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ABSTRACT
Background. Taxonomic identification through DNA barcodes gained considerable
traction through the invention of next-generation sequencing and DNA metabar-
coding. Metabarcoding allows for the simultaneous identification of thousands of
organisms from bulk samples with high taxonomic resolution. However, reliable
identifications can only be achieved with comprehensive and curated reference
databases. Therefore, custom reference databases are often created to meet the needs
of specific research questions. Due to taxonomic inconsistencies, formatting issues,
and technical difficulties, building a custom reference database requires tremendous
effort. Here, we present taxalogue, an easy-to-use software for creating comprehensive
and customized reference databases that provide clean and taxonomically harmonized
records. In combination with extensive geographical filtering options, taxalogue opens
up new possibilities for generating and testing evolutionary hypotheses.
Methods. taxalogue collects DNA sequences from several online sources and combines
them into a reference database. Taxonomic incongruencies between the different data
sources can be harmonized according to available taxonomies. Dereplication and vari-
ous filtering options are available regarding sequence quality or metadata information.
taxalogue is implemented in the open-source Ruby programming language, and the
source code is available at https://github.com/nwnoll/taxalogue. We benchmark four
reference databases by sequence identity against eight queries from different localities
and trapping devices. Subsamples from each reference database were used to compare
how well another one is covered.
Results. taxalogue produces reference databases with the best coverage at high identities
for most tested queries, enabling more accurate, reliable predictions with higher cer-
tainty than the other benchmarked reference databases. Additionally, the performance
of taxalogue is more consistent while providing good coverage for a variety of habitats,
regions, and sampling methods. taxalogue simplifies the creation of reference databases
andmakes the process reproducible and transparent. Multiple available output formats
for commonly used downstream applications facilitate the easy adoption of taxalogue
in many different software pipelines. The resulting reference databases improve the
taxonomic classification accuracy through high coverage of the query sequences at high
identities.
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INTRODUCTION
Great effort is currently being taken to arrive at a comprehensive DNA barcode reference
database for all life on Earth (Hobern & Hebert, 2019), which has also been fundamental
for the mission of the International Barcode of Life Consortium (International Barcode
of Life, 2022): saving the living planet and cataloging all multicellular species before the
first half of the century. DNA barcodes are short marker-gene sequences that are ideally
conserved at species level with sufficient genetic differentiation to distinguish even closely
related sister taxa (Hebert et al., 2003; Hebert, Ratnasingham & De Waard, 2003). Many
different barcode markers are used for different taxa, but the most often used animal
barcode is the Folmer region (Folmer et al., 1994) of the mitochondrial cytochrome c
oxidase subunit I (CO1) gene, which is part of the respiratory complex and is known
to have, in general, a high resolution until species level (e.g., Hebert et al., 2003; Hebert,
Ratnasingham & De Waard, 2003; Fišer Pečnikar & Buzan, 2014; Huemer et al., 2014). To
identify specimens even without taxonomic expertise, the same barcode region from
unknown organisms is sequenced and compared to barcode sequences of already identified
specimens stored in a reference database. New sequences can be compared directly with
an online source database using identification services such as those provided by GenBank
(Sayers et al., 2022), the Barcode of Life Data System (BOLD; Ratnasingham & Hebert,
2007), or the German Barcode Of Life Initiative (GBOL; Geiger et al., 2016a). Since large
online databases are subject to constant changes (e.g., Porter & Hajibabaei, 2018a; Porter
& Hajibabaei, 2018b; Sayers et al., 2022), self-created reference databases are often used
instead (Robeson et al., 2021); they require more work and expertise but provide complete
control over the sequences andmake taxonomic identification reproducible (Robeson et al.,
2021). Given the large number of sequences generated by metabarcoding, where the DNA
from many organisms is simultaneously sequenced (Taberlet et al., 2012), a self-created
reference database can also speed up the identification process (Macher, Macher & Leese,
2017).

The primary goal of a DNA barcode reference database is to provide taxon names for
sequences. Taxon names are like other carefully circumscribed abstractions: good names
subsume ecological observations and evolutionary theories (Franz, 2005). Therefore,
scientific species names are a link to the accumulated knowledge of a species in time
(Grimaldi & Engel, 2005) and much of biology relies on them (Agnarsson & Kuntner,
2007). However, synonyms, taxonomic disagreements, and revisions have received little
attention in using DNA barcode reference databases (Leray et al., 2019; Pappalardo et al.,
2021; Piper et al., 2021). Their effects on the interpretation of metabarcoding results remain
unexplored, even though proper taxonomic name usage is a prerequisite for any reliable
conclusion (e.g., Bortolus, 2008). Taxa lists derived from metabarcoding results depend on
the composition of the used reference database: taxon names in the reference databasemight
be based on a particular taxonomic opinion, used identification literature, prior taxonomic
harmonization (Ratnasingham & Hebert, 2007; Schoch et al., 2020), reverse taxonomy
(identification by its sequence and not morphology) (Weigand et al., 2019), and more.
Even an accepted name in a source database could convey distinct taxonomic concepts
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(Berendsohn & Geoffroy, 2007). Since taxa are potentially described based on different
paradigms, taxonomists might prioritize different traits (Thompson, 1993). Consequently,
taxonomists might apply the same name, although they have a distinct definition of that
taxon (Kennedy, Kukla & Paterson, 2005). The meaning of a name is unclear without
mentioning the taxonomic circumscription on which an identifier based the specimen
identification (Berendsohn, 1995). Harmonizing taxon names is an often-used step to ensure
an up-to-date taxonomy and successful data integration from multiple sources (Grenié et
al., 2022). Since manual harmonization might not be actionable for studies investigating a
broad range of taxa, or a diverse taxon such as Arthropoda, an automated approach might
be the most obvious. Data aggregators such as the National Center for Biotechnology
Information (NCBI; NCBI, 1988–2023) or the Global Biodiversity Information Facility
(GBIF; GBIF, 2023) provide a resolved taxonomy (Schoch et al., 2020; GBIF Secretariat,
2022) by acting as a decisive authority in the case of taxonomic disagreements and can be
used to automatically harmonize data from different sources.

Besides the influences of nomenclature and taxonomy on the source databases, data
quality and coverage are also essential for the condition of the used reference database.
Comprehensive taxonomic coverage of a reference database is necessary for reliable
identifications (Meyer & Paulay, 2005; Vences et al., 2005; Ekrem, Willassen & Stur, 2007).
A sufficient sampling of each taxon has been stressed as an initial requirement for DNA
Barcoding (Sperling, 2003), and its importance continues to be emphasized (Phillips, Gillis
& Hanner, 2019). For taxa with high intraspecific variation, sampling the whole geographic
range might be necessary for appropriate identification (Lou & Golding, 2012; Geiger et al.,
2016b). However, the observed genetic differentiation between closely related taxa might
also decrease with an increase in the geographic scale of the reference database, impairing
the identification process. Therefore, regional reference databases have been suggested
(Bergsten et al., 2012). Despite significant efforts to complete these reference databases,
commonly used sources such as GenBank (Sayers et al., 2022) and BOLD (Ratnasingham &
Hebert, 2007) still have exclusive CO1 records (Porter et al., 2014;Macher, Macher & Leese,
2017; Curry et al., 2018; Porter & Hajibabaei, 2018a; Pentinsaari et al., 2020;O’Rourke et al.,
2020; Porter & Hajibabaei, 2020;Robeson et al., 2021;Nakazato & Jinbo, 2022) and coverage
is reduced when using just one source. Filtering may become necessary when data quality
in reference databases is insufficient (Meyer & Paulay, 2005; Nilsson et al., 2006; Collins &
Cruickshank, 2013).

The aforementioned issues and circumstances clarify that care is required when creating
a reference database. Several software solutions have been developed to create custom
reference databases (Macher, Macher & Leese, 2017; Bengtsson-Palme et al., 2018; Palmer
et al., 2018; Richardson et al., 2018; Heller et al., 2018; Keller et al., 2020; Arranz et al.,
2020; Robeson et al., 2021; Piper et al., 2021; Meglécz, 2023; Keck & Altermatt, 2022) or
to provide ready-to-use reference databases (Leray et al., 2018; Porter & Hajibabaei, 2018b;
O’Rourke et al., 2020; Leray, Knowlton & Machida, 2022; Magoga et al., 2022). However,
only some can integrate multiple CO1 database sources (Macher, Macher & Leese, 2017;
Bengtsson-Palme et al., 2018; Porter & Hajibabaei, 2018a; Arranz et al., 2020; Piper et al.,
2021; Meglécz, 2023; Keck & Altermatt, 2022). To the best of our knowledge, no software
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currently available allows the exploration of distinct taxonomic harmonization strategies
while also including data from GBOL, having extensive sequence filtering options, creating
reference databases with different geographical scales (countries, continents, biogeographic
realms, or user-defined ArcGIS shape files), dereplication, and providing multiple ready-
to-use outputs for common downstream analysis applications. To close this gap, we
developed taxalogue (https://github.com/nwnoll/taxalogue). In this paper, we demonstrate
the suitability of this toolkit to create comprehensive and customized reference databases
and compare them with already available CO1 reference databases for arthropods.

MATERIALS & METHODS
The current version of taxalogue can create reference databases of the CO1 Folmer region
(Folmer et al., 1994) for animals. CO1 sequences from animal specimens are referred to as
‘‘sequences’’ or ‘‘records’’ in the following. We envisage the implementation of additional
markers and a broader range of taxa for upcoming releases. See Fig. 1 for an overview of
taxalogue main functions and consider using taxalogue with the ‘‘--help’’ command, or
visit the GitHub webpage (https://github.com/nwnoll/taxalogue).

Implementation
We implemented taxalogue with theRuby programming language. taxalogue has been tested
on Ubuntu 18.04, 20.04, and 22.04. The source code complies with Ruby ≥ 2.6.3+ until
version 3.2.2. Future patches will ensure compatibility with new Ruby releases and Ubuntu
versions. Data storage and retrieval are set up with a current version of SQLite (Hipp,
2023). Additional dependencies are listed in the Gemfile. The source code is licensed under
the GNU General Public License v3.0 and available at https://github.com/nwnoll/taxalogue.

Backbone taxonomy
taxalogue automatically downloads backbone taxonomy files and imports them into an
SQLite (Hipp, 2023) database. taxalogue relies on a backbone taxonomy database to check
and format taxonomic information from multiple sources. Users can use the ‘‘setup’’
subcommand to reset the taxonomies or import them separately. We optimized the
database model for query speed through indexing, which decreases program runtime after
the database has been built. However, importing millions of taxonomic records into the
database will take some time, depending on the machine used. taxalogue provides the
option to use the GBIF backbone Taxonomy (GBIF Secretariat, 2022), NCBI Taxonomy
(Schoch et al., 2020) or none. taxalogue resolves and imports homonyms based on a list
provided by GBIF Secretariat (2022).

Download
taxalogue collects data from up to three different online sources to generate various
outputs that users could use as a reference database for taxonomic assignment of DNA
sequences. The online sources currently available are BOLD (http://www.boldsystems.org/),
NCBI GenBank (http://www.ncbi.nlm.nih.gov/genbank/), and GBOL (https://bolgermany.
de/gbol1/ergebnisse/results). The retrieval of sequences and specimen information, such
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GBOL
GenBank

Download
 from all databases,
 or pick the ones you
 want

Filter
 by sequence properties
 (e.g. Ns, length)
 by taxonomic lineage
 (e.g. name, rank)
 by other metadata
 (e.g. location, realm)

Harmonize
 taxon name to a
 reference taxonomy
 (e.g. NCBI, GBIF) or

 allow synonyms
 according to chosen
 reference taxonomy

P C OK F G S

K P C O F G S

P C OK F G S

K P C O F G S
K P C O F G S

K P C O F G S

rank    taxon     sequence #  
species A. cerana ACCTAG   1
species A. florea ACCTAG   9
family  Apidae    ACCTAG   5

Dereplicate
 and choose taxon if
 the same sequence has
 differing taxon
 assignments
 (e.g. LCA, random)

Output
 generate outputs in
 several formats
 (e.g. QIIME2, FASTA)

QIIME2CSV FASTA etc.

Figure 1 Overview of main taxalogue functions from the download of records to output generation.
For more information use taxalogue with ‘‘--help’’. K, kingdom; P, phylum; C, class; O, order; F, family;
G, genus; S, species.

Full-size DOI: 10.7717/peerj.16253/fig-1

as taxonomic name and locality, varies between the three sources, as explained below.
To prevent unnecessary downloads, taxalogue checks if the user has already downloaded
records for a taxon.

NCBI GenBank: Many attempts to download records via web queries (e.g.,
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/) yielded incomplete downloads, even if we
implemented the recommended waiting times. Therefore, the primary download strategy
used in taxalogue is downloading the whole GenBank release for the user-specified
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taxon. If, for example, the user wants records of the taxon Arthropoda, taxalogue
will download all invertebrate records (gbinv*.seq.gz) from the latest GenBank release
(https://ftp.ncbi.nlm.nih.gov/genbank/). We implemented waiting times to avoid server
overload. If a download fails, taxalogue restarts it after an extended waiting period. The
download of the current GenBank release ensures the complete retrieval of all records for
a particular taxon but has the disadvantage of needing more disk space.

BOLD: There are two approaches to download records from BOLD. We recommend
that the user downloads the current data package snapshot from https://boldsystems.org/
index.php/datapackages (Data package tar.gz compressed) and uses taxalogue with the
extracted ’.tsv’ file (classify --bold_release/path/to/bold_release.tsv; but see README.md).
The user must have a boldsystems.org account and be logged in for this approach. The
alternative is to use the BOLD API (download --bold), with its drawbacks mentioned
below. If the API is used, the user-specified taxon is queried against the public data API
(http://www.boldsystems.org/index.php/api_home) for combined data. In general, queries
for taxa with many records available, as in Arthropoda, will fail. The taxon for which the
download failed will be subdivided into the next lower taxa to circumvent this problem.
Supported taxonomic ranks are kingdom, phylum, class, order, family, genus, and species.
As with the NCBI GenBank download, we implemented waiting times and retries to avoid
overloading the server. We parallelized the download to speed up data retrieval, and the
user can specify the number of threads used to retrieve the records. The default value is five
threads, and users should make changes with caution. Too many threads could overload
the BOLD server and ultimately result in a complete shutdown for the user. Because of
this, we recommend not to increase the number of threads used simultaneously to more
than the default value of five.

A downside of the taxonomic subdivision into lower ranks is that records determined
solely to the taxonomic rank for which the download has failed are unavailable. If, for
example, the user specified to download all Arthropoda records, the downloaded results
will not include those records that have only Arthropoda as name information. However, it
is a benign problem since higher taxonomic ranks (e.g., Arthropoda) would still be covered
by lower ranks (e.g., Coleoptera) of that taxon in the subsequent taxonomic assignment
step. This is because taxonomic assignment to higher ranks requires less sequence similarity
than lower taxonomic ranks. These are rare cases, and records with a greater taxonomic
resolution are preferred.

GBOL: The latest GBOL dataset release (bolgermany.de/gbol1/release/GBOL_Dataset_
Release-20210128.zip) is provided as a zip file. taxalogue will download the file and extract
the CSV file. Since the GBOL release has some rank inconsistencies, meaning that not all
ranks are used at the same position in the higher classification, taxalogue will add those
missing ranks. Depending on the user-specified options, this might be necessary to enable
merging of all three source databases. The GBOL database is intended as a reference barcode
source for Germany. Therefore, it consists mainly of specimens collected in Germany. Since
these specimens might also occur in neighboring countries or could be invasive in, for
example, North America, it might still be of value to include these records in reference
databases for studies from other countries.
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Filtering
The user can filter records by properties such as the number of ambiguous bases (Ns),
length, minimal available taxonomic rank, and others. More information is available with
the ‘‘filter --help’’ command. It is also possible to only retain records collected in one or
multiple countries, continents, or biogeographic realms (‘‘region --help’’ will provide more
information). Since some records have the same sequence, a dereplication step is applied
by default. Dereplication removes redundant data and decreases the size of the reference
database, which could speed up further downstream analysis. During dereplication,
multiple comparisons occur if records have the same sequence but differing taxonomic
information. If everything except the taxonomic resolution remained unaltered, the
dereplication procedure will favor records with greater taxonomic resolution. The lowest
common ancestor is chosen for records with differing taxonomic information at the same
rank, given they also have the same number of records. taxalogue will choose a record as
the correct one if it has more records. Even though we are aware that this is subject to
taxonomic bias, it is a pragmatic way to conserve taxonomic resolution; for a reference,
see Leray et al. (2019), who investigated clusters with multiple taxon names, and in 95% of
cases the most abundant taxon name was labeled as the correct one. taxalogue processes
the GenBank format and amino acid translation with functions from the Ruby gem ‘‘bio’’
version 2.0.1 (Goto et al., 2010).

Harmonization
Harmonizationmeans that the taxonomy of a record ismapped onto a backbone taxonomy.
The taxonomy from the downloaded record is mapped against, for example, the NCBI
Taxonomy, and only the standard ranks (kingdom, phylum, class, order, family, genus, and
species) will be displayed in the reference database. This action is optional and does not
need to be used, although it is the current default setting (to disable harmonization, use the
‘‘taxonomy --unmapped’’ option). It also checks if the taxon of the record is the currently
accepted taxon, according to the backbone taxonomy. If the downloaded record has a taxon
name considered a synonym, it will replace the name with the accepted name unless the
user allows synonyms. This action will be noted and is available in the comparison file. If
taxalogue could find neither the accepted name nor a synonym, the next higher taxon from
the downloaded record is checked against the backbone taxonomy until it finds a match.
If it finds a match, it will display the matched higher rank as the actual determination.
This action is not without drawbacks and is, therefore, optional. Since some taxonomic
classifiers compare the taxon information of each rank, synonyms would be regarded as
different taxa and result in a lower bootstrap value, which could lead to the exclusion of
some ranks for some sequences.

The already mentioned ‘‘taxonomy --unmapped’’ option does not do any
harmonization. It merges the downloads without mapping them onto a backbone
taxonomy. This has some consequences, for example: the records from the GBOL Database
provide the kingdom name Animalia, whereas the NCBI GenBank records use the name
Metazoa, and the BOLD records do not have any kingdom information available. The
same taxa with differing taxonomic information on some ranks might affect downstream
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analysis. If the user runs taxalogue with the ‘‘--unmapped’’ option, users should be aware
that different taxonomic classifications within your dataset might occur. A Ruby script
‘‘scripts/replace_taxon_name_for_rank.rb’’ can change taxon names for each rank.

Name cleaning
Since many names from online sources include digits or terms specifying accuracy and are
not part of a valid taxonomic name, some name cleaning will be performed. Digits are not
allowed and will be erased from the name. Terms belonging to open nomenclature, like
aff., cff. and others were taken from Matthews (1973) and will be erased, leaving only the
name parts that could be considered valid (e.g., ‘‘Apis cf.mellifera’’ would result in ‘‘Apis’’).
Or in other words: taxalogue only uses name parts, where the identifier of that particular
specimen has been sure about the correctness of the identification. Also, other name parts
as sp. or spp. will be erased. If harmonization is enabled and no representative of this name
could be found for this name, the Ruby library biodiversity (∼>5.1, ≥ 5.1.2) is used if no
backbone taxonomy has been specified to classify the records (‘‘taxonomy --unmapped’’).

Output formats
taxalogue provides multiple output formats for the reference database. Differing output
formats provide distinct information depth. The table format is a tab-separated text file
that contains location information. taxalogue creates it by default and is required for some
optional processing (e.g., ‘‘scripts/replace_taxon_name_for_rank.rb’’ relies on the table
file). A fasta file and a comparison file are also created by default. The comparison file
shows the accepted names according to a chosen backbone taxonomy and their synonyms.
Additionally, output files in the format for dada2, kraken2, qiime2, SINTAX can be
generated.

Case study
To test a reference database created by taxalogue against three published CO1
reference databases, we searched metabarcoding publications for OTU sequences or
mock communities to use them as queries. The tested reference databases consist
of records from different sources and filtering procedures (see Table 1). The used
query datasets are shown in Table 2 and were selected to cover different regions of
the world and different sampling methods. Any preprocessing and filtering of the
databases is described in ‘‘ref_db_taxalogue/worklow_ref_db_taxalogue.txt’’ and in
‘‘benchmark/workflow_benchmark.txt’’ (see Noll, Scherber & Schäffler, 2023).

The main method used to compare the reference databases was a top-hit identity
distribution (THID; Edgar, 2018). A THID shows the distances between a query dataset,
e.g., OTU sequences, and a reference database. The number of best hits between a query
sequence and a reference database is used herewith as a function of sequence identity.
We generated the THIDs with VSEARCH version 2.14.1 (Rognes et al., 2016), with the ‘‘--
usearch_global’’ (Edgar, 2010) command and the essential options ‘‘--id 0.7 --maxaccepts
8 --maxrejects 128 --top_hits_only --maxhits 1 --userfields query+target+id’’. Computed
identities were subsequently rounded to integers and summarized with a custom script.
We created the figures with Google Drawings, R version 4.1.3 (R Core Team, 2023) and the
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Table 1 Summary of reference databases used in the benchmark.Database= Arthropoda CO1 reference database name; midori (https://www.
reference-midori.info/download.php); porter (https://github.com/terrimporter/CO1Classifier/releases/tag/v4-ref); tidybug (https://doi.org/10.5281/
zenodo.3929511); taxalogue (https://doi.org/10.5281/zenodo.6586571), #sequences= total number of sequences, min sequence length= smallest se-
quence length in reference database, BOLD= download date, GBOL= download date, GenBank= download date, reference= publication refer-
ence.

database #sequences Min sequence length BOLD GBOL GenBank Reference

midori 2,086,807 100 bp none none 2022-02-15 Leray et al. (2018)
porter 888,696 500 bp 2015-12-31a none 2019-04 Porter & Hajibabaei (2018b)
taxalogue 2,921,104 400 bp 2022-02-02 2021-01-28 2021-12-15 This publication
tidybug 1,841,946 100 bp 2019-02-24 none none O’Rourke et al. (2020)

Notes.
aBOLD data releases from December 31, 2010 till December 31, 2015.

Table 2 Summary of the query datasets used in the benchmark. Country= country of sample; Sampling method= device or method for sam-
pling of specimens; Habitat= natural habitat where sampling did take place.

Country Sampling method Habitat Taxon Reference

Canada kick net benthic zone Macrozoobenthos Porter et al. (2014)
Canada Malaise trap Grassland, forested pond Arthropoda Steinke et al. (2021)
China Malaise trap Mocka Arthropoda Yu et al. (2012)
China Malaise trap Mocka Arthropoda Yang et al. (2021)
Costa Rica Malaise trap Rainforest Arthropoda Porter et al. (2014)
Germany Malaise trap Meadow Arthropoda Elbrecht et al. (2021)
Honduras Canopy fogging Canopy Arthropoda Creedy, Ng & Vogler (2019)
Portugal Automatic light traps Cork oak woodlands Arthropoda Mata et al. (2021)

Notes.
amock= sampled from multiple locations and potentially different habitats, taxon= expected organism group, reference= publication reference.

R packages dplyr (Wickham et al., 2023), ggplot2 (Wickham, 2016), ggpubr (Kassambara,
2023), ggstance, gridExtra and according dependencies. See the folder ‘‘benchmark’’ in the
associated data for complete commands, scripts, and the whole workflow (Noll, Scherber
& Schäffler, 2023).

Based on the aforementioned THID data, we calculated ranks for all reference
database/query combinations at 100% identity (meaning that the query sequence and
the most similar reference database sequence had identical nucleotides in the overlap).
Ranks ranged from 1 to 4, whereas rank 1 means the fewest best hits at 100% identity
and rank 4 the most. We calculated the ranks with the ‘‘dense_rank’’ function from the R
package dplyr (Wickham et al., 2023). Equal values (‘‘ties’’) are replaced by their minimum
values (e.g., if two reference databases had the most and an equal amount of 100% best hits
against all queries, both reference databases would get rank 3 instead of rank 4).

We further investigated the midori, taxalogue, and tidybug reference databases:
10 × 5,000 sequences were randomly subsampled for each reference database with the
‘‘--fastx_subsample’’ option of VSEARCH version 2.14.1 (Rognes et al., 2016). Each
subsample was subsequently used as a query against all reference databases, itself excluded,
with the same commands as for the THID generation. We excluded the porter reference
database for this benchmark since it only included a subset of BOLD records until the end
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of 2015 and was primarily composed of GenBank records. This biases the representation
of subsampled sequences. By chance alone, fewer BOLD than GenBank sequences would
be sampled as queries; therefore, tidybug, with only BOLD sequences, gets fewer best hits
at high identities.

RESULTS
The top-hit identity distribution (THID) for four reference databases and eight distinct
query datasets is shown in Fig. 2. The THIDs show how well a reference database represents
a query. Most THIDs show a skew to the left to higher identities, which means that the
highest proportion of queries has their best matches to very similar reference database
sequences. Therefore, reference databases with more hits at high percent similarities have
better coverage of the queries. The reference database created by taxalogue shows for most
queries the best coverage at high identities and fewer hits with low identity. This is also
true for the tidybug and midori reference databases, but here we see more variation with
different query datasets (see Fig. 3). The porter reference database reflects, in all cases,
the query datasets the least good. However, kick samples from Canada (see Fig. 2C) had a
peak at 98% sequence identity, with only a small number of best hits at higher identities.
Additionally, Malaise trap samples from China (see Fig. 2E) had a peak around 84%
sequence identity and a smaller, second peak at 100% identity for most reference databases.

In Fig. 4, the THIDs of three reference databases are shown with subsampled queries
taken from other reference databases than themselves. taxalogue had the most hits at 100%
identity with sequences from midori or tidybug. Accordingly, the reference databases
midori and tidybug had more hits with lower identities, like 99% and 98%. This shows
that taxalogue provides more exclusive sequences and generally offers better coverage than
the other reference databases.

DISCUSSION
We presented taxalogue, a new toolkit to create reproducible reference databases. Using
a case study, we showed that taxalogue creates reference databases that generally best
represent the test cases from multiple areas and trapping devices. taxalogue addresses
mentioned issues of the current source and reference databases. However, some problems
require a major structural change in the source databases (e.g., provision of taxon concepts,
data integrity indicators through digital fingerprints, enforced data quality through
constraints), and our approach represents only the most appropriate solution under
the given circumstances.

Comprehensive reference databases
Reference databases are the foundation of taxonomic identification viametabarcoding, and
resulting taxa lists depend on the quality of the underlying reference database. Therefore,
creating a reference database should have a high priority. We showed in our case study that
combining records frommultiple source databases generally leads to a better representation
of the test cases. A better representation with higher identities between query and reference
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Figure 2 Top-hit identity distribution for 4 reference databases and eight queries. The number of best
hits as a function of sequence identity for a selection of CO1 reference databases and query datasets (see
Table 1 for reference database descriptions and Table 2 for the query datasets), depicted as a stair step dia-
gram. Identity= percent similarity between a query sequence and its best hit in a reference database. Hits
= number of best matches between query and reference database sequences at a certain identity percent-
age.

Full-size DOI: 10.7717/peerj.16253/fig-2

database is crucial for correct taxonomic predictions (Edgar, 2018). taxalogue produces
a reference database with the best coverage at high identities for most tested queries,
enabling more accurate and reliable predictions with higher certainty than the other
reference databases tested. Yet, we cannot conclude that a better representation by sequence
identity would result in a more reliable reference database per se. More extensive reference
databases have higher coverage, but this may be due to records with incorrect annotations
(Edgar, 2018). The reference database from the case study created with taxalogue consists
of records from three source databases. This potentially increases the total amount of
erroneous records since several cases of misidentifications have been found in the source
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rank 4 to the highest number of best hits (if reference databases had the same number of best hits, they
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databases GenBank and BOLD (e.g.,Meier & Dikow, 2004; Becker, Hanner & Steinke, 2011;
Lis & Lis, 2011; Lis, Lis & Ziaja, 2016; Jin et al., 2020; Radulovici et al., 2021; Kjærandsen,
2022). But since Leray et al. (2019) found a surprisingly low error rate (0.44% to 2.56%)
in GenBank for Arthropoda CO1 sequences at the genus level and similar results were
found at the species level in a study that investigated both GenBank and BOLD (Jin et al.,
2020), the baseline of expected errors should be low. Furthermore, the also included GBOL
source database has more strict quality standards, and only records from species experts
are accepted (Coleman & Radulovici, 2020); even though this has not been empirically
tested, we would expect a similar error rate for records from GBOL. Although the general
trend of source database quality points in a positive direction, the methodology of the
aforementioned studies prevents a conclusion in this regard. Leray et al. (2019) did not
investigate incongruities of species names. Due to increased difficulty in assigning species
names (e.g., Sweeney et al., 2011; Ko et al., 2013), we expect a higher error proportion at the
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queried against each other. Each reference database was queried with 20 * 5,000 randomly selected se-
quences from all the other reference databases (e.g., taxalogue was queried against sequences from mi-
dori and tidybug; midori was queried against sequences from taxalogue and tidybug, etc.). Only hits at
100, 99, and 98 percent identity were considered (see Table 1 for reference database descriptions). Each
query consists of 5,000 randomly selected sequences. The whiskers show the standard deviation per refer-
ence database at a certain identity. Notes: identity= percent similarity between a query sequence and its
best hit in a reference database; hits= number of best matches between query and reference database se-
quences at a certain identity percentage.

Full-size DOI: 10.7717/peerj.16253/fig-4

species level. Since (Jin et al., 2020) do not mention any measures to account for synonyms,
the true error proportion might also be different. Furthermore, they identified a sequence
as erroneous if the second-best hit (best hit would be itself) had a different taxonomic
name, potentially leaving out other matches at 100% identity that could tag a record as
erroneous.

Mock communities (samples with known compositions) could potentially be used to test
the taxonomic assignment from differing reference databases. The results of the reference
databases could be compared with the names of the mock community and subsequently
summarized as a confusion matrix. However, this approach poses some problems. Since
records from the reference databases are usually determined morphologically in the same
way as records from the mock communities, the preference for one of these identifications
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would be arbitrary. Furthermore, taxonomic mismatches between results are potentially
due to synonyms or distinct taxonomic opinions of the taxon concept used. In our
opinion, it is impossible to make an objective decision to accept the names of a mock
community or the names of the reference databases as the truth. Therefore, we refrained
from comparing the taxonomic assignments from the reference databases with those from
a mock community.

As expected, merging records from commonly used source databases increases the
coverage of a reference database (Porter et al., 2014; Macher, Macher & Leese, 2017; Curry
et al., 2018; Porter & Hajibabaei, 2018a; O’Rourke et al., 2020; Porter & Hajibabaei, 2020;
Robeson et al., 2021; Nakazato & Jinbo, 2022), at least for the reference database created by
taxalogue. The porter reference database (Porter & Hajibabaei, 2018b), which also consists
of records from GenBank and BOLD (see Table 1), on the other hand, has the lowest
coverage of all tested queries. This is explainable because the last retrieval of GenBank
records is from 2019, and it only uses the BOLD data releases, which are no longer
updated since the end of 2015. The porter reference database also only uses records
identified at species level, thereby discarding many records. This point illustrates that the
source usage and the filtering of reference databases directly impact taxonomic coverage.
However, an unexpected result is that the taxalogue reference database has a lower number
of best hits at 100% identity with the Honduras query (see Fig. 2D). Since taxalogue
downloaded records for all Arthropoda from BOLD, just as was done for tidybug. Still,
tidybug has better coverage of the Honduras query, so either some records have been
deleted from BOLD in the meantime, or taxalogue failed to download the respective
records. After examining the missing sequences, we found that the missing sequences
belonged to taxa with too many records in most cases. As mentioned in the Methods
section, BOLD API downloads from taxa with numerous records are rarely successful due
to read timeouts. taxalogue circumvents this problem by subdividing the failed taxon into
lower taxa. Records only identified at the failed taxon level are unavailable since the BOLD
API is subsequently queried with lower taxon levels (e.g., from Arthropoda to Insecta,
Arachnida, etc.). However, it is a relatively benign problem since the taxonomic resolution
of those missing sequences is low (mostly family level and above). As this only occurs
with record-rich taxa, we would expect a sufficient number of records with a high enough
sequence identity to assign queries to, at least, the missing level. Due to the provision of
release snapshots by BOLD, the download through API services is no longer required and
using the releases with taxalogue (‘‘classify --bold_release /path/to/release.tsv’’) should be
preferred. Using a release snapshot completely alleviates the aforementioned problems.
Since the release processing requires more RAM and an account at BOLD, the download
via the API will be maintained. This problem emphasizes the need for reproducible and
transparent creation of reference databases. Since taxalogue logs the essential steps of the
reference database generation, such issues are quickly resolved. Furthermore, it makes the
creation of a reference database reproducible, which is indispensable for future replication
or comparison.
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Reproducibility
Many BOLD records are private and not downloadable. Therefore, none of the reference
databases tested do include private records. Solely consisting of downloadable records their
coverage is of course reduced. For aquatic biota, up to 50% of sequences in some taxa were
only available as private records (Weigand et al., 2019). The BOLD identification system
allows comparing user-provided queries with private records, and included 9,458,738
records that could be used if private and public sequences were considered, but only
2,429,025 records were available if choosing only public sequences (accessed on the 4th
of March 2022). Identification including private records increased the success rate from
43.3% to 78.6% for invasive pests, when using records from BOLD only (Madden et al.,
2019). However, the usage of private records is flagged with a warning since the underlying
database consists of unvalidated information (see also Ratnasingham & Hebert, 2007), and
different taxonomic names for similar sequences might appear, especially from private
records (Ratnasingham & Hebert, 2013). Furthermore, if the user compares the queries
against all barcode records, no probability of placement is available. Another issue with this
approach is that the records cannot be investigated and filtered based on meta-information
or sequence quality. If a query has a hit with a private record, the user cannot investigate
the sequence, which did cause problems in diagnosing pests (Hodgetts et al., 2016). And
since the BOLD source database constantly changes, the taxonomic identification is not
reproducible (Federhen, 2011).

For some private data, thorough reprocessing and curating misidentifications within the
BOLDworkbenchmight be the most important reason to delay a release (Becker, Hanner &
Steinke, 2011). Additionally, the BOLD identification engine (as described in Ratnasingham
& Hebert, 2007) remains largely a ‘‘black box’’ where the exact classification method is
unknown. Several studies showed that classificationmethods varied in suitability on distinct
reference databases compositions (e.g., Meier et al., 2006; Wilson et al., 2011; Virgilio et al.,
2012; Bergsten et al., 2012; Lou & Golding, 2012), so adjusting the classification method
to the used reference database is crucial. In response to Federhen (2011), BOLD added
the option to identify a query against an annually created, time-stamped and archived
reference database version (Ratnasingham & Hebert, 2011). These archived versions are a
snapshot in time. They do not consider information deleted or changed over a year and
therefore do not provide a reproducible identification if a user chooses the current version.
The current version can change just within one day. Identification with a current version
could consequently result in different outcomes within a single day. Since taxonomic
name changes within BOLD are frequent (Ratnasingham & Hebert, 2013), a reproducible
identification with private data could only be achieved if the identification was based on one
of the archived versions of the reference database, and only if BOLD does not change the
classification method. However, the usage of an archived version seems very unlikely since
the latest version is from July 2019. BOLD did not add any versions since then. Archived
versions are also not available for fungal or plant records. To preserve reproducibility and
good scientific practice we refrained from adding any functionality that would incorporate
private data. Nonetheless, software solutions providing this service have been developed
(e.g., https://github.com/VascoElbrecht/JAMP; Yang et al., 2020; Buchner & Leese, 2020).
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Geographic scale of reference databases
A reference database should be tailored to the needs of a particular research question (e.g.,
Mugnai et al., 2023). Our case study compared global reference databases for Arthropoda,
whereas a global scope might not be necessary for other research questions and could even
hamper taxonomic identification (Bergsten et al., 2012). Using larger reference databases
will certainly increase the number of erroneous sequences, although it is unclear if
it increases the proportion of false positives. But using less comprehensive databases
comes with the cost of potential false negatives. The main incentive to have an extensive
database is to identify organisms at a higher taxonomic resolution with a more reliable
identification (Meyer & Paulay, 2005; Vences et al., 2005; Ekrem, Willassen & Stur, 2007).
Since a comprehensive database is also needed to distinguish closely related taxa with a
great range (Lou & Golding, 2012; Geiger et al., 2016b), it is unknown at what point a local
database might be the right choice to avoid the effect of decreased interspecific divergence
of allopatrically distributed sister taxa in a geographically expanded dataset (Bergsten et al.,
2012). Furthermore, the effects of geographical scale will differ between taxa and areas,
and local reference databases could exclude invasive species or populations that have been
recently shifting their ranges (Bergsten et al., 2012).

Which form of error is more acceptable has to be decided individually for each research
question and could guide the reference database creation. To our knowledge, no current
software is available with more extensive geographical filtering options than taxalogue.
Reference databases could be filtered by multiple countries, continents, biogeographic
realms, ecoregions, and even custom shapefiles. Geographic filtering reduces the effect
of lower identification success due to a decreased genetic differentiation between closely
related taxa in geographically broader reference databases (Bergsten et al., 2012). However,
since online source databases hold records with missing location information (Nilsson et
al., 2006; Porter & Hajibabaei, 2018a), or the available records are not evenly distributed
across countries and continents (Porter & Hajibabaei, 2018a), geographical filtering has its
limitations. Additionally, records rarely possess information about the coordinate reference
system used–although most GPS trackers use the WGS84(EPSG:4326) by default.

Taxonomic harmonization
Some data aggregators approximate a long-envisioned unitary taxonomy: a consensus
classification and an entry point for additional taxonomic and nomenclatural information
(Thompson, 1993; Godfray, 2002). taxalogue uses such unitary taxonomies to harmonize
taxon names automatically. Harmonized taxon names are helpful due to the increasing
usage of hierarchical classifiers in the taxonomic assignment step of a metabarcoding
pipeline (Piper et al., 2021). Hierarchical classifiers depend on the taxonomic congruency
between records since incongruent taxonomic information would introduce an artificial
bias, leading to decreased identification success with lower taxonomic resolution. Other
classificationmethods also benefit from harmonized reference databases because otherwise,
a reference database could simultaneously consist of synonyms and the currently accepted
name for one taxon, resulting in arbitrary assignments to the accepted or synonymized
name. Taxonomic harmonization is already applied directly in NCBI and BOLD

Noll et al. (2023), PeerJ, DOI 10.7717/peerj.16253 16/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.16253


(Schoch et al., 2020) and indirectly through the automated identification of specimens
without prior taxonomic assignment (Ratnasingham & Hebert, 2007). To what extent users
have harmonized identifications before uploading data to the source databases and on
what basis is unknown. This indicates that taxonomic harmonizations occur to different
and partly unknown degrees, even within a single source database. Data integration across
multiple source databases, as in our test case, amplifies this problem since the records
from different sources might also be harmonized to varying degrees. Piper et al. (2021)
recommend taxonomic harmonization as a default step, just as other filtering procedures.

Even though taxonomic harmonization provides a clear advantage for further
downstream analysis, criticism exists against synchronizing data to a particular unitary
taxonomy. Such a taxonomy is algorithmically or socially resolved, even if no consensus
has yet been reached in the taxonomist community (Senderov et al., 2018). A synthesized
conclusion without clear consensus is suspected to decrease taxonomic stability (Pauly,
Hillis & Cannatella, 2009) and trust in data aggregators (Franz & Sterner, 2018). Although
macroecologists, conservationists, administrators and others depend on stable species
lists for reliable predictions (Hey et al., 2003; Isaac, Mallet & Mace, 2004; Padial & De la
Riva, 2006), the independence of taxonomy as a scientific endeavor has been stressed
to be of utmost importance (e.g., Dubois, 1998). A top-down administration is in stark
contrast to taxonomic tradition (Godfray, 2002), where a taxon could be seen as a falsifiable
scientific hypothesis that has to withstand time (Haszprunar, 2011). Scientists expressed
concerns that such an administration would lead to authoritarianism (Thiele & Yeates,
2002) and about the data quality of biodiversity data aggregators (e.g., Franz & Sterner,
2018). Even though we should preserve taxonomic independence, a non-taxonomist
still has difficulties deciding which taxon name is most appropriate (Grenié et al., 2022).
This problem is aggravated when very diverse taxa are studied or when different data
sources are used (Sterner & Franz, 2017). Users should weigh the advantages of taxonomic
harmonization against the disadvantages and decide accordingly.

taxalogue harmonizes with global backbone taxonomies, but regional or taxon-specific
taxonomies may better represent the scientific consensus for that particular group. Since
integrating many specialized taxonomies, with distinct scales and taxonomic breadth, is an
enormous challenge and selecting appropriate taxonomies would still be opinion-based,
we provide the commonly used NCBI Taxonomy, GBIF Taxonomy or no harmonization
at all as options in taxalogue. However, we would like to point out that, for example, a
specialized taxonomic harmonization, as found in Arranz et al. (2020), might be a more
appropriate choice for marine samples.

Taxon concepts
Several studies showed that using taxon concepts sensu (Berendsohn, 1995) is necessary to
unambiguously determine the meaning of a taxon name (e.g., Berendsohn, 1995; Kennedy,
Kukla & Paterson, 2005; Franz, Peet & Weakley, 2008). However, current source databases
for sequence data do not provide this information. Of the major source databases, only
BOLD provides a separate field for the used identification literature, which could help
to derive the used taxon concept. Unfortunately, providing information for this field is
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not an obligatory upload prerequisite. Furthermore, BOLD did not define this field’s
semantics. Therefore, it is unclear how to use this information. Consequently, reference
database creation tools cannot provide taxon names in combination with the used taxon
concepts. Instead, taxalogue approximates the idea of a reconciliation group (Patterson et
al., 2010) with the option to generate a ‘‘comparison’’ file. This file aggregates previously
used names for a taxon and aims to ease the information retrieval for all taxon names in the
reference database. The taxonomic database Avibase is an example of how taxon concepts
have already been implemented successfully (Lepage, Vaidya & Guralnick, 2014) and could
guide further improvement of the source databases.

Outlook
Since taxalogue combines sequences from up to three source databases, a user can achieve
comprehensive coverage without relying on private and unreliable data, which posed
problems in the past (e.g., Federhen, 2011; Hodgetts et al., 2016). As a result, the reference
database is reproducible and can be tailored to the particular research question. With
comprehensive options to define the scale of the reference database, the user can exploit the
advantages of a comprehensive (Meyer & Paulay, 2005;Vences et al., 2005; Ekrem, Willassen
& Stur, 2007) and a local database (Bergsten et al., 2012) simultaneously. Furthermore, the
options for taxonomic harmonization unlock the possibility of investigating their effects
on the interpretation of taxa lists. The latter points to potential questions that future
research still needs to address: To what extent do taxonomic harmonizations influence
the significance of metabarcoding results? A harmonized and filtered reference database
could also be a high-quality source for creating phylogenies. This is particularly interesting
for combining gene-rich and species-rich data (Chesters, 2017), which could improve
diversification analysis with phylogenies having higher and more accurate tree breadth
(Rainford, Hofreiter & Mayhew, 2016). A further question is whether the absence of the
taxon concept sensu (Berendsohn, 1995) in the source databases impedes the application of
metabarcoding for ecological or macroevolutionary questions.
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