustainability (Shahbaz and Ashraf, 2013).

Salinity is one of the abiotic stresses that limit cereals and other crops' production. Salinity affects about one billion hectares of global land, causing a loss in crop production (Saade et al., 2016). Currently, about 20% of the total cultivated area and 33% of irrigated agricultural regions of the world are affected by salinity. Furthermore, the salinized areas are increasing at a rate of 10% annually for various reasons, i.e., low precipitation, high evaporation, irrigation with saline water, and poor cultural practices. 50% of the arable land or more will probably be salinized by the year 2050 (Pitman and Läuchli, 2002; Jamil et al., 2011). In arid and semi-arid regions, salinity is one of the most important environmental factors affecting germination uniformity (Demir et al., 2003). Comparing plant growth phases, germination and seedling growth phases, and the cultivars' response to salt. (Ghoulam and Fares 2001)

Triticale is identified to be a salt-tolerant species. Triticale was reported as a moderate halophyte with a high salinity threshold (Grieve et al., 2012). The plant growth doesn't show significant differences with increasing salinity even up to 10 dSm⁻¹ (Ozturk et al., 2018). Kotuby-Amacher et al., (2000) reported that the salinity threshold differed among the studied species in a study to compare the salinity tolerance in triticale with other cereals. In general, triticale tolerated salinity at a higher threshold of 6.1 dSm⁻¹ ECe in comparison to corn (2.7 dSm⁻¹), Rye (5.9 dSm⁻¹), and wheat (4.7 dSm⁻¹). When soil salinity is up to 7.3 dSm⁻¹, it didn't affect the relative grain yield of triticale genotypes. Each unit increase in soil salinity above 7.3 dSm⁻¹

reduced the grain yield of triticale by 2.8%, placing triticale in the salt-tolerant category (François et al., 1988).

Seed germination determines the seedling vigor and the plant's future growth, so that this stage can be described as a susceptible stage for plant growth (Hakim et al., 2010). Better plant growth and establishment in saline soil are determined by the salt tolerance of cultivated genotypes in early growth stages (Keshavarizi et al., 2012). In general, increasing salinity negatively affects all traits associated with germination and early seedling growth of the plants exposed to salt stress. Salinity can influence the germination process of seeds either by altering osmotic potential that lower water uptake or by ionic toxicity effects of specific ions such as Natland CI⁻ ions which are related to the embryonic damage and reduced and inhibited seed germination, shoot elongation and plant growth (Sosa et al., 2005, Munns and Tester 2008 and Farooq et al., 2015). The effect of salinity differs among different varieties, depending on the salinity stress applied (Jamil et al., 2006, Mbinda and Kimtai, 2019). Though triticale is generally considered tolerant to salt stress, cultivars are slightly less salt tolerant at the germination stage than they became after the three-leaf growth stage (Francois et al. (1988) he current investigation aimed to study the effect of different salt concentrations on triticale genotypes at germination and early seedling stage

2. Materials and methods

Nine triticale genotypes were used in the current study names and characteristics are listed in **Table (1)**. The experiment was conducted at Gansu Agricultural University, P. R. China. Seeds of the studied genotypes were sterilized using Sodium Hypochlorite (1%) for half an hour and washed using distilled water three times. After that, fifty seeds of each genotype were germinated on Whatman No.1 filter paper in 9 cm Petri dishes. Germination was conducted under six salinity concentrations i.e. 0.0 mM, 40 mM, 80 mM, 120 mM, 160 mM and 200 mM NaCl. The seeds were allowed to germinate at 20 ± 1 °C in the dark (16 h) and light (8 h) for 7 days (Warham *et al.*, 1995). Seeds were irrigated and washed twice daily by test solution and the paper was altered once every 2 days to prevent salt accumulation (Rehman et al., 1996). After two days of planting, germinated seeds were counted, and the seed was considered to have germinated when the emerging radicle elongated to 1 mm. Germination percentage was recorded every 24 h for 5 days. After 7 days of planting, data were collected on shoot length (SL) (cm), root length (RL) (cm), shoot fresh weight (SFW) (mg), root fresh weight (RFW) (mg), shoot dry

92 weight (SDW) (mg), root dry weight (RDW) (mg) and root/shoot dry weight ratio (RSR). Dry 93 matter was measured after drying samples at 70 °C for 72 h in an oven. Germination traits were 94 measured as follows: Germination rate (GR) = $\sum_{i=1}^{n} S_i / D_i$ (Maguire, 1962) 95 **(1)** Where, S_i is the germinated seeds per counting, D_i represents seed numbers until n^{th} day. 96 97 and n is the number of the countings. Germination vigor index (GVI) = $\sum_{i=1}^{k} n_i / t_i$ (Maguire, 1962) 98 (2) Where, n_i is the percentage of seeds germinated on the n^{th} day, and t_i is the number of days 99 counted from the start of the experiment (i) to the last day on which seeds germinated (k). Higher 100 101 values represent a more rapid rate of germination. 102 Germination percentage (GP%) = (Seeds germinated / Total seeds) \times 100 (Manmathan 103 and Lapitan, 2013). (3) Mean daily germination (MDG) = Final germination percentage/number of days to final 104 **(4)** 105 germination 106 Mean germination time (MGT) = $\sum (T_i N_i) / \sum N_i$ (Kankarla *et al.*, 2020) (5) Where, N_i is the number of the newly germinated seeds in times of T_i 107 108 The energy of germination (GE) = Percentage of the germinated seeds 4 days after 109 planting / Total number of seeds tested (Ruan et al. 2002). (6) 110 Relative salt injury (RSI) = (Germination percentage of the control – Germination 111 percentage of the treatment) /Germination percentage of the control **(7)** 112 Seedling vigor index (SVI) = (Average shoot length + Average root length) x 113 Germination percentage (Abdul-Baki and Anderson 1973) (8)114 Statistical analysis 115 The experiment was carried out in a factorial, completely randomized design (CRD) 116 (where Factor-1 was genotyped including nine levels and Factor-2 was salt stress treatments 117 including six levels) with three replications and 50 seeds in each replicate. Data were analyzed 118 by 2-way analysis of variance using the using SAS statistical software, version 9.2. The 119 comparison of the means was done using Duncan's multiple range test (P < 0.05). The correlation 120 coefficient was carried out using SPSS version 16. Principal Component Analysis (PCA) was 121 conducted using Statistical Package PAST (Hammer et al., 2001) to visualize the differences 122 among the studied genotypes for various stress-related traits.

124

125

126

127

128

129

130

148

149

150

151

152

153

3. Results and discussion

ANOVA analysis:

Mean squares of treatments, genotypes, and the interaction between them for all studied traits are found in **Table 2.** All estimates showed significant differences for all variance components except for mean germination time, where the mean square was non-significant for genotypes and significant for the interaction. This result indicated the presence of a high amount of variation among the studied genotypes under different salt stress treatments.

Mean performance of genotypes

131 For germination traits, data in **Table 3** showed that the four triticale genotypes **Zhongsi** 1084 1048, C6, C23, and C2 cored the highest mean values for germination rate (3.93, 3.26, 132 3.14, and 3.19%, respectively), germination vigor index (28.83, 24.98, 23.3 and 23.92 133 134 respectively), germination percentage (79.15, 63.32, 63.1 and 62.64%, respectively), mean daily 135 germination (11.31, 9.05, 9.01 and 8.95, respectively) and germination energy (49.26, 49.09, 136 44.62 and 46.17%, respectively). On the other hand, triticale genotypes Gannong No.2 and Shida 137 No.1 exhibited the lowest mean values for germination rate (1.85 and 1.91, respectively), 138 germination vigor index (13.76 and 14.64, respectively), germination percentage (38.49 and 39.06%, respectively) and meant daily germination (5.5 and 5.58, respectively). Meanwhile, 139 140 Shida No.1 and C16 revealed the lowest values for germination energy (39.02 and 39.42, 141 respectively. Genotypes C6, Gannong No.2, and C25 revealed the lowest values for mean 142 germination time (2.85, 2.94, and 2.96 days, respectively), while C16, C23, and Gannong No.2 143 exhibited the highest values (3.29, 3.28 and 3.26 days, respectively). The lowest relative salt injury was observed for Zhongsi 1084, C6, and C23 (0.19, 0.31, and 0.38, respectively), while 144 145 the highest injury happened for Shida No.1 and C36 (0.64 and 0.58, respectively). Genotypes 146 Zhongsi 1084, C6 scored 39 and 18.1% higher than the general mean for seedling vigor index; meanwhile, Gannong No.2 revealed 41 % less than the general mean. 147

For seedling traits, among the studied genotypes, C6 and Zhongsi 1084 scored 12.4% and 9.1% higher than the overall mean performance for shoot length, while Gannong No.2 and C16 revealed 16.7 and 6.1% less than the overall mean performance. Regarding root length, Zhongsi 1084, C6, and C23 scored the highest mean performance with 17.8, 16.2, and 11.3% over the overall mean value. Meanwhile, genotypes C36 and Gannong No.2 showed the lowest mean performance with 16.8 and 12.4% less than the overall mean value. Concerning root/shoot ratio,

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

the highest ratios were observed in C23 and Gannong No.2; meanwhile, the lowest ratio was obtained in C36. The highest increase over the overall mean for fresh shoot weight was observed in C6 (15.9%) and Gannong No.4 (12.1%), while the highest decrease was observed in both triticale genotypes Gannong No.2 (13%), C16 (10%) and C25 (9.7%). For fresh root weight, the highest mean values were revealed by C6 and Gannong No.4, which had 32.1 and 20.4%, respectively, more than the general mean. Meanwhile, genotypes C25, C16 and C36 had the lowest mean values compared with the general mean, with 13.1, 11.7 and 11% decrease, respectively. Regarding shoot dry weight, the highest mean values were revealed by C6 with 12.9% increase over the general mean; meanwhile, both genotypes Gannong No.2 and C16 had the lowest mean values compared with the general mean with 13.1 and 8.2% decrease, respectively. Regarding root dry weight, both genotypes C6 and Gannong No.4 scored 24.5 and 20.5% higher than the general mean. Meanwhile, C23, C25, and Gannong No.2 recorded 13.5, 12.6, and 11.1 % less than the general mean.

These results showed that the response for salinity differed among the studied genotypes. Genotypes Zhongsi 1084, C6, C23, and C25 were the most desirable genotypes for germination properties under salinity. Meanwhile, C6 and Gannong No.4 were the best for seedling traits. On the other hand, Gannong No.2 and Shida No.1 were the most affected genotypes by salinity for germination traits, while Gannong No.2 was the most affected regarding seedling traits. These results indicated that the effect of salinity on triticale at germination and early seedling stage varied between the different genotypes. According to Shannon (1997), soil salinity's effect on plants is associated with their growth stage. Seed germination and seedling establishment are the most salt-sensitive stages of the plant (Ashraf and Foolad, 2005). The effect of NaCl on seed germination of triticale was studied by Atak et al., (2006), who reported that the delay in germination was mainly due to high Na⁺ accumulation in the seeds rather than osmotic stress in triticale cultivars. Kandil et al. (2012) studied the impact of salt stress under different salinity levels of NaCl on eleven bread wheat varieties (Triticum aestivum L.). They reported that wheat cultivars significantly varied in means of the final germination percentage, germination rate, seedling vigor index, shoot length, root length, shoot fresh weight, root fresh weight, shoot dry weight, and root dry weight.

The effects of salt treatments

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

Table (4) showed that the germination rate ranged between 1.42 and 4.4. The highest rates were observed in the control and 40 mM, which had the same value—beyond 40 mM germination rate gradually reduced along with the increased NaCl concentration. The reduction percentage increased from 41% under 80 mM to 67.9% under 200 mM treatment. For germination vigor index, significant differences were observed while increasing the salinity level; mean values ranged from 10.28 to 33.54 over the different treatments, the highest value was scored by 40 mM treatment while the lowest value was exhibited for 200 mM treatment, no significant differences were observed between control and 40 mM treatments, and the highest reduction percentages of 60, 62 and 69.2% were observed in the treatments 120, 160 and 200 mM NaCl. Regarding germination percentage, no significant differences were observed between control and 40 mM NaCl treatments. Significant differences were recorded while the NaCl concentration increased from 80 mM to 200 mM, and the germination percentage reduced by 39.8% at 80 mM concentration. The highest percentage of 88.04% was exhibited for 40 mM treatment, while the lowest percentage of 28.29% was recorded for 200 mM treatment. The highest values for mean daily germination were observed in both treatments, 40 mM NaCl and control (12.58 and 12.50, respectively); the lowest value was exhibited in the 200 mM treatment. The reduction percentage increased from 39.8 to 67.4%, while the NaCl concentration increased from 80 to 200 mM. The number of days required for germination increased from 2.48 days at the control to 4.09 days at 120 mM NaCl treatment. Beyond 120 mM concentration, the number of days for germination decreased gradually along with the increasing NaCl concentration. No significant differences were observed among 40, 80, 160, and 200 mM treatments. Germination energy decreased from 48.76% at the control to 35.96% at 120 mM NaCl. Beyond 120 mM concentration, germination energy increased gradually, and it reached 51.35% at 200 mM. No significant differences were exhibited among control, 160 mM, and 200 mM treatments. The relative salt injury was negative at 40 mM NaCl and increased significantly with the increasing salt concentration. It increased from 39.82% under 80 mM NaCl to 67.44% under 200 mM NaCl treatment. Seedling vigor index decreased dramatically along with increased salt concentration, and significant differences were observed among all applied treatments. The reduction percentage ranged from 27.2% at 40 mM NaCl to 95.6% at 200 mM NaCl.

As Table (4) showed, both shoot length and root length reduced significantly with increasing salt stress for seedling traits. The highest mean values were recorded under control,

215 while the lowest mean values were recorded under 200 mM NaCl. Regarding shoot length, mean 216 values varied from 9.83 cm to 1.77 cm and the reduction percentage ranged from 27.2% (40 mM 217 NaCl) to 82% (200 mM NaCl). Means of the root length varied from 6.57 cm to 0.48 cm, and the 218 reduction percentage ranged from 32.4% at 40 mM NaCl to 92.7% at 200 mM NaCl treatment. 219 Root/shoot ratio decreased gradually from 0.67 at control to 0.3 at 200 mM NaCl. No significant 220 differences have existed between 120 and 160 mM treatments. More than 50% reduction was 221 recorded compared to control at 200 mM concentration. Shoot fresh weight and shoot dry weight 222 were significantly affected by the salt stress. Comparing control, the reduction percentage ranged 223 from 13.6 to 75.4% regarding fresh weight and from 10.3 to 68.1% regarding dry weight, while 224 the NaCl concentration increased from 40 to 200 mM. Root fresh weight and root dry weight 225 were also significantly reduced by salinity. While the NaCl concentration increased from 40 to 226 200 mM the reduction percentage ranged from 18.4 to 69% for root fresh weight and from 14.5 227 to 55.6% for root dry weight. The obtained results agree with Akgun et al., (2011), who studied the effects of different salt concentrations (EC = 3.9, 6.1, 8.3, 10.5, 14.9, 19.3, 25.0 dSm⁻¹) on 228 229 germination and seedling traits of triticale. They reported that germination rate, shoot and root length, and dry weights of green parts and roots decreased considerably with increased salt 230 231 concentration. Kandil et al. (2012) and Atri et al. (2018) reported that along with the increasing 232 salt concentration, the average germination and seedling growth traits reduced gradually. 233 François et al. (1988) reported that when soil water salinity was up to 11.6 dSm⁻¹, there was no 234 significant effect on the final germination percentage of triticale; however, salt levels greater 235 than 6.0 dSm⁻¹ delayed seed germination. They also reported that the final germination could be 236 reduced by 17%, increasing salinity levels up to 20.5 dSm⁻¹.

Interaction effects

237

238

239

240

241

242

243

244

245

The mean performance of the studied genotypes as affected by salt treatments is found in **Figures 1** and **2**. The highest values of germination rate, germination vigor index and germination percentage were observed for Zhongsi 1084 under salt concentrations from 40 to 200 mM NaCl, while the lowest values were observed for Shida No.1 under salt concentrations from 80 to 200 mM NaCl. For mean daily germination, Zhongsi 1084 was the best genotype under salt concentrations from 40 to 200 mM NaCl, while Shida No.1 was the most affected under high salt concentrations from 120 to 200 mM NaCl. The mean germination time ranged from 2.01 to 3.41 days at control, 2.7 to 3.31 at 40 mM, 2.58 to 3.96 at 80 mM NaCl, 3.23 to

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

246 4.59 at 120 mM, 2.68 to 3.53 days at 160 mM, and from 2.59 to 3.37 days at 200 Mm NaCl 247 treatment. The lowest number of days under control and 120 Mm NaCl treatments was observed 248 in genotype C6. With respect to germination energy, the best genotypes were Gannong No.4 249 under control (55.97%), Zhongsi 1084 under 40 and 120 mM NaCl treatments (52.84 and 48.03%, respectively), C6 under 80 mM treatment (46.06%), and Shida No.1 under 160 and 200 250 251 mM treatments (56.5 and 57.5%, respectively). Relative salt injury increased with the increase of 252 salt concentration. The lowest percentage of injury was observed in Zhongsi 1084 (10.23, 24.18, 253 25.36, and 38% under 80, 120, 160, and 200 mM NaCl, respectively). Meanwhile, the highest 254 percentage of injury was exhibited in Shida No.1 (57.57, 82.17, 87.38, and 87.21% under 80, 255 120, 160, and 200 mM NaCl, respectively). For seedling vigor index, the most desirable 256 genotypes were both Zhongsi 1084 and Gannong No.4 under control, Zhongsi 1084 and C4 257 under 40 mM, 120 and 200 mM NaCl treatments, Zhongsi 1084 and C23 under 80 mM, and both 258 Zhongsi 1084 and C25 under 160 mM, on the other hand, Shida No.1 was the most affected 259 genotype under high salt concentration.

Concerning the shoot length, Zhongsi 1084 scored the highest mean values under control and 40 mM NaCl treatments, but it revealed the lowest values under 160 and 200 mM NaCl treatments. C6 scored the highest values under 80 and 120 mM NaCl treatments, while C16 scored the highest values under 160 and 200 mM NaCl treatments. The lowest means under control, 40, 80, and 120 mM, were exhibited for Gannong No.2. The means of root length ranged between 8.57 and 5.13 cm at control, 5.45 and 3.61 at 40 mM, and decreased gradually to be ranged between 0.97 and 0.62 cm at 160 mM and between 0.61 and 0.29 cm at 200 Mm NaCl treatment. The root/shoot ratio decreased by increasing salt concentrations. The ratios ranged from 0.79 to 0.53 under control and from 0.42 to 0.20 under 200 mM NaCl treatment. Shida No. 1 revealed the highest ratios under 160 and 200 mM NaCl, while C16 revealed the lowest ratios. Both C6 and Shida No1 were the best genotypes regarding shoot fresh weight under control, 40 and 80 NaCl concentrations, while both Gannong No.4 and C6 were the best under 120, 160, and 200 mM NaCl treatments. The genotypes C6 and Gannong No.4 were the best for root fresh weight under control, 40, 80, and 120 mM NaCl concentrations, while C6 and Gannong No.2 were the best under 160 and 200 mM NaCl treatments. Concerning shoot dry weight, the highest mean values were scored by Shida No.1 and C6 under control, 40 mM and 80 mM treatments, C6 under 120 and 160 mM treatments, and Gannong No.4 under 200 mM. In contrast, the lowest

mean values under high salt concentrations were exhibited by Zhongsi 1084 and C36. Gannong No.4 and C6 were the most desirable genotypes under control, 40 Mm, 80 mM and 120 mM salt treatments for root dry weight. Under 160 and 200 mM salt treatments, C6 was the best, while C23 was the most affected genotype. Saboora et al., 2006 reported that different salinity concentrations caused considerable effects on germination percentage, germination rate, total dry weight, and all seedling traits in all studied genotypes. Similar results for the interaction between salt stress and genotypes have been reported by Kandil et al. (2012).

Phenotypic correlation

Phenotypic correlation coefficients among the studied traits are found in Table (5). The highest positive correlation (r = 1.00) was observed between germination percentage and mean daily germination. Highly significant positive correlations were recorded among the parameters germination rate, germination vigor index, germination percentage, mean daily germination, seedling vigor index, and root length. Significant positive correlations were recorded among the traits root length, shoot fresh weight, root fresh weight, and shoot dry weight. Seedling vigor index was highly significant positive correlated with root length. Germination vigor index was significantly positively correlated with germination energy and shoot length. Significant positive correlations were observed between germination energy, seedling vigor index and shoot length, and between shoot length and root length. Positive but non-significant correlation coefficients were recorded between the germination rate, germination vigor index, germination percentage, mean germination time, germination energy, and seedling vigor index from one side and the seedling traits root/shoot ratio, shoot fresh weight, root fresh weight, shoot dry weight and root dry weight from the other side.

On the other hand, highly significant negative correlations were recorded between relative salt injury and each of germination rate, germination vigor index, germination percentage, and mean daily germination. Significant negative correlations were recorded between mean germination time and root dry weight and between relative salt injury and both seedling vigor index and root length. Similar results were obtained by Alom *et al.* (2016), who reported that the salt tolerance index for seedling dry weight of wheat genotypes after 10 days of irrigation with saline water (15 dSm⁻¹) was significantly positively correlated with the salt tolerance index for germination rate, germination vigor index, shoot length, and root length which indicated that these parameters could be used as selection criteria for screening wheat

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

genotypes against salt stress. Aflaki *et al.* (2017) studied the effect of salinity on germination of wheat genotypes; they found that mean daily germination recorded the highest correlation value with germination percentage.

Principal Component Analysis (PCA)

Principal component analysis (PCA) is a multi-variable statistical analysis that reduces the dimension of high-dimension data, in which fewer eigenvectors can explain the information of multivariate data as possible (Shlens 2005). In the current study PCA analysis (Fig. 3) classified the studied genotypes into four clusters based on their mean performance under NaCl treatments. The first cluster was found in the 1st quadrant. It included triticale genotypes C6 and Gannong No.4. Both genotypes scored the highest values for the seedling traits shoot fresh weight, root fresh weight, shoot dry weight, root dry weight, high values for root length, seedling vigor index, mean daily germination and germination vigor index. The second cluster was found in the 2nd quadrant and included Zhongsi 1084, C23, and C25. Those genotypes scored high mean values for germination rate, germination vigor index, germination percentage, mean daily germination, seedling vigor index, shoot length, and root length and revealed the low relative salt injury. The third cluster was found in the 3rd quadrant and included both Gannong No.2 and C16, while the fourth cluster was found in the 4th quadrant and included both Shida No.1 and C36. The genotypes in the third and the fourth clusters had the lowest mean values for germination rate, germination vigor index, germination percentage, mean daily germination, seedling vigor index, and root length. These results suggested considerable genetic variability for salt tolerance in the studied triticale genotypes. PCA analysis was able to classify different genotypes of wheat and soya bean into three groups, i.e., salt tolerant, moderately salt tolerant, and salt susceptible, based on the performance of these genotypes under different salt concentrations at the early seedling stage (Saboora et al., 2006 and Shelke et al., 2017).

Salinity stress tolerance

As a quantitative measure, stress indices can quantify a crop's stress response. They are easily useable than raw data due to their direct interpretation. Many indices of abiotic tolerance have been proposed (Table 6) for estimating abiotic stress tolerant genotypes using a mathematical equation that describes the relationship between growth under stress and control conditions. The abiotic stress indices are classified into two types; the first type contains indices with maximum values indicating high-stress tolerance, while the other type includes other

indices with minimum values indicating high-stress tolerance. Using these indices, we can identify the tolerant and sensitive genotypes and their stability (Parvaze et al., 2018).

The results in Tables (7 & 8) reveal that GannongNo.4 was the most tolerant genotype with an average rank (AR) equal to 2.12 (Figure 4); however, Zhongsi1084 was the least tolerant genotype (AR = 8.04). Both GannongNo.2 and C25 were moderately tolerant as their average rankings were 4.29 and 4.62, respectively. When the values of the average rank increase, the tolerance of the genotypes decreases; as shown in Table 8, it was helpful to take the average of all ranks of the different abiotic stress indices due to their different results.

Cluster analysis:

To cluster the genotypes under both control and salinity stress, cluster analysis was performed using R software version 4.1.0, 2021. Euclidian metric as a distance measure was used to measure dissimilarity among the genotypes, and Ward's algorithm (Ward, 1963) was applied for grouping the genotypes. Shoot fresh weight (SFW) and Root fresh weight (RFW) were used to construct a distance matrix and generate the tanglegram showing dissimilarity among all the genotypes under control and the highest saline treatment (200 mM), as shown in Figure 5. Before conducting the analysis, the data were standardized due to their different scale by subtracting the mean from each value and dividing by the standard deviation. The cubic cluster criterion (Milligan and Cooper, 1983) was used to ensure whether clusters existed. Fuzzy C-means as a soft clustering algorithm (Bezdek, 1974; 1981) was used to detect if overlapping existed between clusters. The fuzzy C-means method shows that low overlap existed between clusters, so hard clustering methods were applied to construct the Tanglegram (Figure 5). Six hard clustering methods were compared using an agglomerative coefficient to choose the most accurate method for clustering the data. They were average, generalized average, single, and weighted.

Complete, and ward. The valued of agglomerative coefficients were 0.76, 0.81, 0.53, 0.77, 0.85, and 0.88 respectively, under control. Where, under 200 mM, they were 0.68, 0.72, 0.55, 0.73, 0.77, and 0.81 respectively. These results reveal that the Ward method had the highest coefficient compared to the other five methods under control and the highest saline treatment. So, the Ward method was chosen to conduct the cluster analysis. To identify the optimum number of clusters in the data, 30 internal validation indices were, and voting among them was

done to determine the optimum number of clusters in the data (Charrad et al., 2014). As shown in figure 5, all the genotypes were separated into two clusters under control and highest saline treatment, with the average of the studied traits shown in Table 9. The structure of the clusters changed markedly when the genotypes were subjected to the highest saline treatment except for the genotypes (Gannong No.4 and C6), which migrated from cluster 1 under control to cluster 2 under the highest saline treatment because they were more tolerant than the other members of their cluster.

Heatmap Figures (7 &8) show the relationship between the genotypes and the studied traits based on standardized (scaled) data using a color scale under control and the highest saline treatment. The red color in the heatmap represents high values of the traits, while the blue color represents low values. Before drawing the heatmap, the data were standardized by subtracting the mean from each value and dividing by the standard deviation. The genotype C6 was the highest in SFW and SDW under control, while the genotype Gannong No.4 was the highest in SFW and SDW under the highest salinity treatment (200 mM). These results demonstrated that Gannong No. 4 was the most tolerant genotype. The lowest genotype in SFW and SDW under control was C16, while Zhongsi 1084 was the lowest in SFW and C26 was the lowest in SDW under 200 mM. Concerning GP, the genotypes Gannong No.4 and Gannong No. 2 were the highest and the lowest, respectively, under control.

On the other hand, the genotypes Zhongsi 1084 and Shida No.1 were the highest and the lowest, respectively, under 200 mM. The genotype Zhongsi 1084 had higher values of germination traits under the highest salinity treatment; however, it had the lowest values of SFW, RFW, SL, and RSI. Gannong No.4 had the higher value of germination traits under control. From the heatmap, there seemed to be no association between germination traits and the tolerance of the genotypes except for MGT, which appears to be negatively associated with the tolerance of the genotypes.

Conclusion

In the previous results, the mean performance of most studied traits decreased gradually by increasing salt concentration relative to salt injury. Mean germination time increased by increasing NaCl up to 120 mM, then decreased by increasing NaCl concentration. Non-

401	significant differences were observed under control and 40 mM treatments for the traits
402	germination rate, germination vigor index, germination percentage, and mean daily germination.
403	Genotypes Zhongsi 1084, C6, C23, and C25, scored the best performance for germination rate,
404	germination vigor index, germination percentage, mean daily germination, germination energy,
405	relative salt injury, seedling vigor index, and root length or most of these traits. Highly
406	significant positive correlations were revealed among the traits germination rate, germination
407	vigor index, germination percentage, mean daily germination, seedling vigor index, and root
408	length. C6 and Gannong No.4 were the best genotypes for seedling traits shoot fresh weight, root
409	fresh weight, shoot dry weight, and root dry weight. PCA was able to divide the studied
410	genotypes into four clusters. The most desirable genotypes were gathered into clusters 1 and 2,

412 Contributions

411

413 All authors have contributed equally to the research and analysis of the various results sections

while the other genotypes were grouped into clusters 3 and 4.

- 414 within the review. All have corrected and modified the different versions of the manuscript as
- 415 prepared by the corresponding and senior authors. All authors read and approved the final
- 416 manuscript.
- 417 Ethics declarations
- 418 Ethics approval and consent to participate
- 419 Not applicable.
- 420 Consent for publication
- 421 Not applicable.
- 422 Conflict of interest Statement
- 423 The authors declare that the research was conducted in the absence of any commercial or
- financial relationships that could be construed as a potential conflict of interest.
- 425 Data Availability Statement
- The datasets used and/or analyzed during the current study are available from the corresponding
- 427 author on reasonable request.
- 428 Funding: This research was funded by Princess Nourah bint Abdulrahman University
- 429 Researchers Supporting Project number (PNURSP2023R402), Princess Nourah bint
- 430 Abdulrahman University, Riyadh, Saudi Arabia

431

432				
433	References			
434				
435	Abdul-Baki A. A. and J. D. Anderson. 1973. Vigor determination in soybean by multiple			
436	criteria. Crop Sci. 13: 630-33			
437	http://dx.doi.org/10.2135/cropsci1973.0011183X001300060013x			
438	Aflaki, F., M. Sedghi, A. Pazuki and M. Pessarakli. 2017. Investigation of seed germination			
439	indices for early selection of salinity tolerant genotypes: A case study in wheat. Emir			
440	Food Agric. 29(3): 222-226 doi: 10.9755/ejfa.2016-12-1940			
441	Akgun, I., B. Kara and D. Altinda. 2011. Effect of salinity (NaCl) on germination, seedling			
442	growth and nutrient uptake of different triticale genotypes. Turkish J. Field Crop. 16(2):			
443	225-232			
444	Alom, R., M. A. Hasan, M. R. Islam and Q. F. Wang. 2016. Germination characters and earl			
445	seedling growth of wheat (<i>Triticum aestivum</i> L.) genotypes under salt stress conditions. J.			
446	Crop Sci. Biotechnol. 19: 383–392. https://doi.org/10.1007/s12892-016-0052-1			
447	Atak, M., M. D. Kaya, G. Kaya, Y. Cikili and C. Y. Ciftci. 2006. Effects of NaCl on the			
448	germination, seedling growth and water uptake of Triticale. Turk J Agric For. 30: 39-47			
449	Bezdek, J.C. (1974). Cluster validity with fuzzy sets. J. Cybernetics, 3: 58-73.			
450	doi:10.1080/01969727308546047.			
451	Bezdek, J.C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms; Plenur			
452	Press: New York, NY, USA.			
453	Bidinger, F. R., V. Mahalakshmi, and G. D. Rao. 1987. Assessment of drought resistance in			
454	pearl millet (Pennisetum americanum (L.) Leeke). II. Estimation of genotype response			
455	to stress. Australian Journal of Agricultural Research 38: 49–59.			
456	Bouslama, M., Schapaugh, W.T. (1984). Stress tolerance in soybean. Part 1: Evaluation			
457	of three screening techniques for heat and drought tolerance. Crop Sci., 24: 933-			
458	937.			
459	Bushuk, W. and E. N. Larter. 1980. Triticale: production, chemistry, and technology			
460	Advances in Cereal Science and Technology. 3: 115–157			

461	Cantale, C., F. Petrazzuolo, A. Correnti, A. Farneti, F. Felici, A. Latini and P. Galeffi. 2016.		
462	Triticale for Bioenergy Production. Agric. Agric. Sci. Procedia. 8: 609-616.		
463	Charrad, M., Ghazzali, N., Boiteau, V., and Niknafs, A. (2014). NbClust: An R Package for		
464	Determining the Relevant Number of Clusters in a Data Set. Journal of Statistical		
465	Software, 61(6), 1–36. https://doi.org/10.18637/jss.v061.i06		
466	Choukan R., Taherkhani T., Ghannadha M. R., Khodarahmi M. (2006). Evaluation of		
467	drought tolerance in grain maize inbred lines using drought tolerance indices.		
468	Iranian Journal of Agricultural Science, 8: 79-89.		
469	Cooper, K.V. 1985. The Australian Triticale Cookery Book, Adelaide, South Australia, Savvas		
470	Publishing.		
471	Demir, I., K. M. Mavi and G. Okcu. 2003. Effect of salt stress on germination and seedling		
472	growth in serially harvested aubergine (Solanum melongena L.) seeds during		
473	development. Isr. J. Plant Sci. 51: 125-131.		
474	Farooq, M., M. Hussain, A. Wakeel and K. H. Siddique. 2015. Salt stress in maize: effects,		
475	resistance mechanisms, and management. A review, Agron. Sust. Develop. 35: 461-481.		
476	Farshadfar, E. and Shukla J. (2003). Screening drought tolerance criteria in maize. Acta		
477	Agronomica Hungarica., 50: 411-416.		
478	Fernandez, G. C. J. 1992. Effective selection criteria for assessing plant stress tolerance. In C.		
479	G. Kuo [ed.], Adaptation of food crops to temperature and water stress, 257–270. Asian		
480	Vegetable Research and Development Center, Shanhua, Taiwan.		
481	Fischer, R. A., and Wood, J. T. (1979). Drought resistance in spring wheat cultivars. III.		
482	Yield associations with morpho-physiological traits. Australian Journal of		
483	Agricultural Research, 30(6), 1001-1020.		
484	Francois, L. E., T. J. Donovan, E. V. Maas and G. L. Rubenthaler. 1988. Effect of salinity on		
485	grain yield and quality, vegetative growth, and germination of triticale. Agron. J. 80:642-		
486	647.		
487	Gavuzzi, P., F. Rizza, M. Palumbo, R. G. Campaline, G. L. Ricciardi, and B. Borghi. 1997.		
488	Evaluation of field and laboratory predictors of drought and heat tolerance in winter		
489	cereals. Canadian Journal of Plant Science 77: 523-531.		

490	Ghoulam, C. and K. Fares. 2001. Effect of salinity on seed germination and early seedling		
491	growth of sugar beat (Beta vulgaris L.). Seed Sci. Technol. 29: 357-364.		
492	Godfray H. C. J., J. R. Beddington, I. R. Crute, L. Haddad, D. Lawrence, J. F. Muir and C		
493	Toulmin. 2010. Food security: the challenge of feeding 9 billion people. Sci. 327: 812-		
494	818.		
495	Grieve, C. M., S. R. Grattan and E. V. Maas. 2012. Plant Salt Tolerance. In Agricultural		
496	Salinity Assessment and Management (W. W. Wallender and K. K. Tanji, eds). ASCE		
497	Manuals and Reports on Engineering Practice No. 71, 2 nd edition. 405-459. American		
498	Society of Civil Engineers (ASCE). Reston, VA		
499	Hakim, M. A., A. S. Juraimi, M. Begum, M. M. Hanafi, M. R. Ismail and A. Selamat. 2010.		
500	Effect of salt stress on germination and early seedling growth of rice (Oryza sativa L.).		
501	Afr. J. Biotechnol. 9: 1911–1918.		
502	Hill, G. M. 1990. Quality: Triticale in animal nutrition. In Proceedings of the 2 nd Int. Triticale		
503	Symp, Passo Fundo, Rio Grande do Sul, Brazil, 1–5 October; pp. 422–427.		
504	Jamil, A., S. Riaz, M. Ashraf and M. R. Foolad (2011). Gene expression profiling of plants		
505	under salt stress. Crit. Rev. Plant Sci. 30(5):435–458.		
506	Jamil, M., D. B. Lee, K. Y. Jung, M. Ashraf, S. C. Lee and E. S. Rha. 2006. Effect of sale		
507	(NaCl) stress on germination and early seedling growth of four Vegetable species. J.		
508	Cent. Eur. Agric. 7: 273–282.		
509	Kankarla, V., M. K. Shukla, G. A. Picchioni, D. VanLeeuwen and B. J. Schutte. 2020.		
510	Germination and emergence responses of alfalfa, triticale and quinoa irrigated with		
511	Brackish groundwater and desalination concentrate. Agron J. 10(4): 549.		
512	Keshavarizi, B. and H. Mohammed. 2012. Studying the effects of different levels of salinity		
513	which caused by NaCl on early and germination of Lctuca sativa L. seedling. J. Stress		
514	Physiol. Bioch. 8: 203–208.		
515	Kotuby-Amacher, J., R. Koenig and B. Kitchen. 2000. Salinity and plant tolerance. Utah State		
516	University: Cooperative Extension.		

01/	Maguire, J. D. 1962. Speed of germination-aid selection and evaluation for seedling emergence
518	and vigor. Crop Sci. 2: 176-177.
519	Mbinda, W. and M. Kimtai. 2019. Evaluation of morphological and biochemical characteristics
520	of Sorghum [Sorghum bicolor [L.] Moench] varieties in response salinity stress. Annu.
521	Res. Rev. Biol. 1–9.
522	Milligan, G. W. and M. C. Cooper. 1983. "An Examination of Procedures for Determining the
523	Number of Clusters in a Data Set" College of Administrative Science Working Paper
524	Series 83-51. Columbus: The Ohio State University.
525	Moosavi, S., Yazdi Samdi B., Naghavi M., Zali A., Dashti H. and Pourshabazi A.
526	(2008). Introduction of new indices to identify relative drought tolerant and
527	resistant genotypes of wheat. Desert, 12: 165-178.
528	Moradi, H., Akbari, G. A., Khorasani, S. K., and Ramshini, H. A. (2012).
529	Evaluation of drought tolerance in corn (Zea mays L.) new hybrids with using
530	stress tolerance indices. European Journal of Sustainable Development, 1(3),
531	543-560.
532	Ozturk, O. F., M. K. Shukla, B. Stringam, G. A. Picchioni and C. Gard. 2018. Irrigation
533	with brackish water changes evapotranspiration, growth and ion uptake of halophytes.
534	Agric. Water Manag. 195: 142–153.
535	Parvaze A. Sofi, K. Rehman, Asmat Ara and Musharib Gull. (2018). Stress tolerance
536	indices based on yield, phenology and biomass partitioning: A review. Agricultural
537	Reviews, 39(4): 292-299.
538	Pitman, M. G. and A. Läuchli. 2002. Global Impact of Salinity and Agricultural Ecosystems.
539	In: Läuchli A., Lüttge U. (eds) Salinity: Environment - Plants - Molecules. Springer,
540	Dordrecht. https://doi.org/10.1007/0-306-48155-3_1
541	R Core Team (2021). R: A language and environment for statistical computing. R Foundation
542	for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ .
543	R. Munns and M. Tester. 2008. Mechanisms of salinity tolerance, Annu. Rev. Plant Biol. 59:
544	651–681.
545	Ramýrez, P. and Kelly, J. D. (1998). Traits related to drought resistance in common bean.
546	Euphytica, 99: 127–136.

547	Ray, D. K., N. D. Mueller, P. C. West and J. A. Foley. 2013. Yield trends are insufficient to			
548	double global crop production by 2050. PLoS One. Jun 19;8(6):e66428. doi:			
549	10.1371/journal.pone.0066428. PMID: 23840465; PMCID: PMC3686737.			
550	Rosielle, A. A., and J. Hamblin. 1981. Theoretical aspects of selection for yield in stress and			
551	non-stress environments. Crop Science 21: 943–946.			
552	Ruan, S., Q. Xue and K. Tylkowska. 2002. The influence of priming on germination of rice			
553	(Oryza sativa L.) seeds and seedling emergence and performance in flooded soils. Seed			
554	Sci Technol. 30: 61–67.			
555	Saade, S., A. Maurer, M. Shahid, H. Oakey, S. M. Schmöckel, S. Negrão and M. Tester.			
556	2016. Yield related salinity tolerance traits identified in a nested association mapping			
557	(NAM) population of wild barley. Sci. Rep. 6: 32586			
558	Saboora, A., K. Kiarostami, F. Behroozbayati and S. Hajihashemi. 2006. Salinity (NaC			
559	tolerance of wheat genotypes at germination and early seedling growth. Pak. J. Biol. Sci.			
560	9: 2009-2021. DOI: 10.3923/pjbs.2006.2009.2021			
561	Schneider, K. A., Rosales-Serna, R., Ibarra-Perez, F., Cazares-Enriquez, B., Acosta-			
562	Gallegos, J. A., et al. (1997). Improving common bean performance under drought			
563	stress. Crop Science, 37 (1), 43-50.			
564	Shahbaz, M. and M. Ashraf. 2013. Improving salinity tolerance in cereals. Crit. Rev. Plant Sci.			
565	32:237–249.			
566	Shelke, D. B., M. Pandey, G. C. Nikalje, B. N. Zaware, P. Suprasanna and T. D. Nikam.			
567	2017. Salt responsive physiological, photosynthetic and biochemical attributes at early			
568	seedling stage for screening soybean genotypes. Plant Physiol. Biochem. 118:519-528.			
569	doi:10.1016/j.plaphy.2017.07.013			
570	Shlens, J. 2005. A tutorial on principal component analysis. Systems Neurobiology Laboratory,			
571	Salk Institute for Biological Studies.			
572	Sosa, L., A. Llanes, H. Reinoso, M. Reginato and V. Luna (2005). Osmotic and Specific Ion			
573	Effects on the Germination of <i>Prosopis strombulifera</i> . Annals of Botany. 96: 261–267			

PeerJ

574	Sosa, L., A. Llanes, H. Reinoso, M. Reginato and V. Luna. 2005. Osmotic and specific ion
575	effects on the germination of <i>Prosopis strombulifera</i> . Ann Bot. 96(2):261-7. doi:
576	10.1093/aob/mci173. Epub 2005 May 31. PMID: 15928009; PMCID: PMC4246873.
577	Ward J.H., Jr. (1963). Hierarchical grouping to optimize an objective function. J. Am. Stat.
578	Assoc., 58: 236–244.
770	1350C., 50. 250 244.
579	Warham, E. J., L. D. Butler and B. C. Sutton. 1995. Seed testing of maize and wheat: A
580	Laboratory Guide. CIMMYT/CAB International, Mexico, D.F./Wallingford.
581	
582	
583	
584	
585	Figure caption
586	Figure 1. Mean performance of germination traits as affected by the interaction between
587	genotypes and salt treatments (mM NaCl)
588	Figure 2. Mean performance of seedling traits as affected by the interaction between genotypes
589	and salt treatments (mM NaCl)
590	Figure 3. Two dimensional ordination of nine studied genotypes based on the overall
591	mean performance under salt treatments
592	Figure 4 . Tolerance of genotypes according to the average rank of 22 abiotic stress
593	indices
594	(small number of average ranks means tolerant)
595	Figure 5. Tanglegram showing results of cluster analysis based on Euclidean coefficient and Ward method under normal and water stress conditions.
596 597	
597 598	Figure 6. Pearson correlation matrix among the studied traits
598 599	Figure 7. Heatmap of the relationship between genotypes and the studied traits under control
500	Figure 8. Heatmap of the relationship between genotypes and the studied traits under 200
500	mM
, , ,	

Mean performance of germination traits as affected by the interaction between genotypes and salt treatments (mM NaCl)

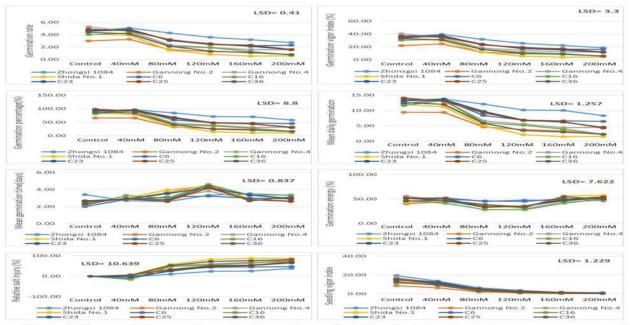


Figure 1. Mean performance of germination traits as affected by the interaction between genotypes and salt treatments (mM NaCl)

Mean performance of seedling traits as affected by the interaction between genotypes and salt treatments (mM NaCl)

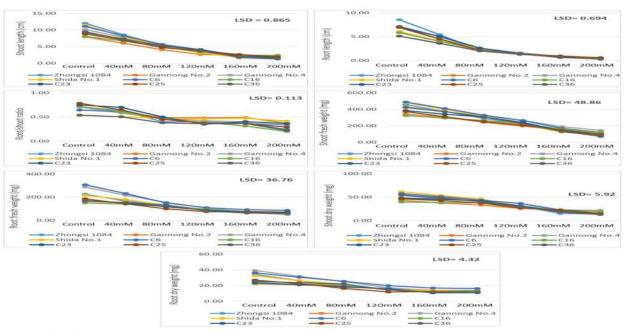
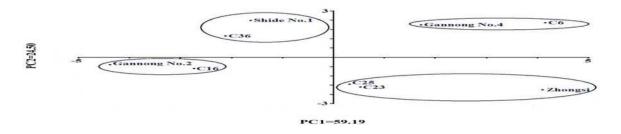
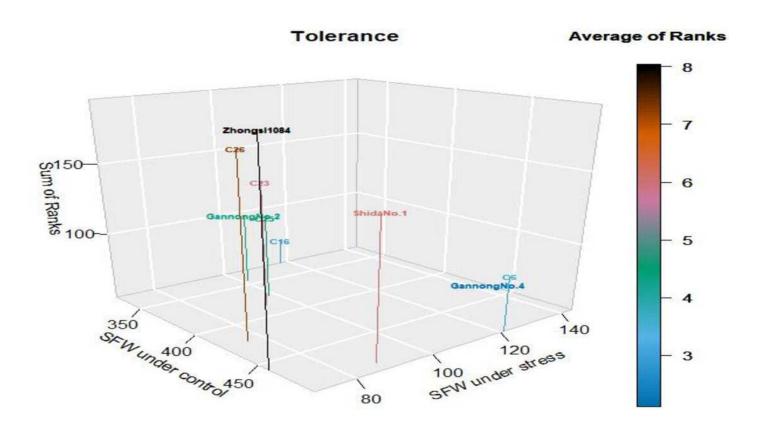
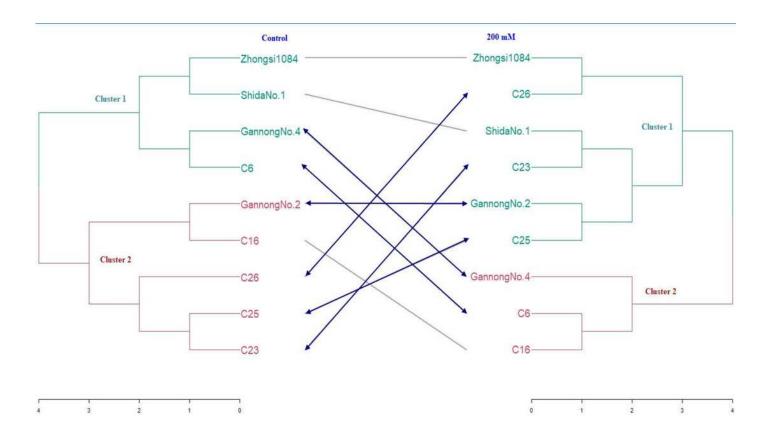


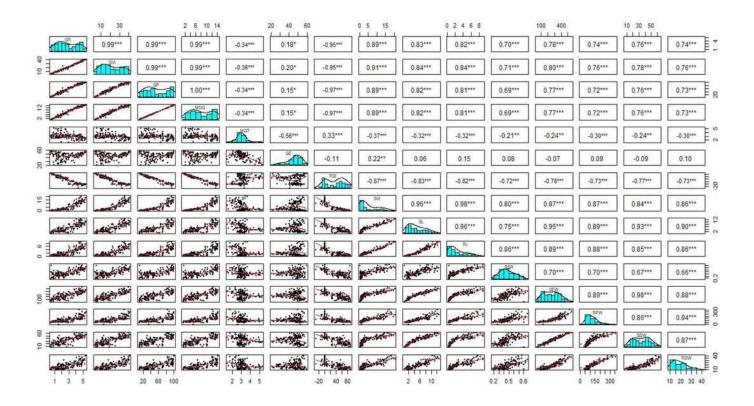
Figure 2. Mean performance of seedling traits as affected by the interaction between genotypes and salt treatments (mM NaCl)

Two dimensional ordination of nine studied genotypes based on the overall mean performance under salt treatments

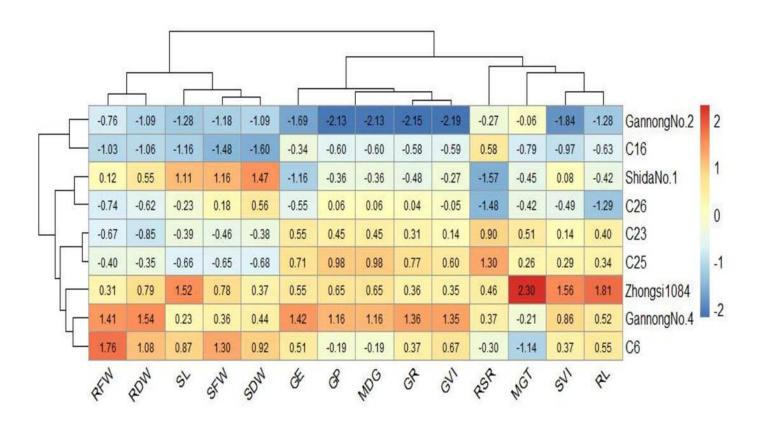




Figure 3. Two dimensional ordination of nine studied genotypes based on the overall mean performance under salt treatments

Tolerance of genotypes according to the average rank of 22 abiotic stress indices (small number of average ranks means tolerant)



Tanglegram showing results of cluster analysis based on Euclidian coefficient and Ward method under normal and water stress conditions.



Pearson correlation matrix among the studied traits

Heatmap of the relationship between genotypes and the studied traits under control

Heatmap of the relationship between genotypes and the studied traits under 200 mM

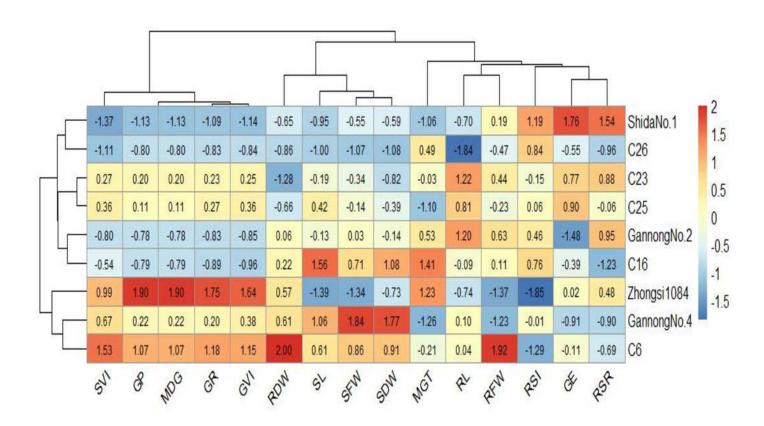


Table 1(on next page)

List of studied genotypes, names and characteristics

Table 1. List of studied genotypes, names and characteristics

number	Genotypes names
1	Zhongsi 1084 (Chinese Triticale Cultivar)
2	Gannong No.2 (Chinese Triticale Cultivar)
3	Gannong No.4 (Chinese Triticale Cultivar)
4	Shida No.1 (Chinese Triticale Cultivar)
5	C6 (Triticale line bred by GSAU*)
6	C16 (Triticale line bred by GSAU)
7	C23 (Triticale line bred by GSAU)
8	C25 (Triticale line bred by GSAU)
9	C36 (Triticale line bred by GSAU)
	-

Where GSAU means Gansu Agricultural University of P.R. China

Table 2(on next page)

Mean square estimates for the studied parameters

Table 2. Mean square estimates for the studied parameters

SOV	Treat.	Gen.	Treat. X Gen.	Error
d.f	5	8	40	108
Germination rate	47.51**	8.59**	0.365^{**}	0.06
Germin. vigor index	2891.46**	470.32**	18.675**	4.16
Germin. (%)	18758.28**	3197.63**	170.011**	29.56
Mean daily germination	382.77**	65.25**	3.475**	0.60
Mean germination time (days)	7.67**	0.48^{ns}	0.413^{*}	0.27
Germination energy (%)	1164.17**	168.13**	55.973**	22.18
Relative salt injury	25066.84**	2360.53**	243.20**	43.22
Seedling vigor index	881.77**	30.83**	4.481**	0.58
Shoot length (cm)	268.10**	3.44**	1.43**	0.29
Root length (cm)	152.64**	1.90^{**}	0.67^{**}	0.18
Root / shoot ratio	0.54**	0.02^{**}	0.01^{**}	0.01
Shoot fresh weight (mg)	382627.79**	11844.21**	2341.06**	911.49
Root fresh weight (mg)	88069.30**	6957.79**	1506.71**	515.80
Shoot dry weight (mg)	5271.16**	171.06**	38.94**	13.39
Root dry weight (mg)	1217.71**	143.46**	18.28**	7.11

Where ** means highly significant differences exited at the 0.01 level, * means significant differences exited at the 0.05 level and ns means no significant differences exited

Table 3(on next page)

The overall mean performance of different studied triticale genotypes under six salt treatments

Table 3. The overall mean performance of different studied triticale genotypes under six salt treatments

	Genotypes	Zhongsi	_	_		C6	C16	C23	C25	C36	Mean
т :		1084	No.2	No.4	No.1						
Traits											
	Germination rate	3.93a	1.85e	2.89c	1.91e	3.26b	2.40d	3.14b	3.19b	2.33d	2.77
	Germin. vigor index	28.83a	13.76f	22.02d	14.64f	24.98b	17.50e	23.30cd	23.92bc	17.44e	20.71
Germination traits	Germin. (%)	79.15a	38.49f	56.65c	39.06f	63.32b	49.52d	63.10b	62.64b	45.74e	55.3
	Mean daily germin.	11.31a	5.50f	8.09c	5.58f	9.05b	7.07d	9.01b	8.95b	6.53e	7.9
	Mean germin. time (days)	3.14ab	3.26a	2.94ab	3.2ab	2.85b	3.29a	3.28a	2.96ab	3.05ab	3.11
	Germin. energy	49.26a	42.66b	43.78b	45.43b	49.09a	39.42c	44.62b	46.17ab	44.93b	45.04
	Relative salt injury	0.19	0.50	0.51	0.64	0.31	0.47	0.38	0.43	0.58	0.45
	Seedling vigor index	7.57a	3.22e	6.03bc	4.68d	6.44b	4.59d	6.13bc	5.85c	4.51d	5.45
	Shoot length (cm)	5.42ab	4.14f	5.27abc	5.16bcd	5.58a	4.67e	4.97cde	4.80de	4.85de	4.99
	Root length (cm)	3.11a	2.31de	2.86ab	2.55cd	3.07ab	2.46cde	2.94ab	2.75bc	2.20e	2.69
	Root / shoot ratio	0.48ab	0.51a	0.47ab	0.48ab	0.45b	0.45b	0.51a	0.49ab	0.40c	0.47
Germination traits	Shoot fresh weight (mg)	258.99c	223.25e	287.44ab	271.74bc	297.25a	230.84de	251.52cd	231.62de	255.94c	256.51
	Root fresh weight (mg)	122.03bc	114.36bc	148.09a	124.95b	162.56a	108.62bc	111.40bc	105.83c	109.49bc	123.04
	Shoot dry weight (mg)	33.53b	29.65c	37.18a	37.78a	38.52a	31.32bc	33.33b	31.86bc	33.99b	34.13
	Root dry weight (mg)	20.57b	17.32c	23.48a	20.25b	24.26a	17.55c	16.85c	17.04c	18.10c	19.49

Values followed by the different letter(s) are significantly different from each other by Duncan's multiple range test at 5% level of

probability

6 7

0

8

9

Table 4(on next page)

The overall mean performance of the six salt treatments

Table 4. The overall mean performance of the six salt treatments

	Treatments	Control	40 mM	80 mM	120 mM	160 mM	200 mM	Mean
Traits								
	Germination rate	4.40a	4.40a	2.60b	2.04c	1.74d	1.42e	2.77
	Germin. vigor index	33.39a	33.54a	19.65b	14.69c	12.71d	10.28e	20.71
	Germin. (%)	87.50a	88.04a	52.66b	39.63c	35.47d	28.49e	55.30
~	Mean daily germin.	12.50a	12.58a	7.52b	5.66c	5.07d	4.07e	7.90
Germination traits	Mean germin. time (days)	2.48c	2.94b	3.15b	4.09a	3.03b	2.96b	3.11
	Germin. energy (%)	48.76ab	47.61b	37.51c	35.96c	49.05ab	51.35a	45.04
	Relative salt injury	0.00e	-0.62e	39.82d	54.71c	59.47b	67.44a	36.80
	Seedling vigor index	14.46a	10.53b	3.96c	2.04d	1.06e	0.64f	5.45
	Shoot length (cm)	9.83a	7.42b	5.14c	3.60d	2.15e	1.77f	4.99
	Root length (cm)	6.57a	4.44b	2.32c	1.50d	0.85e	0.48f	2.69
	Root / shoot ratio	0.67a	0.60b	0.45c	0.40d	0.40d	0.30e	0.47
Germination traits	Shoot fresh weight (mg)	411.88a	355.74b	298.72c	233.47d	130.17e	101.20f	255.20
	Root fresh weight (mg)	208.23a	169.93b	128.82c	89.86d	69.42e	64.56e	121.80
	Shoot dry weight (mg)	51.09a	45.82b	40.50c	30.28d	20.75e	16.32f	34.13
	Root dry weight (mg)	29.27a	25.04b	20.89c	15.54d	13.20e	13.01e	19.49

Values followed by the different letter(s) are significantly different from each other by Duncan's multiple range test at 5% level of probability

Ü

Table 5(on next page)

Phenotypic correlation coefficients among the studied traits

Table 5. Phenotypic correlation coefficients among the studied traits

Traits	GR	GVI	GP	MDG	MGT	GE	RSI	SVI	\mathbf{SL}	RL
GVI	0.997**									
GP	0.996**	0.988^{**}								
MDG	0.996^{**}	0.988^{**}	1.000**							
MGT	-0.4	-0.462	-0.333	-0.333						
GEN	0.652	0.681^{*}	0.600	0.600	-0.569					
RSI	-0.881**	-0.864**	-0.900**	-0.900**	0.200	-0.566				
SVI	0.952^{**}	0.960^{**}	0.944^{**}	0.944**	-0.432	0.700^{*}	-0.769*			
SL	0.642	0.677^{*}	0.614	0.614	-0.567	0.708^{*}	-0.432	0.823**		
RL	0.868^{**}	0.886^{**}	0.864^{**}	0.864^{**}	-0.382	0.648	-0.771*	0.928^{**}	0.777^{*}	
RSR	0.203	0.200	0.240	0.240	0.330	0.060	-0.272	0.200	-0.100	0.430
SFW	0.292	0.348	0.246	0.246	-0.627	0.542	-0.106	0.506	0.869**	0.536
RFW	0.251	0.308	0.209	0.209	-0.654	0.445	-0.218	0.388	0.694^{*}	0.533
SDW	0.156	0.214	0.109	0.109	-0.572	0.492	0.065	0.409	0.835^{**}	0.445
RDW	0.303	0.354	0.264	0.265	-0.672*	0.488	-0.212	0.467	0.782^{*}	0.535

Where: GR, germination rat; GVI, germination vigor index; GP, germination percentage; MDG, mean daily germination; MGT, mean germination time; GE, germination energy; RSI, relative salt injury; SVI, seedling vigor index; SL, shoot length; RL, root length; RSR, root/shoot ratio; SFW, shoot fresh weight; RFW, root fresh weight; SDW, shoot dry weight, RDW, root dry weight; **, highly significant differences exited at the 0.01 level; *, significant differences exited at the 0.05 level.

Table 6(on next page)

Abiotic stress screening indices

Table 6: Abiotic stress screening indices

Index	Formula	Reference				
Indices with m	aximum values corresponding to more tolerar	nt				
Mean productivity (MP)	$\left(Y_{S} + Y_{NS}\right)/2$	Rosielle and Hamblin				
Geometric mean productivity (GMP)	$(Y_{NS})^{(1/2)} * Y_{S}$	(1981)				
Harmonic mean (HM)	$2*(Y_S*Y_{NS})/(Y_S+Y_{NS})$	Fernandez (1992)				
Stress Tolerance Index (STI)	$(Y_S * Y_{NS}) / (Y_{NS \cdot m})^2$	Bidinger et al. (1987)				
Yield index (YI)	$Y_{\rm S}/Y_{\rm S.m}$	Fernandez (1992)				
Modified stress tolerance index-I	$((Y_{NS})^2 / (Y_{NS.m})^2) * ((Y_S * Y_{NS}) / (Y_{NS·m})^2)$	Gavuzzi et al. (1997)				
(MSTI1)	$((Y_S)^2/(Y_{S-m})^2)*((Y_S*Y_{NS})/(Y_{NS-m})^2)$	Farshadfar and Shukla				
Modified stress tolerance index- II	$Y_{\rm S}/Y_{\rm NS}$	(2003)				
(MSTI2)	$(Y_S/Y_{NS})/(Y_{S-m}/Y_{NS,m})$	Farshadfar and Shukla				
Yield stability index (YSI)	$(Y_S*(Y_S/Y_{NS}))/Y_{Sm}$	(2003)				
Relative stress index (RSI)	$((Y_{NS}+Y_S)/(Y_{NS}-Y_S))^{(1/3)}*(Y_{NS}*Y_S)$	Bouslama and Schapaugh				
Drought index (DI)	$(*Y_S)^{(1/3)}$	(1984)				
Stress/non-stress productivity index	$(Y_S * Y_{NS})/(Y_{S \cdot m} * Y_{NS,m})$	Fischer and Wood (1979)				
(SNPI)	$(Y_S/Y_{S\cdot m}) + (Y_{NS}/Y_{NS.m})$	Bidinger et al. (1987)				
Relative efficiency index (REI)	$(Y_{NS} + Y_S) / (Y_{NS} - Y_S)$	Moosavi <i>et al.</i> (2008)				
Mean relative performance (MRP)	()	Ramirez and Kelly (1998)				
Golden mean (Gm)		Ramirez and Kelly (1998)				
		Moradi <i>et al.</i> (2012)				
	ninimum values corresponding to more tolerar					
Tolerance index (TOL)	$Y_{NS} - Y_{S}$	Rosielle and Hamblin				
Stress Susceptibility Index (SSI)	$(1 - (Y_S / Y_{NS})) / (1 - (Y_{S \cdot m} / Y_{NS.m}))$	(1981)				
Stress Susceptibility Percentage Index	$(Y_{NS} - Y_S) / (2 * Y_{NS.m})$	Schnieder et al. ((1997)				
(SSPI)	$1-(Y_S/Y_{NS})$	Moosavi <i>et al.</i> (2008)				
Yield Reduction (YR)	$((Y_{NS} - Y_S) / (Y_{NS.m} / Y_{S·m})) * (Y_{NS} *$	Choukan <i>et al.</i> (2006)				
Abiotic Stress Tolerance Index (ATI)	$(Y_s)^{(1/2)}$	Moosavi <i>et al.</i> (2008)				
Mean Productivity Index (MPI)	$(Y_{NS} - Y_S)/2$	Rosielle and Hamblin				
Schnieders Stress Susceptibility Index	$1-(Y_S/Y_{NS}) - (1-(Y_{S-m}/Y_{NS.m}))$	(1981)				
(SSSI)	$(Y_{NS} - Y_S)/Y_{NS}$	Schnieder et al. ((1997)				
Sensitivity Drought Index (SDI)		Farshadfar and Javadina				
		(2011)				

Table 7(on next page)

Values of 22 abiotic stress screening indices based on shoot fresh weight under stress (Ys) and control (Yc).

Table 7: Values of 22 abiotic stress screening indices based on shoot fresh weight under stress (Ys) and control (Yc).

Genotype	Yns	Ys	MP	GMP	НМ	STI	YI	MSTI1	MSTI2	YSI	RSI	DI
Zhongsi1084	457.67	70.00	263.83	1497.52	121.43	0.19	0.69	0.23	0.09	0.15	0.62	0.11
GannongNo.2	342.25	101.87	222.06	1884.53	157.00	0.21	1.01	0.14	0.21	0.30	1.21	0.30
GannongNo.4	433.00	144.00	288.50	2996.45	216.12	0.37	1.42	0.41	0.74	0.33	1.35	0.47
ShidaNo.1	480.33	88.33	284.33	1935.96	149.22	0.25	0.87	0.34	0.19	0.18	0.75	0.16
C6	488.33	121.17	304.75	2677.57	194.16	0.35	1.20	0.49	0.50	0.25	1.01	0.30
C16	324.67	117.80	221.23	2122.58	172.88	0.23	1.16	0.14	0.31	0.36	1.48	0.42
C23	385.00	93.34	239.17	1831.40	150.25	0.21	0.92	0.19	0.18	0.24	0.99	0.22
C25	373.33	97.97	235.65	1892.90	155.21	0.22	0.97	0.18	0.20	0.26	1.07	0.25
C26	422.33	76.33	249.33	1568.71	129.30	0.19	0.75	0.20	0.11	0.18	0.74	0.14

4 Cont.

Genotype	SNPI	REI	MRP	GM	TOL	SSI	SSPI	YR	ATI	MPI	SSSI	SDI
Zhongsi1084	145.06	0.77	1.80	1.36	387.67	1.12	0.47	0.85	17048.80	193.83	0.09	0.85
GannongNo.2	187.21	0.84	1.84	1.85	240.38	0.93	0.29	0.70	11028.18	120.19	-0.05	0.70
GannongNo.4	261.72	1.50	2.47	2.00	289.00	0.88	0.35	0.67	17731.07	144.50	-0.09	0.67
ShidaNo.1	175.84	1.02	2.04	1.45	392.00	1.08	0.48	0.82	19839.54	196.00	0.06	0.82
C6	228.31	1.42	2.38	1.66	367.17	1.00	0.45	0.75	21944.46	183.58	0.00	0.75
C16	212.80	0.92	1.95	2.14	206.87	0.84	0.25	0.64	9940.17	103.43	-0.12	0.64
C23	176.52	0.86	1.86	1.64	291.66	1.00	0.35	0.76	13584.70	145.83	0.00	0.76
C25	183.04	0.88	1.87	1.71	275.37	0.98	0.33	0.74	12939.30	137.68	-0.02	0.74
C26	152.50	0.77	1.78	1.44	346.00	1.09	0.42	0.82	15264.15	173.00	0.06	0.82

Table 8(on next page)

Rank of genotypes by 22 abiotic stress indices and shoot fresh weight under stress (Ys) and control (Yc) as well as their average rank (AR).

Table 8: Rank of genotypes by 22 abiotic stress indices and shoot fresh weight under stress (Ys) and control (Yc) as well as their average rank (AR).

Genotype	Yns	Ys	MP	GMP	НМ	STI	YI	MSTI1	MSTI2	YSI	RSI	DI
GannongNo.4	4	1	2	1	1	1	1	2	1	2	2	1
C16	9	3	9	3	3	4	3	9	3	1	1	2
C6	1	2	1	2	2	2	2	1	2	5	5	4
GannongNo.2	8	4	8	6	4	7	4	8	4	3	3	3
C25	7	5	7	5	5	5	5	7	5	4	4	5
C23	6	6	6	7	6	6	6	6	7	6	6	6
ShidaNo.1	2	7	3	4	7	3	7	3	6	7	7	7
C26	5	8	5	8	8	8	8	5	8	8	8	8
Zhongsi1084	3	9	4	9	9	9	9	4	9	9	9	9

5 Cont.

Genotype	SNPI	REI	MRP	GM	TOL	SSI	SSPI	YR	ATI	MPI	SSSI	SDI	AR
GannongNo.4	1	1	1	2	4	2	4	2	7	4	2	2	2.12
C16	3	4	4	1	1	1	1	1	1	1	1	1	2.92
C6	2	2	2	5	7	5	7	5	9	7	5	5	3.75
GannongNo.2	4	7	7	3	2	3	2	3	2	2	3	3	4.29
C25	5	5	5	4	3	4	3	4	3	3	4	4	4.62
C23	6	6	6	6	5	6	5	6	4	5	6	6	5.88
ShidaNo.1	7	3	3	7	9	7	9	7	8	9	7	7	6.08
C26	8	8	9	8	6	8	6	8	5	6	8	8	7.29
Zhongsi1084	9	9	8	9	8	9	8	9	6	8	9	9	8.04

Table 9(on next page)

Average of the studied traits for the 2 clusters under normal and water stress conditions

PeerJ

1 2

Table (9). Average of the studied traits for the 2 clusters under normal and water stress conditions

	Gro				M							R				
TRT		G	G		D	M		RS	SV		R	S	SF	RF	SD	RD
	up.1	R	VI	GP	G	GT	GE	I	I	SL	L	R	W	W	W	W
	1	4.	32.	86.	12.	2.6	47.	0.0	14.	9.8	6.	0.	410	188	51.	27.
Cont	1	28	15	89	41	2	42	0	32	4	49	66	.15	.29	37	59
rol	2	4.	35.	88.	12.	2.1	51.	0.0	14.	9.8	6.	0.	415	248	50.	32.
	2	65	86	71	67	9	46	0	73	0	73	69	.33	.11	53	63
	1	1.	9.7	27.	3.8	2.9	52.	69.	0.5	1.5	0.	0.	87.	63.	14.	12.
200	l	35	9	17	8	6	17	46	5	6	48	33	97	06	31	24
mM	2	1.	11.	31.	4.4	2.9	49.	65.	0.8	2.1	0.	0.	127	67.	20.	14.
	2	54	26	13	5	5	70	02	1	9	48	22	.66	56	34	54