Annual patterns of small vertebrates roadkilled in a supercity of eastern China (#84573)

1

First submission

Guidance from your Editor

Please submit by 25 May 2023 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Author Hotes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

7 Figure file(s)

3 Table file(s)

1 Raw data file(s)

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- 1 You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see PeerJ policy).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

1. Your most important issue

- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Annual patterns of small vertebrates roadkilled in a supercity of eastern China

Qiong Wu $^{\rm 1}$, Taozhu Sun $^{\rm 1}$, Yumeng Zhao $^{\rm 1}$, Cong Yu $^{\rm 1}$, Junhua Hu $^{\rm 2}$, Zhongqiu Li $^{\rm Corresp.~1}$

Corresponding Author: Zhongqiu Li Email address: lizg@niu.edu.cn

An assessment of wildlife road mortality can help develop road mitigation measures. This paper is the ûrst to report data on wildlife-vehicle collisions (WVC) in Nanjing, a megacity in eastern China. The research was conducted on a 224.27 km stretch of nine roads in Nanjing. Between November 2020 and October 2021, we conducted 26 monitoring missions to gather roadkill carcasses so that we could analyze their temporal and spatial distribution patterns. We collected 259 carcasses of 22 diûerent species, of which 46.42 %were mammals and 48.81% were birds. Cats and dogs are the most roadkilled mammals, and blackbirds and sparrows are the most roadkilled birds. The temporal analysis demonstrated that overall roadkills distribution was seasonal, with peak vertebrate roadkills occurring between May to July. Spatial analysis showed that the distribution patterns of vertebrate roadkills on diûerent roads were diûerent, generally non-random distribution and aggregation. By mapping accidents using kernel density analysis, we were able to pinpoint locations that were at high risk for roadkills. Our study suggests that the problem of car accidents due to wildlife should be a cause for concern, and the results of the analysis of temporal and spatial patterns contribute to the establishment of mitigation measures.

Nanjing University, Nanjing, China

 $^{^{\}rm 2}$ Chengdu institute of Blology, CAS, Chengdu, China

Annual patterns of small vertebrates roadkilled in a supercity

2 of eastern China

- 3 Qiong Wu 1 , Taozhu Sun 1 , Yumeng Zhao 1 , Cong Yu 1 , Junhua Hu 2 , Zhongqiu Li 1
- 4 $^{-1}$ Lab of Animal Behavior and Conservation, School of Life Sciences, Nanjing University, Nanjing, Jiangsu
- 5 Province, China
- 6 ² Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan Province, China

7

- 8 Corresponding Author:
- 9 Zhongqiu Li ¹
- 10 163 Xianlin Avenue, Nanjing, Jiangsu Province, 210023, China
- 11 Email address: lizq@nju.edu.cn

12

13

Manuscript to be reviewed

4 Annual patterns of small vertebrates roadkilled in a

15 supercity of eastern China

16

17 Qiong Wu ¹, Taozhu Sun ¹, Yumeng Zhao ¹, Cong Yu ¹, Junhua Hu ², Zhongqiu Li ¹

18

- 19 Lab of Animal Behavior and Conservation, School of Life Sciences, Nanjing University,
- 20 Nanjing, Jiangsu Province, China
- 21 ² Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan Province,
- 22 China

23

- 24 Corresponding Author:
- 25 Zhongqiu Li 1
- 26 163 Xianlin Avenue, Nanjing, Jiangsu Province, 210023, China
- 27 Email address: lizq@nju.edu.cn

28

29 Abstract

- 30 An assessment of wildlife road mortality can help develop road mitigation measures. This paper
- 31 is the first to report data on wildlife-vehicle collisions (WVC) in Nanjing, a megacity in eastern
- 32 China. The research was conducted on a 224.27 km stretch of nine roads in Nanjing. In the period between November 2020 and October 2021, 26 monitoring missions were conducted to gather roadkill
 - 33 carcasses so that we could analyze their temporal and spatial distribution patterns. We collected
 - 34 259 carcasses comprising 22 different species, of which 46.42 % were mammals and 48.81% were birds.
 - 35 Cats and dogs are the most roadkilled mammals, and blackbirds and sparrows are the most
 - 36 roadkilled birds. The temporal analysis demonstrated that overall roadkills distribution was
 - 37 seasonal, with peak vertebrate road-kills occurring between May to July. Spatial analysis showed
 - 38 that the distribution patterns of vertebrate roadkills on different roads varied, with a generally
 - 39 non-random distribution and aggregation. By mapping accidents using kernel density analysis,
 - 40 we were able to pinpoint locations that were at high risk for roadkills. Our study suggests that the
 - 41 problem of car accidents due to wildlife should be a cause for concern, and the results of the
 - 42 analysis of temporal and spatial patterns contribute to the establishment of mitigation measures.

44 45

Introduction

46

Commented [AOA(1]: Just a suggestion, and given how the authors have conducted a spatial analysis, having the title read "Annual patterns.." might suggest to the reader that you have only conducted temporal analysis. I recommend the title rewritten as either "Temporal and Spatial patterns of small vertebrate road kills in a supercity of eastern China" or "Assessing small vertebrate road kill patterns in a supercity of eastern China"

Commented [AOA(2]: This term can exclude domestic animals and livestock. Consider writing "animal" in its place.

Deleted: B

Deleted: we conducted
Formatted: Font: 12 pt

Formatted: Font: 12 pt

Formatted: Normal, No bullets or numbering

Deleted: of

Commented [AOA(3]: There should be some consistency in writing roadkills, because earlier the authors wrote "roadkills". Choose one way of writing that term and stick to that style. I recommend either using "road kill" or "roadkill".

Deleted: were different

Commented [AOA(4]: The intention behind the abstract is clear but has some language and wording errors. Avoid writing in the first person, using words such as "we" and "our". An example would be, "The study suggests" or "the paper suggests"

Manuscript to be reviewed

47 Roads act as barriers, fragmenting habitats just like any other human activity that changes 48 ecosystems, which reduces biodiversity (Ferreguetti et al. 2020). The most significant ecological impact of roads, according to Coffin (2007) and Trombulak & Frissell (2000), appears to be 49 Commented [AOA(5]: Consider including a more recent study to emphasise the impact in the contemporary world. 50 traffic-related mortality from wildlife-vehicle collisions (WVCs, hereafter). In some cases, Commented [AOA(6]: I would suggest using the term WVCs can have devastating effects on animal populations (Forman 2000; Forman & Alexander 51 "animal-vehicle collisions (AVCs)" as it is more inclusive of domestic animals such as cats and dogs. The term wildlife 52 1998). Numerous studies conducted over the past few years has produced WVCs results for can be restrictive. 53 many different countries. An estimated 340 million birds are killed on U.S. roads each year (Loss Deleted: research 54 et al. 2014); around 335,000 European hedgehogs are killed on the roads in the U.K. per year Deleted: each Deleted: 55 (Wembridge et al. 2016); and around 9 million medium-large mammals are killed in traffic 56 accidents in Brazil every year (Pinto et al. 2022). In addition, roadkill data has been reported Deleted: ed Deleted: have 57 from Spain (Colino-Rabanal et al. 2012; Diaz-Varela et al. 2011; Lagos et al. 2012; Rodriguez-58 Morales et al. 2013), Poland (Tajchman et al. 2010) and Sweden (Neumann et al. 2012). Commented [AOA(8]: Try to write a little clearly about the significance of this roadkill data. "In addition" can imply that 59 these statistics are not as significant as the ones written earlier 60 The world's road network has been expanding steadily in recent years, and by 2050, it is anticipated that at least 25 million km will be added to the network (Laurance et al. 2014). With 61 Commented [AOA(9]: Avoid starting sentences with 62 the continuous development of China's economy, the total mileage of China's road network and 63 road network density is also increasing. By the end of 2020, the total mileage of China's road network reached 5.20 million km, and the density of the road network in China reached 54.15 64 km per 100 square km. Among them, the mileage of National highways, Provincial highways 65 66 and County highways was approximately 0.37 million km, 0.38 million km and 4.46 million km, respectively. Roadkills, which are one of several reasons for the loss of vertebrates, have 67 Commented [AOA(10]: Use references to support this. 68 been proven in studies to increase with the development of road networks (Forman & Alexander Deleted: causing Deleted: grow 69 1998). However, there are very few studies related to wildlife roadkill in China's modern cities, 70 and research has only been conducted in Taiwan (Lin et al. 2019), the Changbai Mountain 71 Nature Reserve (Wang et al. 2016), the Huangnihe River Reserve (Li 2019), the Zoige Wetland 72 National Nature Reserve (Gu et al. 2011), and the Wanglang National Nature Reserve (Zhang et 73 al. 2018), mostly in ecologically sensitive areas and focusing on species that are endemic to 74 China. Therefore, there is a need to investigate common wildlife and their roadkill status in a 75 wide geographical space. 76 77 Previous research on small vertebrates (Clevenger et al. 2003; Morelle et al. 2013) and birds Commented [AOA(11]: Birds are typically small vertebrates 78 (Colino-Rabanal et al. 2011; Erritzoe et al. 2003) discovered that seasonal behaviors such as Deleted: like 79 dispersal and migration are linked to temporal variations in roadkill patterns. Peak periods of 80 animal road mortality occur during periods when animals are searching for mates or increasing

their foraging activity (Lagos et al. 2012; Rodriguez-Morales et al. 2013; Smith-Patten & Patten

2008). Also, juvenile dispersal during periods of increased numbers of free-ranging and

81

82

PeerJ reviewing PDF | (2023:04:84573:0:1:NEW 13 Apr 2023)

Manuscript to be reviewed

inexperienced juveniles can affect the seasonality of road mortality (Madden & Perkins 2017). 83 84 Roadkill patterns exhibit temporal variability, which can be understood to improve mitigation methods, particularly those that can be handled in a timely manner (for example, limitation of traffic Deleted: e.g. 85 86 intensity or speed) (D'Amico et al. 2015). 87 The spatial distribution of casualties, which is arguably the most researched aspect of road 88 ecology, is another key subject in roadkill research (Jaeger & Fahrig 2004; Trombulak & Frissell 89 90 2000). According to certain research, roadkill of mammals and other vertebrates, such as birds, 91 does not occur randomly but rather at specific areas of the road (Coelho et al. 2008; Garriga et al. 92 2017). Mortality hotspots are stretches of road where roadkills are more common (Santos et al. 93 2015). These areas might be thought of as top priorities for the use of mitigation, measures. By Deleted: ng 94 constructing wildlife crossing structures such as tunnels, ledges in culverts, and overpasses in 95 these locations, we can reduce the amount of wildlife that is roadkilled (van der Grift et al. 2013). 96 Commented [AOA(12]: Try to explain the knowledge gap you trying to fill in more detail through these paragraphs. It 97 seems as though you trying to convey concerns with regard to conservation in the supercities of China. Therefore, try to 98 The study's aim is to present Nanjing with the initial findings regarding the spatial and explain that clearly. Consider referring to Jacobson et al 99 temporal patterns of WVCs. We monitored nine road stretches fortnightly for one year in (2016) "A behavior-based framework for assessing barrier effects to wildlife from vehicle traffic volume" whom Nanjing (a supercity in eastern China). The objectives of this study were (1) to describe the 100 highlighted the impacts of roadkill on animal populations. Deleted: Our 101 species composition of roadkills on the road studied; (2) to describe the seasonal pattern of Deleted: objective 102 roadkills in mammals and birds; and (3) to describe the spatial patterns of roadkills on the Commented [AOA(13]: Is it a supercity or a megacity? investigated road. For example, where are roadkill incidents gathered? Where are the located 103 They are not necessarily the same thing. 104 mortality hotspots? How are roadkills distributed across different spatial scales? Using the Deleted: the 105 temporal and spatial distribution patterns in WVCs, we may also identify targeted. Deleted: identified 106 hotspots of roadkills to apply mitigating actions. Deleted: for Deleted: ing 107 **Materials & Methods** 108 109 Study area 110 111 The study area (Figure 1) was located in Nanjing in the southwestern Jiangsu Province (31°14' to 112 Commented [AOA(14]: Write this for all references to 32°37' N,118° 22' to 119°14' E). The climate is humid north subtropical with four distinct 113 Deleted: seasons and abundant rainfall, with annual rainfall averaging 1106.5 mm. The annual average 114 temperature is 15.4°C, the highest annual extreme temperature is 39.7°C, and the lowest is -115 13.1°C. Topography is flat, and elevations range from 0 to 753 m, and the average altitude is 35 116 m. Nanjing is a supercity in eastern China with a resident population of approximately 10 million 117

152

153

Manuscript to be reviewed

people. It is also an international integrated transport hub city with a total road mileage of 9,796.325 m and an extensive road network with varying road types and traffic intensities. We

120	selected nine roads (three National highways, three Provincial highways and three Rural		Commented [AOA(15]: Why are these written with uppercase here but not anywhere else?
121	highways) within our study area. All nine roads are paved, with the annual average daily traffic		Commented [AOA(16]: Name these roads.
122	volumes ranging from 30 000 to 60,000 vehicles per day on national highways, 10,000 to 40,000		Commence [1011[10]. Frame these roads.
123	vehicles per day on provincial highways, and 5,000 to 15,000 vehicles per day on rural		
124	highways. The types of roadside habitats on these roads cover residential areas, farmland, open		
125	fields and forests. The basic conditions of the sampled roads are shown in Table 1.		
126			
127	Roadkill survey data collection		
128			
129	To gather data on road vertebrate carcasses, we ran 26 monitoring campaigns over 224.27		
130	kilometers of road, totalling 5831 km, between November 2020 and October 2021. Nine selected		Commented [AOA(17]: Why has this been written fully
131	roads were monitored every fortnight over the course of a year. Sampling was done in good		when you are using "km" and "me" elsewhere.
132	weather conditions, beginning at 9 a.m. and lasting as long as it took to complete the entire route		Commented [AOA(18]: What constitutes "good" weather
133	while maintaining a speed of 40 km/h (Ferreguetti et al. 2020). Considering the safety of		conditions?
134	driving, our speed should not be too low. The survey team included drivers and observers who		Commented [AOA(19]: ? Commented [AOA(20]: If possible, state specifically how
135	kept records of animal carcasses found on the survey roads. Additionally, driving recorders were		long this took.
136	installed in the automobiles to capture any roadkill events throughout the survey. All carcasses		Commented [AOA(21]: What constitutes a speed too low for these roads?
137	found during the survey were identified at class (to species level where possible). The Global	1	Commented [AOA(22]: From which organisations?
138	Positioning System (GPS) was used for logging the locations of each road accident. Roadkill was		Commence [11011(22]) From White organisations.
139	georeferenced to an accuracy of 50 m. Once recorded, it was removed from the road. The		
140	accuracy of road kill hotspot detection is decreased due to the low frequency of our sample and		Commented [AOA(23]: Remember to either use "road ki
141	the possibility of ignoring small-sized carcasses in car surveys (Santos et al. 2011; Santos et al.		or "roadkill" Avoid using both of these.
142	2015); nonetheless, more frequent surveys are not practical given the scope of our investigation		Commented [AOA(24]: "low frequency of sampling" or "low size of the sample"?
143	(Garriga et al. 2017).	***************************************	Commented [AOA(25]: If possible, try clarifying this a
144			little more. It is not an absolute necessity but I think it wou help the reader.
145	Data analysis		
146			
147	Exploratory analysis was used to calculate the absolute and relative frequencies of WVCs in		
148	order to determine the species involved and the types of roads where incidents occurred. We		
149	used the Kruskal-Wallis test to examine seasonal trends in animal roadkill at the level of species		
150	groups (mammals and birds) and small vertebrate populations.		Commented [AOA(26]: This can be redundant. If you are
151	· • • • • • • • • • • • • • • • • • • •		only examining mammals and birds then small vertebrates fall in that category.

We evaluated the spatial distribution of WVCs in three steps. First of all, we used the nearest

neighbor distance (NND) to evaluate the distribution of roadkills on the road network (Gonser et

Manuscript to be reviewed

154 al. 2009). We compare the observed average distance between each incident and its nearest 155 neighbor with the average distance that would be expected if the accidents were randomly distributed along the road (complete spatial randomness) to determine whether WVCs are 156 aggregated along the road network (Okabe & K.Sugihara 2012). The Clark-Evans index is 157 158 calculated to confirm departure from a random distribution. The index is the ratio of the observed and expected mean distances: values >1, =1, <1, indicating that the points are aggregated, 159 randomly distributed and dispersed, respectively (Clark & Evans 1954). Secondly, to locate 160 161 collision hotspots for WVCs, we employed kernel density analysis (Okabe & K.Sugihara 2012). 162 Kernel density is the number of road-killed animals per kilometer of road. Finally, we investigate 163 the spatial structure of WVCs at different spatial scales using the Ripley K-function, which denotes the pattern of point distribution at various scales (Mountrakis & Gunson 2009; Ripley 164 1976). All the spatial analyses were performed with the use of the SANET Standalone and 165 166 ArcGIS 10. SANET Standalone provides tools adapted to perform spatial analysis along linear 167 features. 168

Deleted: CRS

Commented [AOA(28]: Check if this is correct?

Commented [AOA(29]: It is advisable to include one or two sentences to briefly explain this analysis. It needn't be in detail but should have some extra information and referencing.

Commented [AOA(30]: If this work has already been done then write in past tense.

Commented [AOA(31]: Write this in full if it is an abbreviation or an acronym.

Results

171 Species composition of roadkills

172 173

174175

169 170

From November 2020 to October 2021, we examined a total of 5831 km through 26 surveys. A total of 293 animals (21 identified species) were collected. These included 136 mammals (6 species), 143 birds (14 species) and five reptiles (1_species) (Table 2). Birds made up 48.81% of the roadkills followed by mammals (46.42%) and reptiles (1.70%).

176 177 178

179

180

181

182

The most commonly mammalian roadkilled species were the cat (Felis catus) (28.7 % of mammalian casualties), the dog (Canis lupus familiaris) (26.5 %) and the weasel (Mustela sibirica davidiana) (9.6 %). The most common bird roadkilled species were the Blackbird (Turdus merula) (15.4 % of bird casualties) and the Sparrow (Passer montanus) (7.7 %). Together these five species accounted for 41.3 % (121) of all roadkills. The only recorded reptile species killed on the road is the Tabby-necked snake (Rhabdophis tigrinus).

183 184 185

Seasonality of roadkill numbers

186 187

188

Roadkill occurrences were not evenly distributed throughout the year (Fig. 2), with significant differences in the number of roadkills across months ($\xi 2 = 20.552$, df = 11, p = 0.038) and

Commented [AOA(32]: In the earlier comment about vertebrates (Data analysis), it would have been advisable to write either "mammals, birds and reptiles", "mammals, birds, reptiles and amphibians" or "mammals, birds and herpetofauna" as they all fall into the category of vertebrates for this study.

Deleted: one

Commented [AOA(33]: If your focus is on cats and dogs for the mammals in this study, then I think it is not necessary to include this.

Commented [AOA(34]: Use italics when writing the species scientific name.

189	seasons ($\xi 2 = 12.012$, df = 3, p = 0.007). The highest rates occurred in May (32 specimens), June	
190	(40 specimens) and July, compared to lower roadkill rates in February (13	Commented [AOA(35]: How many specimens?
191	specimens), March (15 specimens) and April (15 specimens). Seasonality tests indicated that the	Deleted: of roadkills
192	number of road kills was significantly higher in summer and autumn than in spring and winter.	
193	Seasonality of roadkill was also shown to significantly differ between specific taxonomic groups.	Deleted: in the
	(Mammals: $\xi 2 = 8.726$, df = 3, p =	Deleted: -specific
194	0.033; Birds: $\xi 2 = 11.211$, df = 3, p = 0.011). Mammals showed a higher road mortality in	
195	autumn. By contrast, birds showed peaks in summer (Fig. 3).	
196		
197	Description of the spatial pattern of roadkills	
198		
199	Among the different types of roads, provincial roads (5.76+0.65individuals/100km) had the	
200	highest road mortality, followed by national roads (5.38±0.62individuals/100km) and county	
201	roads (5.02±0.68individuals/100km), but no significant differences in road mortality were found	
202	among the different administrative levels of roads ($\xi 2 = 0.471$, df = 2, p = 0.790) (Fig. 4).	
203		
204	We observed that carcasses were not randomly distributed along the road network. Among the	
205	nine roads investigated, the roadkills of G1, S1, and S2 showed a clustering pattern (p < 0.05;	
206	Table S1, Fig. S1). The heterogeneous distribution of WVCs along the road network was	
207	revealed by network kernel density analysis (Fig. 5). The shade of color in Figure 3 represented	
208	the density of roadkills. The Net-KDE results showed that the darker the road segment, the more	
209	road accidents occurred.	Commented [AOA(36]: Refer the figure or table relevant to
210		this.
211	For the multi-distance clustering analysis, the network K function is executed on the <u>road</u> network.	
212	The results of the K-function show the clustering tendency of roadkills at multiple distances (Fig.	
213	6). The distribution pattern of vertebrate roadkills on different roads varies, and it is	Deleted: is different
214	generally non-random distribution and aggregation. On the national highway, the roadkill	Deleted: s
215	distribution of vertebrates on G1 and G3 is obviously clustered within 20 km; on G2, it presented	
216	a random distribution. On the provincial highway, there was significant clustering of roadkills at	
217	small spatial scales. The range of spatial scales over which clustering was significant was 0-5 km	
218	in roadkills; on a larger scale, it showed a scattered or random distribution. On the county roads,	
219	the distribution of roadkills on X2 and X3 are significantly clustered within 3 km and tend to be	
220	randomly distributed with increasing scale. On X1, it is randomly distributed in a small range,	
221	tends to be dispersed as the scale increases, and stabilizes at random after 10 km.	Commented [AOA(37]: If possible, try to include the
222		quantified output to support the analysis. Check the results in the applied GIS.

Manuscript to be reviewed

223 Discussion 224 Roadkill magnitude and species affected 225 226 A total of 293 road-killed wild animals were recorded in our 12-month study, with an average 227 road mortality rate of 5.39±0.37 individuals/100km. Comparison of vertebrate road mortality 228 across studies is difficult due to differences in survey methods and species conditions at survey 229 Deleted: not easy 230 sites (Elzanowski et al. 2009; Langen et al. 2007). However, the road mortality of wild animals 231 has certainly been underestimated in these investigations. Many animals are Deleted: On the one hand, m 232 thrown far from the road after a collision due to the impact, and it is clear that these individuals 233 are often overlooked during surveys, Alternatively, animal carcasses remain on the road for Deleted: On the other hand only a short time due to vehicle movements, rain and the activities of road scavengers. Studies 234 have shown this to be an important factor in underestimating road mortality (Pinto 235 Deleted: that the fact that Deleted: is et al. 2022). In our case, over 90 % of vertebrate carcasses remained on the road for no more than 236 237 5 days (well below the sampling interval of this study) (Wu & Sun, unpublished data). Research approaches also play an important role in roadkill surveys. The low frequency of surveys (every 238 fortnightly) may lead to an underestimation of roadkills, as the persistence of bodies on the road 239 240 is much lower than the survey interval (Santos et al. 2011). 241 Roadkill events tend to be concentrated in one or a few species, which are usually locally 242 abundant, mobile and easily attracted by favorable resources or environmental conditions along 243 244 the road (Forman 2000). Cats and dogs are the most commonly killed mammals on the roads 245 sampled, probably because of their large numbers, wide distribution and high population density For example, the total number of owned cats in urban areas of China is estimated to be 246 247 149,807,371 (Li et al. 2021). The high number of dogs and cats in Nanjing is closely related to the city's high population. In densely populated areas, more people treat cats and dogs as pets 248 and they can accidentally breed, be abandoned by their owners or wander off and become stray 249 250 animals (Ozen et al. 2016). 251 The blackbird and sparrow are the most commonly roadkilled birds, probably because they are 252 253 both resident birds with large and widely distributed populations and are the dominant species 254 among birds in Nanjing (Zhang et al. 2018). Particularly the blackbird, in contrast to other Deleted: T Deleted: in particular, 255 avians, feeds on cereals, fruit and insects, but also on rotten and foul-smelling carrion (Zhu 2019). Deleted: birds 256 This is why blackbirds are not only found around the mountains and forests but can also be seen 257 in residential areas. Deleted: Among birds, sparrows and blackbirds dominated the road kills.

Manuscript to be reviewed

258 259 Temporal patterns 260 261 Temporal patterns of roadkill may be correlated with the phenology and activity cycles of local wildlife, as well as local weather circumstances (Carvalho & Mira 2011). Some studies have 262 associated roadkill with the season (Caro et al. 2000). Generally, the peak road kills for 263 mammals appeared in summer and autumn, while the peak roadkill for birds appeared in spring 264 265 and summer. However, this varies depending on the species' breeding season and dispersal 266 patterns (Hell et al. 2005). For wild animals, their road mortality patterns are associated with 267 three bursts of movement in their life: the mating seasons, the weaning of young to forage with 268 their mothers, and the dispersal of juveniles (Smith-Patten & Patten 2008). Deleted: young 269 270 In this study, overall roadkills distribution was seasonal. May to September were months in 271 which vertebrates were found to be particularly vulnerable to road mortality. The animals' Deleted: seen 272 heightened reproductive activity in summer and autumn may be the cause of the rise in roadkill. 273 In the spring and early summer, many taxa give birth to their young, and by the end of the 274 summer, the populations have grown significantly (Raymond et al. 2021). Not only does this mean more individuals and therefore an increased likelihood of vehicle collisions, but also 275 Deleted: it 276 entails a large number of inexperienced juveniles that must disperse, with an often lacking ability to Deleted: means Deleted: who may not yet have learned to 277 avoid vehicles (Legagneux & Ducatez 2013). In addition, due to the fact that parents are required to forage more frequently and for longer periods of time to raise their young, some adult animals 278 279 may also be more susceptible to automobile accidents at this time of year (Gonser et al. 2009; 280 Hell et al. 2005). 281 282 In our study, mammalian roadkill peaks occurred in July to September and November, which is 283 probably connected to the duration of the day and the animals' seasonal activity (Tajchman et al. Deleted: ' 284 2010). The first peak occurs in association with mammalian breeding activity. From May to 285 September, when most mammals enter the breeding season increased breeding activity Deleted: 286 (Ignatavicius & Valskys 2018), mass movements (Herr 2008) and the dispersal of young can all lead to seasonal peaks in roadkill, Conversely, winter is a difficult time for many mammals and 287 Deleted: On the other hand 288 corresponds to a period of dormancy or decreased activity for species (Haigh 2012). It is also a 289 time of reduced prey and food supply for many animals and as a result individuals may have to 290 travel further in search of food leading to a greater susceptibility to roadkills that may account Deleted: which 291 for the peak observed in mammals in November (Garriga et al. 2017). 292

Manuscript to be reviewed

293 The time interval between adult breeding and juvenile dispersal is much shorter in birds 294 compared to mammals (Dawson et al. 2001). The temporal convergence of mate search, juvenile 295 nurturing and dispersal make it easier to observe a single-peak pattern of road mortality Deleted: juvenile 296 in birds, but the timing of the peak depends on the taxonomic unit (Raymond et al. 2021). In our 297 study, May to July were the months when birds were particularly vulnerable to road mortality. This was also a time when birds were engaged in the breeding activity (incubation and fledging) 298 and juveniles were dispersing (Colino-Rabanal et al. 2011; Erritzoe et al. 2003). Particularly, the 299 300 high proportion of immature young people leaving the nest may be the cause of the elevated Commented [AOA(39]: ? mortality_(Grilo et al. 2009; Hell et al. 2005). On the other hand, during fledging, adults must 301 302 frequently travel over large distances to forage for food in order to feed their young. As a result, 303 birds may cross roads more frequently or forage among roadside vegetation, which increases the 304 chance of roadkills (Holm & Laursen 2011; Kuitunen et al. 2003). In addition, as summer crops 305 mature, seed-eating birds have access to more food sources close to roads, which may potentially 306 be a factor in the increased bird mortality (da Rosa & Bager 2012). Meanwhile, we also observed a peak in road mortality in January. It may be correlated with the breeding habits of some bird 307 308 species. Blackbirds and sparrows, for example, can successfully breed and raise two or more 309 broods of young in a year, depending on weather conditions (Yuan 2017; Zhu 2019). 310 Spatial distributions 311 312 313 The distribution of the roadkills along the road network is not random, according to the spatial 314 analyses. We indeed observed that most WVCs occurred on national and provincial roads and 315 were highly clustered along these routes in Nanjing, southwestern Jiangsu Deleted: national and provincial roads Province. The study by Morelle et al. (Year?) in the Wallonia region of southern Belgium also found 316 Deleted: showed 317 that although national roads and highways account for small parts of the total length of the road 318 network, more than half of the WVC occur on these roads, and WVCs were highly concentrated 319 in the highway and national roads in the south of Belgium (Morelle et al. 2013). Clevenger's (Year?) 320 research in Western Canada found that the distribution of roadkills were uneven (Clevenger et al. 321 2003; Morelle et al. 2013). Possible explanations for the different patterns are differences in road 322 structure and traffic flow (Girardet et al. 2015). In our study area, the average daily traffic 323 volume on national and provincial highways (20,000 - 50,000 vehicles/day) is two to four times higher than on rural highways (5,000 - 15,000 vehicles/day). Although we found higher roadkill Commented [AOA(40]: Sources? 324 mortality on national and provincial roads than on county roads, we did not find significant 325 326 differences, probably because the higher road density of county roads compensates for the effects 327 of lower traffic volumes, so animals use county roads more frequently than national and provincial roads. 328 Commented [AOA(41]: Integrate more literature with this

362

363

364

Manuscript to be reviewed

329 330 The spatial distribution pattern of roadkill also shows variability between different road types. A map of kernel density revealed places at higher risk of WVCs. This non-random pattern is likely 331 to be explained by road features and land cover (Gonser et al. 2009). Among our sampled roads, 332 WVCs on G1 are concentrated around Xuanwu Lake and Zijin Mountain National Forest Park. 333 The urban forest park is an important habitat for urban animals (Fernandez-Juricic 2004; Fontana Commented [AOA(42]: Such as? 334 335 et al. 2011), in which there is a large number and variety of wildlife and high biodiversity. The 336 area is also located in the center of Nanjing, with a high population and road density, and large Deleted: high 337 traffic flow. The increased probability of wildlife crossing the roads in this area makes it Deleted: Therefore, the risk 338 prone to wildlife-vehicle collisions. Deleted: is extremely high and 339 340 The scale of roadkills on different grades of roads also varies. Network nearest neighbor Deleted: is 341 analysis reveals that the scale of roadkill clusters was higher on national highways than on other Deleted: different Deleted: s 342 roads. On national highways, the scale of roadkill aggregation is in the range of 0-20 km, while on rural highways, the scale of roadkill aggregation is only 0-5 km. Differences in vehicle speeds 343 344 and road characteristics are one of the reasons behind this, Roads with many curves and low Deleted: why it occurred 345 traffic speeds may result in more discontinuous roadkill patterns (i.e., roadkill aggregation on smaller spatial scales) than high-speed linear highways with high speeds and little speed 346 347 variation (Clevenger et al. 2003). 348 349 Mitigation measures 350 351 Roadkill mitigation measures are widespread in many countries (Damarad & Bekker 2003). 352 Mitigation measures to address the impact of roads on wildlife need to be considered when new Deleted: mitigate 353 roads are built, expanded or upgraded (Evink 2002). Common mitigation measures include 354 wildlife warning signs, road traffic volume and speed restrictions in specific seasons and 355 locations, wildlife detection systems, wildlife passages and wildlife fencing. 356 357 Our results aid in the creation of mitigating strategies to lessen roadkills in the research area. 358 Wildlife corridors at roadkilled hotspots, combined with wildlife fencing, can be effective in 359 preventing animals from entering the road. We recommend systematic and regular monitoring of animal roadkill for at least a year to identify roadkilled hotspots. If roadkill can be monitored for 360 several years, the population dynamics of some species can be assessed on the basis of the results 361

(Hell et al. 2005). Temporary mitigation measures, such as speed restrictions or temporary traffic

control, can be implemented for hotspots where animal access is not readily available or where there are seasonal peaks of WVCs. Furthermore, long-term monitoring of mitigation after

PeerJ reviewing PDF | (2023:04:84573:0:1:NEW 13 Apr 2023)

Manuscript to be reviewed

Deleted: mitigation 365 implementation to determine the effectiveness of these measures and timely adjustments 366 based on actual conditions is conducive to minimizing roadkills. 367 Conclusions 368 369 In our study over a 12-month period from November 2020 to October 2021, we collected 293 370 roadkilled individuals along the sampling roads in Nanjing. Temporal analysis of roadkill events 371 indicated that they were seasonal, with peaks in roadkill occurring mainly in summer and autumn 372 for birds and mammals, respectively. Spatial analysis of roadkill events showed that their spatial 373 distribution pattern on roads was generally non-random and aggregated. Our research shows that 374 375 wildlife-vehicle collisions should be taken seriously. We should put in place the necessary mitigation measures to reduce road kill at certain times and on certain roads. 376 Commented [AOA(43]: Briefly highlight those 377 378 **Acknowledgements** 379 380 We thank Sihan Ning, Cong Yu, Yunshu Wang, Lixin Chen and others for their help during the Commented [AOA(44]: Who are these others? 381 road surveys. We are grateful to Yumeng Zhao, Yigui Zhang, Yunchao Luo and others for their advice on the work. We appreciate Changjian Fu and the editors and reviewers for their valuable 382 comments and suggestions for improving the manuscript. 383 384 385 References 386 Caro TM, Shargel JA, and Stoner CJ. 2000. Frequency of medium-sized mammal road kills in 387 an agricultural landscape in California. American Midland Naturalist 144:362-369. 388 Carvalho F, and Mira A. 2011. Comparing annual vertebrate road kills over two time periods, 9 389 years apart: a case study in Mediterranean farmland. European Journal of Wildlife 390 Research 57:157-174. 391 Clark PJ, and Evans FC. 1954. Distance to Nearest Neighbor as a Measure of Spatial 392 Relationships in Populations. Ecology 35:445-453. 393 Clevenger AP, Chruszczc B, and Gunson KE. 2003. Spatial patterns and factors influencing 394 small vertebrate fauna road-kill aggregations. Biological Conservation 109:15-26. 395 Coelho IP, Kindel A, and Coelho AVP. 2008. Roadkills of vertebrate species on two highways 396 through the Atlantic Forest Biosphere Reserve, southern Brazil. European Journal of 397 Wildlife Research 54:689-699. 398 Coffin AW. 2007. From roadkill to road ecology: A review of the ecological effects of roads. 399 Journal of Transport Geography 15:396-406.

408

409 410

423 424

425

400	Colino-Rabanal VJ, Bosch J, Munoz MJ, and Peris SJ. 2012. Influence of new irrigated
401	croplands on wild boar (Sus scrofa) road kills in NW Spain. Animal Biodiversity and
402	Conservation 35:247-252.

- Colino-Rabanal VJ, Lizana M, and Peris SJ. 2011. Factors influencing wolf Canis lupus roadkills
 in Northwest Spain. European Journal of Wildlife Research 57:399-409.
- D'Amico M, Roman J, de los Reyes L, and Revilla E. 2015. Vertebrate road-kill patterns in
 Mediterranean habitats: Who, when and where. *Biological Conservation* 191:234-242.
 - da Rosa CA, and Bager A. 2012. Seasonality and habitat types affect roadkill of neotropical birds. *Journal of Environmental Management* 97:1-5.
 - Damarad T, and Bekker GJ. 2003. COST 341 Habitat Fragmentation due to Transportation Infrastructure: Findings of the COST Action 341.
- Dawson A, King VM, Bentley GE, and Ball GF. 2001. Photoperiodic control of seasonality in
 birds. *Journal of Biological Rhythms* 16:365-380.
- Diaz-Varela ER, Vazquez-Gonzalez I, Marey-Perez MF, and Alvarez-Lopez CJ. 2011.
 Assessing methods of mitigating wildlife-vehicle collisions by accident characterization and spatial analysis. *Transportation Research Part D-Transport and Environment* 16:281-287.
- Elzanowski A, Ciesiolkiewicz J, Kaczor M, Radwanska J, and Urban R. 2009. Amphibian road
 mortality in Europe: a meta-analysis with new data from Poland. European Journal of
 Wildlife Research 55:33-43.
- 420 Erritzoe J, Mazgajski TD, and Rejt L. 2003. Bird casualties on European roads a review. *Acta*421 *Ornithologica* 38:77-93.
- 422 Evink GL. 2002. Interaction between roadways and wildlife ecology. National Academy Press.
 - Fernandez-Juricic E. 2004. Spatial and temporal analysis of the distribution of forest specialists in an urban-fragmented landscape (Madrid, Spain) Implications for local and regional bird conservation. Landscape and Urban Planning 69:17-32.
- Ferreguetti AC, Graciano JM, Luppi AP, Pereira-Ribeiro J, Rocha CFD, and Bergallo HG. 2020.
 Roadkill of medium to large mammals along a Brazilian road (BR-262) in Southeastern
 Brazil: spatial distribution and seasonal variation. Studies on Neotropical Fauna and
 Environment 55:216-225.
- Fontana CS, Burger MI, and Magnusson WE. 2011. Bird diversity in a subtropical South American City: effects of noise levels, arborisation and human population density. *Urban Ecosystems* 14:341-360.
- Forman RTT. 2000. Estimate of the area affected ecologically by the road system in the United
 States. Conservation Biology 14:31-35.
- Forman RTT, and Alexander LE. 1998. Roads and their major ecological effects. Annual Review
 of Ecology and Systematics 29:207-231.
- Garriga N, Franch M, Santos X, Montori A, and Llorente GA. 2017. Seasonal variation in
 vertebrate traffic casualties and its implications for mitigation measures. *Landscape and Urban Planning* 157:36-44.

466

- Girardet X, Conruyt-Rogeon G, and Foltete JC. 2015. Does regional landscape connectivity
 influence the location of roe deer roadkill hotspots? *European Journal of Wildlife Research* 61:731-742.
- Gonser RA, Jensen RR, and Wolf SE. 2009. The spatial ecology of deer-vehicle collisions.
 Applied Geography 29:527-532.
- Grilo C, Bissonette JA, and Santos-Reis M. 2009. Spatial-temporal patterns in Mediterranean
 carnivore road casualties: Consequences for mitigation. *Biological Conservation* 142:301-313.
- Gu HJ, Dai Q, Wang Q, and Wang YZ. 2011. Factors contributing to amphibian road mortality in
 a wetland. Current Zoology 57:768-774.
- Haigh A. 2012. Annual patterns of mammalian mortality on Irish roads. Hystrix-Italian Journal of
 Mammalogy 23:57-65. 10.4404/hystrix-23.2-4747
- Hell P, Plavy R, Slamecka J, and Gasparik J. 2005. Losses of mammals (Mammalia) and birds
 (Aves) on roads in the Slovak part of the Danube Basin. European Journal of Wildlife
 Research 51:35-40. 10.1007/s10344-004-0068-6
- Herr J. 2008. Ecology and Behaviour of Urban Stone Martens (*Martes foina*)in Luxembourg the
 University of Sussex
- Holm TE, and Laursen K. 2011. Car traffic along hedgerows affects breeding success of Great
 Tits Parus major. Bird Study 58:512-515.
- Ignatavicius G, and Valskys V. 2018. The influence of time factors on the dynamics of roe deer
 collisions with vehicles. Landscape and Ecological Engineering 14:221-229.
- Jaeger JAG, and Fahrig L. 2004. Effects of road fencing on population persistence.
 Conservation Biology 18:1651-1657.
- Kuitunen MT, Viljanen J, Rossi E, and Stenroos A. 2003. Impact of busy roads on breeding
 success in pied flycatchers Ficedula hypoleuca. Environmental Management 31:79-85.
 - Lagos L, Picos J, and Valero E. 2012. Temporal pattern of wild ungulate-related traffic accidents in northwest Spain. *European Journal of Wildlife Research* 58:661-668.
- Langen TA, Machniak A, Crowe EK, Mangan C, Marker DF, Liddle N, and Roden B. 2007.
 Methodologies for surveying herpetofauna mortality on rural highways. *Journal of Wildlife Management* 71:1361-1368.
- 470 Laurance WF, Clements GR, Sloan S, O'Connell CS, Mueller ND, Goosem M, Venter O,
 471 Edwards DP, Phalan B, Balmford A, Van Der Ree R, and Arrea IB. 2014. A global
 472 strategy for road building. *Nature* 513:229-232.
- Legagneux P, and Ducatez S. 2013. European birds adjust their flight initiation distance to road
 speed limits. *Biology Letters* 9: 20130788.
- Li L. 2019. The Effect Zone of Land Vertebrace Roads on Forest Highway in Huangnihe
 Reservemaster. For Master. Jilin Agricultural University.
- 477 Li YH, Wan Y, Shen H, Loss SR, Marra PP, and Li ZQ. 2021. Estimates of wildlife killed by free-478 ranging cats in China. *Biological Conservation* 253:108929.

489

490 491

495

496

497

498

501

504

505

506

507 508

- Lin YP, Anthony J, Lin WC, Lien WY, Petway JR, and Lin TE. 2019. Spatiotemporal 479 480 identification of roadkill probability and systematic conservation planning. Landscape 481
- 482 Loss SR, Will T, and Marra PP. 2014. Estimation of bird-vehicle collision mortality on US roads. 483 Journal of Wildlife Management 78:763-771.
- 484 Madden JR, and Perkins SE. 2017. Why did the pheasant cross the road? Long-term road 485 mortality patterns in relation to management changes. Royal Society Open Science 4:170617. 486
 - Morelle K, Lehaire F, and Lejeune P. 2013. Spatio-temporal patterns of wildlife-vehicle collisions in a region with a high-density road network. Nature Conservation-Bulgaria:53-73.
 - Mountrakis G, and Gunson K. 2009. Multi-scale spatiotemporal analyses of moose-vehicle collisions: a case study in northern Vermont. International Journal of Geographical Information Science 23:1389-1412.
- Neumann W, Ericsson G, Dettki H, Bunnefeld N, Keuler NS, Helmers DP, and Radeloff VC. 492 493 2012. Difference in spatiotemporal patterns of wildlife road-crossings and wildlife-vehicle 494 collisions. Biological Conservation 145:70-78.
 - Okabe A, and K.Sugihara. 2012. Spatial Analysis Along Networks: Statistical and Computational Methods, Chichester: John Wiley, a volume in the Wiley series of Statistics in Practice.
 - Ozen D, Bohning D, and Gurcan IS. 2016. Estimation of stray dog and cat populations in metropolitan Ankara, Turkey. Turkish Journal of Veterinary & Animal Sciences 40:7-12.
- Pinto FAS, Cirino DW, Cerqueira RC, Rosa C, and Freitas SR. 2022. How Many Mammals Are 499 500 Killed on Brazilian Roads? Assessing Impacts and Conservation Implications. Diversity-Basel 14:835.
- 502 Raymond S, Schwartz ALW, Thomas RJ, Chadwick E, and Perkins SE. 2021. Temporal 503 patterns of wildlife roadkill in the UK. Plos One 16:e0258083.
 - Ripley BD. 1976. 2nd-order analysis of stationary point processes. Journal of Applied Probability 13:255-266.
 - Rodriguez-Morales B, Diaz-Varela ER, and Marey-Perez MF. 2013. Spatiotemporal analysis of vehicle collisions involving wild boar and roe deer in NW Spain. Accident Analysis and Prevention 60:121-133.
- Santos SM, Carvalho F, and Mira A. 2011. How Long Do the Dead Survive on the Road? 509 510 Carcass Persistence Probability and Implications for Road-Kill Monitoring Surveys. Plos 511 One 6: e25383.
- 512 Santos SM, Marques JT, Lourenco A, Medinas D, Barbosa AM, Beja P, and Mira A. 2015. 513 Sampling effects on the identification of roadkill hotspots: Implications for survey design. 514 Journal of Environmental Management 162:87-95.
- 515 Smith-Patten BD, and Patten MA. 2008. Diversity, seasonality, and context of mammalian roadkills in the southern great plains. Environmental Management 41:844-852. 516
- 517 Tajchman K, Gawryluk A, and Drozd L. 2010. Effects of roads on populations of wild game in 518 the lublin region. Teka Kom Ochr Kszt Frod Przyr 7:420-427.

Trombulak SC, and Frissell CA. 2000. Review of ecological effects of roads on terrestrial and
aquatic communities. Conservation Biology 14:18-30.
van der Grift EA, van der Ree R, Fahrig L, Findlay S, Houlahan J, Jaeger JAG, Klar N,
Madrinan LF, and Olson L. 2013. Evaluating the effectiveness of road mitigation
measures. Biodiversity and Conservation 22:425-448.
Wang C, Wang Z, Luo Y, Hang N, Huang L, Zhang R, Zou C, Piao Z, and Niu L. 2016. Road
Mortality Characteristic Analysis of Reptiles in Changbai Mountain National Nature
Reserve Sichuan Journal of Zoology 35:123-128.
Wembridge DE, Newman MR, Bright PW, and Morris PA. 2016. An estimate of the annual
number of hedgehog (Erinaceus europaeus) road casualties in Great Britain.
Yuan B. 2017. Pilot Study of Breeding Parameter and Incubation Rhythm of Tree Sparrow
(Passer Montanus). Chinese Journal of Wildlife 38:410-413.
Zhang WY, Shu GC, Li YL, Xiong S, Liang CP, and Li C. 2018. Daytime driving decreases
amphibian roadkill. <i>Peerj</i> 6:e5385.
Zhu C. 2019. Study on the Influence of Urbanization on the Reproduction of Blackbird Chinese
Blackbird (Turdus mandarnus). For Master Degree. Nanchang University.

Manuscript to be reviewed

Table 1(on next page)

Table 1. Basic information of the nine sampled roads in Nanjing, China

Table 1. Basic conditions of the nine sampled roads in Nanjing, China.

Road	G1	S1	X1	G2	S2	X2	G3	S3	Х3
Highway	National	Provincial	County	National	Provincial	County	National	Provincial	County
classification	Highway	Highway	Highway	Highway	Highway	Highway	Highway	Highway	Highway
Number of lanes	8	4/6	2	6	4	4	4/6	4	4
Presence of road medians	Yes	Yes	No	Yes	No	Yes	Yes	Partly present	Yes
Main habitat types on roadsides	residential areas, open fields	residential areas, farmland	residential areas, farmland	farmland, forests	residential areas, forests	open fields, forests	residential areas, open fields	residential areas, forests	open fields, forests
Road width	40~60m	20~50m	10~20m	30m	20m	15m	20~40m	15~35m	15~30m

Manuscript to be reviewed

Table 2(on next page)

Table 2. Frequency of small vertebrates roadkilled in the sampling roads of Nanjing, 2020-2021

Table 2. Frequency of small vertebrates roadkilled in the sampling roads of Nanjing, 2020-2021.

Common Name	Scientific Name	N	70 UI	% of total	
			taxa	kills	
Mammal	P. 6	••	•••		
Cat	Felis catus	39	28.7	13.3	
Dog	Canis lupus familiaris	36	26.5	12.3	
Weasel	Mustela sıbırıca davidiana	13	9.6	3.8	
Mouse	Muroidea	11	8.1	4.4	
Hedgehog	Erinaceus amurensis	7	5.1	2.4	
Hare	Lepus sinensis	1	0.7	0.3	
Unidentified mammal	•	29	21.3	9.9	
Total Mammals		136			
Bird					
Blackbird	Turdus merula	22	15.4	7.5	
Sparrow	Passer montanus	11	7.7	3.8	
Spotted Dove	Streptopelia chinensis	3	2.1	1.0	
Azure-winged Magpie	Cyanopica cyanus	3	2.1	1.0	
Light-vented Bulbul	Pycnonotus sinensis	3	2.1	1.0	
White-cheeked	•	_		_	
Starling	Sturnus cineraceus	2	1.4	<1	
Č	Acridotheres	2	1.4	-1	
Crested Myna	cristatellus	2	1.4	<1	
Magpie	Pica pica	1	<1	<1	
Oriental Turtle Dove	Streptopelia orientalis	1	<1	<1	
Chicken	Gallus gallus		-1	-1	
Cnicken	domesticus	1	<1	<1	
Bamboo Partridge	Bambusicola thoracica	1	<1	<1	
Red-billed Blue	I luo oiga a consthue om1	1	~1	~1	
Magpie	Urocissa erythroryncha	1	<1	<1	
Red-breasted	Ficedula albicilla	1	<1	<1	
Flycatcher		1	~1	~1	
White Wagtail	Motacilla alba	1	<1	<1	
Unidentified bird		90	62.9	30.7	
Total Birds		143			
Reptile					
Tabby-necked snake	Rhabdophis tigrinus	5	100.0	1.7	
Total Reptile		5			
Unidentified body		9			
Total		293			

Manuscript to be reviewed

4

5

PeerJ reviewing PDF | (2023:04:84573:0:1:NEW 13 Apr 2023)

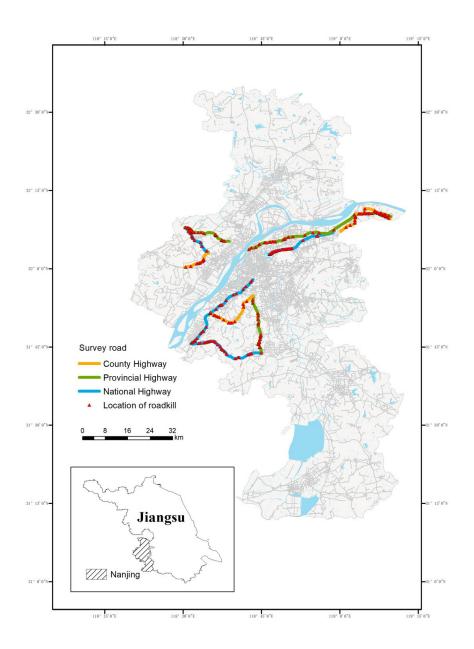

Manuscript to be reviewed

Figure 1

Figure 1 Sample lines and roadkills for roadkill survey of small vertebrates in Nanjing

The 224.27 km road section is in bold, including the National Highway (90.60 km, blue), the Provincial Highway (84.74 km, green) and the Rural Highway (48.93 km, yellow)

Manuscript to be reviewed

PeerJ reviewing PDF | (2023:04:84573:0:1:NEW 13 Apr 2023)

Figure 2. Monthly number of small vertebrate roadkills in Nanjing, November 2020 - October 2021 $\,$

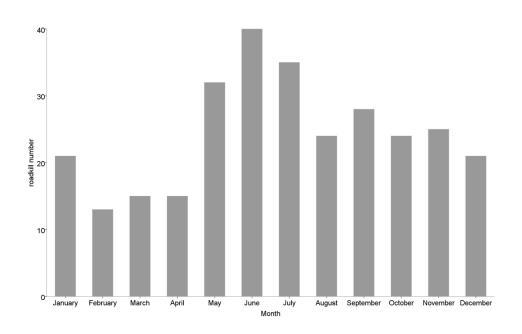


Figure 3. Monthly roadkill number of mammals and birds in Nanjing, November 2020 - October 2021 $\,$

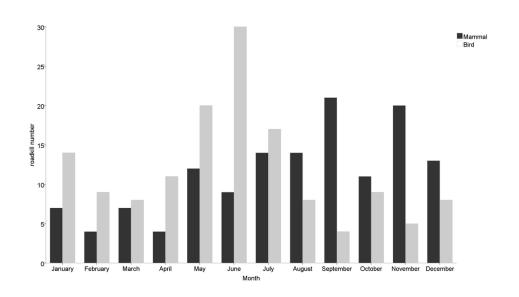


Figure 4. Roadkill mortality rates on diûerent administrative levels road

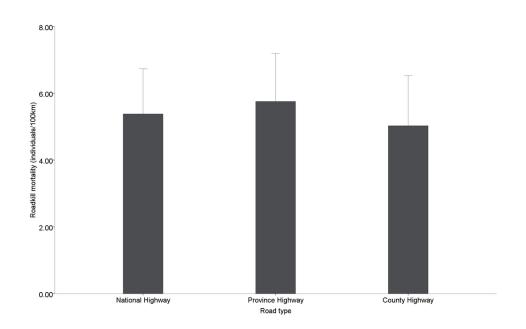
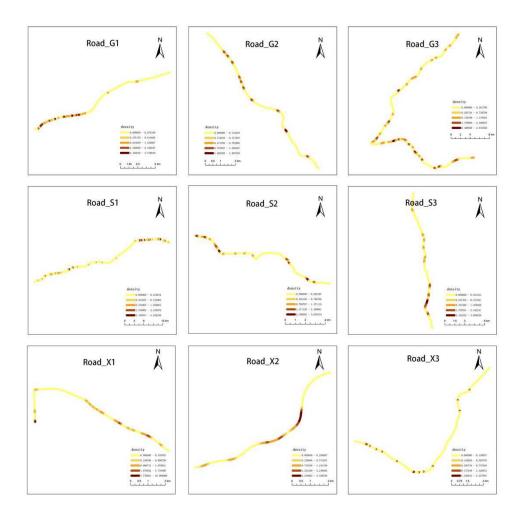
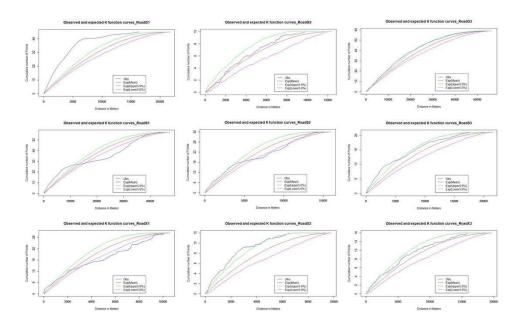



Figure 5. Results of network kernel density estimation


Darker colors represent higher roadkills densities.

PeerJ reviewing PDF | (2023:04:84573:0:1:NEW 13 Apr 2023)

Figure 6. Network K-function analysis

The blue line is the observed curve, the red line is the expected curve, the green line means the upper limit of the 95 % conûdence interval and the pink line means the lower limit of the 95 % conûdence interval. If the observed curve is above the conûdence interval, the spatial distribution pattern is clustered; below, it is dispersed; within, it is random.

