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ABSTRACT
Background. Spodoptera litura (tobacco caterpillar, S. litura) is a pest of great economic
importance due to being a polyphagous and world-distributed agricultural pest.
However, agricultural practices involving chemical pesticides have caused resistance,
resurgence, and residue problems, highlighting the need for new, environmentally
friendly methods to control the spread of S. litura.
Aim. This study aimed to investigate the gut poisoning of grayanotoxin I, an active
compound found in Pieris japonica, on S. litura, and to explore the underlying
mechanisms of these effects.
Methods. S. litura was cultivated in a laboratory setting, and their survival rate, growth
and development, and pupation time were recorded after grayanotoxin I treatment.
RNA-Seq was utilized to screen for differentially expressed genes (DEGs). Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses were conducted to determine the functions of these DEGs.
ELISA was employed to analyze the levels of lipase, 3-hydroxyacyl-CoA dehydrogenase
(HOAD), and acetyl-CoA carboxylase (ACC). Hematoxylin and Eosin (H& E) staining
was used to detect the development of the fat body.
Results. Grayanotoxin I treatment significantly suppressed the survival rate, growth
and development, and pupation of S. litura. RNA-Seq analysis revealed 285 DEGs after
grayanotoxin I exposure, with over 16 genes related to lipid metabolism. These 285
DEGs were enriched in the categories of cuticle development, larvae longevity, fat
digestion and absorption. Grayanotoxin I treatment also inhibited the levels of FFA,
lipase, and HOAD in the hemolymph of S. litura.
Conclusion. The results of this study demonstrated that grayanotoxin I inhibited
the growth and development of S. litura. The mechanisms might, at least partly, be
related to the interference of lipid synthesis, lipolysis, and fat body development. These
findings provide valuable insights into a new, environmentally-friendly plant-derived
insecticide, grayanotoxin I, to control the spread of S. litura.
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INTRODUCTION
Spodoptera litura (S. litura), also named tobacco cutworm pest, is a polyphagous and
widely distributed agricultural pest that causes damage to over 300 host plants. It is found
in Africa, the Middle East, Southern Europe, and Asia (Prajapati, Varma & Vadassery,
2020). Currently, the control of S. litura relies heavily on chemical pesticides. However, a
new environmentally friendly methods is urgently needed due to the resistance, resurgence,
and residue problems caused by unreasonable long-term use of chemical pesticides (Xu et
al., 2020b).

One promising approach for developing environmentally friendly pesticides is screening
bioactive compounds from natural plant products. Compared to synthetic chemical
insecticides, botanical insecticides have been considered to have low environmental and
mammalian risk, high specificity and safety, low risk of resistance development, and low
environmental persistence (Seiber et al., 2014; Regnault-Roger, Vincent & Arnason, 2012;
Isman & Grieneisen, 2014). Several classes of molecules derived from plant products were
demonstrated to be bioactive, such as terpenes, flavonoids, alkaloids, and polyphenols
(Deota & Upadhyay, 2005; Souto et al., 2021). These plant-derived insecticides achieved
their effects through mechanisms of affect the nervous system, respiratory and endocrine
systems, as well as water balance in insects (Souto et al., 2021). For example, azadirachtin is a
series of tetracyclic triterpenoid compounds extracted fromplantAzadirachta indica A. Juss.
It achieved insecticidal effects by deterring feeding, interfering with egg laying, disrupting
insect metamorphosis, repelling larvae, and inhibiting their growth (Sun et al., 2022b; Yu
et al., 2023). Rotenone induced insect cell necrosis via cytoplasmic membrane damage
and mitochondrial dysfunction (Sun et al., 2021). Pyrethrins kill mosquitos through
modulating voltage-gated sodium channels (Du et al., 2013). Triterpenoids extracted
from plants are an important class of compounds extensively studied in the research of
plant-based pesticides (Pavela et al., 2019). Grayanotoxin I is a diterpenoid belonging to
the grayanotoxin family. Grayanotoxins are commonly found in plants of the Ericaceae
family, including Rhododendron and Pieris japonica (Yao et al., 2006). Pieris japonica has
been reported to have anti-insect effects (Xie, 2009). As one of the most abundant and
potent toxins in Pieris japonica, grayanotoxin was shown to interact with voltage-gated
sodium channels, lead to the disruption of neuronal signaling, and cause symptoms such
as dizziness, analgesic, weakness, and cardiac effects when ingested (Zheng et al., 2020).
However, the precise effects and mechanisms of grayanotoxin I on agricultural pests are
still largely unknown. Our preliminary studies showed that grayanotoxin I significantly
inhibited the growth and development of S. litura. To further explore the mechanisms of
this effect, the present study screened the transcriptome of S. litura, analyzed the functions
of differentially expressed genes (DEGs), detected changes in the development of the fat
body, and measured the levels of free fatty acids (FFA), 3-hydroxyacyl-CoA dehydrogenase
(HOAD), Acetyl-CoA carboxylase (ACC), and lipase after grayanotoxin I treatment. The
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present study aims to shed light on the effects and mechanisms of grayanotoxin I on
S. litura and contribute to the development of new environmentally friendly pesticides.

MATERIALS & METHODS
Materials and reagents
Grayanotoxin I was procured from Sichuan Biocrick Biotech Co. Ltd (4720-09-6, Chengdu,
China). The free fatty acid assay kit was obtained from Jiancheng Co. Ltd. (Nanjing, China),
while the hematoxylin-eosin (H & E) staining solution was obtained from Beyotime
Biotechnology (Shanghai, China). The Vazyme® HiScript III 1st Strand cDNA Synthesis
Kit (+gDNAwiper) andVazymeChamQUniversal SYBRqPCRMasterMixwere purchased
from Vazyme Corporation (Nanjing, China). The primers were synthesized by Takara
(Dalian, China). Further, Lipase (JM-00078O1), 3-hydroxyacyl-CoA dehydrogenase (JM-
00048O1), and Acetyl-CoA carboxylase (JM-00064O1) ELISA kits were procured from
Jingmei Biotechnology (Jiangsu, China).

Spodoptera litura culture, treatment, and sample collection
The larvae of S. litura were obtained from Keyun Biopesticide Co. Ltd in Henan, China.
These larvae were sourced from fields free from heavy metal pollution with no prior
application of chemical insecticides. Optimal laboratory culture conditions of a temperature
of 25± 2 ◦C, humidity of 75%–85%, and a light cycle of light/dark: 14 h/10 hwere employed
for the rearing of the larvae. Only the second instar larvae with uniform size and normal
development were selected for further testing.

To investigate the effects of grayanotoxin I on S. litura, the plant-derived insecticide,
matrine was used as the positive control. Matrine is an alkaloid derived from plants
belonging to the Sophora genus. As a naturally occurring plant-based pesticide, matrine
generally poses low toxicity to humans. Matrine operates as a broad-spectrum insecticide,
effectively targeting pests through both contact and ingestion mechanisms. The second
instar larvae were randomly divided into the normal diet, different concentrations of
grayanotoxin I-containing diet, or matrine-containing diet group. The diets were prepared
by adding 7 mL of ddH2O, 1.25–6.25 mg/L grayanotoxin I, or 0.4% matrine solution to
5 g diet. The survival rates were calculated at 24-hour, 48-hour, and 72-hour treatments.
The midgut of S. litura larvae fed on a 1.25% grayanotoxin I-contained diet or normal diet
(ddH2O) for 72 h was collected for RNA-Seq.

For analysis of body weight and developmental time, sublethal concentrations (0.62–
1.25 mg/L) of grayanotoxin I were used to treat S. litura larvae. The diets were prepared by
adding 7 mL of grayanotoxin I solution to 5 g of normal diet. The wet body weight of each
larvae was collected at each instar stage until pupation, and the data was recorded.

Hematoxylin and Eosin (H & E) staining of fat body
The growth rate of insects is largely regulated by the fat body (Yuan et al., 2020). To assess
the development of this crucial tissue, we utilized the H & E staining method, as previously
described (Yamahama, Seno & Hariyama, 2008). The specimens were subjected to a 5-hour
incubation at 5 ◦C in 10% sucrose in 0.01 M phosphate-buffered saline (PBS, pH 7.4),
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with sucrose concentration gradually increased to 20%. The samples were then embedded
in an optimal cutting temperature (OCT) compound and instantaneously frozen with dry
ice. Further, frozen samples were sectioned at 10 µm and stained by the H & E method to
obtain images. The images were examined under a microscope to evaluate the development
of the fat body.

RNA extraction and RNA-sequencing
To further explore the impact of grayanotoxin I on the expression of lipid metabolism-
related genes, RNA-Sequencing using Illumina NovaSeq 6000 platform (Illumina, San
Diego, CA, USA) was carried out at Shanghai Personal Biotechnology Cp., Ltd (Shanghai,
China). The methodology was consistent with previously published studies (Bao et al.,
2016a; Bao et al., 2016b). Briefly, total RNA was extracted using the Trizol reagent.
The quality and quantity of total RNA were assessed by measuring the absorbance on
wavelengths of 260 nm and 280 nm by NanoDrop spectrophotometer (Thermo Scientific,
Waltham, MA, USA). After the removal of rRNA by using poly-T oligo-attached magnetic
beads, the total RNA was fragmented by using divalent cations under elevated temperature
in an Illumina proprietary fragmentation buffer. The first strand cDNA was synthesized
using random oligonucleotides and Super Script II. Subsequently, the second strand cDNA
synthesis was performed by using DNA Polymerase I and RNase H. For hybridization
preparation, the DNA fragments’ 3′ ends were adenylated, followed by ligation of Illumina
PE adapter oligonucleotides. To obtain cDNA fragments of the desired length (400–500
bp), the library fragments were purified using the AMPure XP system (Beckman Coulter,
Pasadena, CA, USA). DNA fragments possessing adapter molecules on both ends were
selectively enriched through a 15-cycle PCR reaction with the Illumina PCR Primer
Cocktail. The resulting products were purified using the AMPure XP system and the
quantity was measured using the Agilent high-sensitivity DNA assay on a Bioanalyzer 2100
system (Agilent, Santa Clara, CA, USA). Finally, the sequencing library was sequenced
on the NovaSeq 6000 platform (Illumina, San Diego, CA, USA) by Shanghai Personal
Biotechnology Cp. Ltd.

Differentially expressed genes (DEGs) identification
The reference genome used in the present transcriptome was ASM270686v3. The
sequencing data was filtered to get high-quality sequences by using Cutadapt (v1.15)
software. The filtered data were mapped to the reference genome using HISAT2 (v2.0.5).
The analysis of S. litura mRNA expression was performed using HTSeq (0.9.1) statistics.
The original expressed read count value per gene was normalized via the FPKM method.
DESeq (1.30.0) was employed to analyze differences in mRNA expression levels. RNAs with
|log2FoldChange|> 1.0 and P-value < 0.05 were identified as differentially expressed. To
perform heatmap clustering,MeV 4.9.0 software was used. Using this method, differentially
expressed lipid metabolism-related genes were selected and heatmap clustering was
conducted.
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Table 1 The primers used in the present analysis.

Gene name Forward primer Reverse primer Product
lenghth

Amplified
gene
regions

Phospholipase A1-like TCCTTGTCCACTCAGATATGT GTTGATAACCGTGCGATGTA 102 bp Coding region
Acyl-CoA reductase CTGGTTGATGCTCTGCTGTT TGCCATTCCTTCGTTGTGTAAT 113 bp Coding region
Acyl-CoA desaturase GCTTCTTCTTCTGCCACATC ACATCACCATCCAATCACCTT 111 bp Coding region
Fatty acid-binding protein 2 like TTCCTTAACAAGAACTACAA AGTATCTCCATCCTTAGTC 138 bp Coding region
β-actin GCATCCACGAGACCACTTACAA CTGTGTTGGCGTACAAGTCCTTA 75 bp Coding region
GAPDH GGGTATTCTTGACTACAC CTGGATGTACTTGATGAG 184 bp Coding region

RT-qPCR verification of lipid metabolism-related DEGs
To verify the expression of four differentially expressed lipid metabolism-related genes, we
utilized RT-qPCR as described previously (Bao et al., 2018). Total RNAs were extracted
using Trizol reagent, followed by reverse transcription to cDNA utilizing the Vazyme
HiScript III 1st Strand cDNA Synthesis Kit (+gDNA wiper). PCR reactions were carried
out using the Vazyme ChamQ Universal SYBR qPCR Master Mix kit on the Applied
Biosystems Quantstudio 5 system. The qPCR program was 95 ◦C for 30 s, followed by 40
cycles of 95 ◦C for 5 s, and 60 ◦C for 30 s. The GAPDH and β-actin were used as reference
genes. The primers were presented in Table 1. The non-transcribed RNA was used as a
negative control. The melting curve analysis was performed to verify the specificity of PCR
products. All samples were run in triplicate and analyzed using the 2(−11Ct) method.

Detection of FFA, lipase, ACC, and HOAD
Lipase, HOAD, and ACC are enzymes that play key roles in the metabolism of fatty
acids. To investigate the impact of grayanotoxin I on the lipid metabolism of S. litura, we
employed an ELISA-based approach to measure the levels of lipase, HOAD, and ACC in
the hemolymph of 5th instar larvae. Briefly, hemolymph samples were collected in a 1.5
ml tube with 0.1% dithiothreitol (DTT), and centrifuged for 5 min (10,000 rpm) at 4 ◦C.
The supernatant was stored at −80 ◦C for further use (Bai & Grewal, 2007). The ELISA
analysis was conducted according to the manufacturer’s instructions. Specifically, 50 µL of
serum samples were added to enzyme-linked immunosorbent plates, mixed with enzyme
labeling reagents, and incubated at 37 ◦C for 60 min. The liquid was then removed, and
each well was washed five times with washing solution before adding chromogenic reagent
and mixing. The mixture was incubated for 15 min at 37 ◦C in the dark, after which the
reaction was halted using a stop solution. The absorbance value was then measured to
determine the levels of lipase, HOAD, and ACC.

FFA was measured by using the fatty acid assay kit purchased from Jiancheng Co. Ltd.
(Nanjing, China) according to the manufacturer’s instructions. The assay kit is based on
the principle that FFA reacts with copper ions to form fatty acid copper salts, which are
soluble in chloroform. By using the copper reagent method to determine the copper ion
content, the content of FFA can be estimated by colorimetric assay.
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Gene ontology (GO) enrichment and kyoto encyclopedia of genes
and genomes (KEGG) and protein-protein interaction (PPI) analysis
of lipid metabolism-related differentially expressed genes
To investigate the functions of differentially expressed genes related to lipid metabolism,
we conducted GO enrichment analysis and KEGG pathway analysis. This analysis was
carried out using the online tool DAVID (https://david.ncifcrf.gov/) (Yu et al., 2022; Xu
et al., 2020a). The top 10 terms from biological process (BP), cell components (CC),
molecular function (MF), and KEGG pathway were visualized, and a P-value < 0.05 was
considered significant for both GO terms and KEGG pathways.

To further examine the interactions between lipid metabolism-related DEGs, we utilized
the online tool STRING (https://string-db.org/). As S. litura data was not available in
STRING, we used Bombyx mori data as an alternative. We also performed a further analysis
of the signal pathways of the lipid metabolism-related DEGs on the KEGG pathway
(https://www.genome.jp/kegg/).

Statistical analysis
All the statistics were presented in the form of mean ± S.D. The significance of the
differences was analyzed by ANOVA followed by the Newman-Student-Keuls test. A value
of P < 0.05 was considered statistically significant.

RESULTS
Influence of grayanotoxin I on S. litura growth and development
To investigate the impact of grayanotoxin I on S. litura, we monitored the survival rate,
growth, and development of the insects after being subjected to grayanotoxin I-contained,
matrine-contained, or normal diet. As depicted in Fig. 1A, the application of a positive
control, 0.4% matrine, reduced the survival rate to 18.8% after a 72-hour treatment.
While 72-hour treatment with 6.25 mg/L grayanotoxin I reduced the survival rate to
40.0%, as compared to the normal diet (ddH2O, survival rate of 96.7%). Additionally,
lower concentrations of grayanotoxin I (0.62–1.25 mg/L) significantly hindered the growth
of S. litura (Figs. 1B–1C). Compared to the ddH2O group, the 0.2% matrine hindered
the 95.3% body weight of S. litura on day 14. The suppression rate was 90.65% for 1.25
mg/L grayanotoxin I, and 56.29% for 0.65 mg/L grayanotoxin I after 14-day treatment
(Figs. 1B–1C). Furthermore, we observed a significant delay in the pupation time of S.
litura because of grayanotoxin I (Fig. 1D). The average pupation time for the ddH2O group
was 14.72 days. While it was 20.23 days for 1.25 mg/L grayanotoxin I treatment and 18.25
days for 0.62 mg/L grayanotoxin I treatment (Fig. 1D).

Inhibition effect of grayanotoxin I on S. litura fat body development
In the present study, H & E staining was conducted to investigate the relationship between
fat body development and the growth of S. litura. As illustrated in Fig. 2, a noticeable
accumulation of fat in the fat body was observed in the ddH2O control group (Fig. 2A).
However, treatment with grayanotoxin I resulted in a significant inhibition of fat body
development (Fig. 2B).
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Figure 1 Effects of grayanotoxin I on survival rate, the growth & development of S. litura. The sec-
ond instar larvae of S. litura were fed with the normal diet, grayanotoxin I-containing diet, or matrine-
containing diet. The survival rate, body length, body weight, and pupation time were measured. (A) The
survival rate of S. litura after ddH2O, 1.25–6.25 ml/L grayanotoxin I, or 0.4 % matrine treatment in 24, 48,
and 72 hours; (B) the body length of S. litura between ddH2O or 0.62 mg/L grayanotoxin I treatment on
day 14; (C) the body weight-time curve after 0.62–1.25 ml/L grayanotoxin I, ddH2O, or sublethal matrine
(0.2 %) treatment; the body weight of each larvae was measured every 2 days. (D) The pupation time af-
ter grayanotoxin I, ddH2O, or sublethal matrine (0.2 %) treatment. All data were presented in mean± SD,
**P < 0.01; *P < 0.05 vs ddH2O group.

Full-size DOI: 10.7717/peerj.16238/fig-1

Gene expression profiles of S. litura under grayanotoxin I treatment
To investigate the mechanisms of grayanotoxin I, we analyzed the transcriptome alteration
after 72-hour 1.25% grayanotoxin I treatment by using the RNA-Seqmethod. The statistical
power of this RNA-Seq data calculated in ‘‘RNASeqPower’’ was 0.855 (sequencing depth: 60,
sample size: 3). As a result, 285 DEGs were identified. Among them, 151 were upregulated
and 134 were downregulated (Figs. 3A–3B).

GO and KEGG enrichment of differentially expressed lipid
metabolism-related genes
To get further insight into the functions of the 285 DEGs, we carried out KEGG pathway
enrichment and GO enrichment analysis. In the GO enrichment analysis, these DEGs were
mostly enriched in the MF terms related to the structural constituents of chitin-based
cuticle; BP terms associated with cuticle development; and CC terms related to the
extracellular matrix (as depicted in Fig. 3C). The KEGG analysis (Fig. 3D) revealed that
these DEGs were enriched in several pathways including the organismal system terms
of longevity regulating pathway, cytosolic DNA-sensing pathway, and fat digestion and
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Figure 2 The development of fatty body after treatment of grayanotoxin I. After treatment with grayan-
otoxin I for 14 days, the larvae of S. litura specimens were sectioned and stained by Hematoxylin and
Eosin. The images were examined under a microscope to evaluate the development of the fat body. A, S.
litura treated by ddH2O; B, S. litura treated by grayanotoxin I.

Full-size DOI: 10.7717/peerj.16238/fig-2

absorption pathway; the metabolism terms of cutin, suberin, wax biosynthesis, linoleic
acid metabolism, insect hormone biosynthesis, and unsaturated fatty acid synthesis; the
cellular process terms of peroxisome.

The effects of grayanotoxin I on lipid metabolism-related gene profile
expression, lipid metabolism-related enzyme activities in the
hemolymph, and FFA level in S. litura
In our RNA-Seq analysis, we discovered many DEGs related to lipid metabolism.
Specifically, we observed an upregulation of genes such as acyl-CoA desaturase, esterase E4,
and phospholipase, and downregulated genes such as fatty acid elongase, fatty acid-binding
protein, and pancreatic-like lipase following treatment with grayanotoxin I (Fig. 4A). The
results of RNA-Seq were verified by qPCR analysis, which was shown in Fig. 4B.

Besides, grayanotoxin I (1.25 mg/L) treatment dramatically decreased the level of FFA
in the hemolymph of S. litura (Fig. 4C). Further ELISA analysis revealed a significant
decrease in lipase and HOAD mRNA levels after treatment with grayanotoxin I, compared
to the normal group (P < 0.05). A slight decrease in ACC mRNA was also found after
grayanotoxin I treatment (Figs. 4D–4F).

PPI analysis of lipid metabolism-related DEGs analysis
The PPI of the lipid metabolism-related genes was shown in Fig. 5A. Red circles were
upregulated genes in S. litura after grayanotoxin I treatment, while green circles were
downregulated genes.

The LOC111354773 (putative fatty acyl-CoA reductase), LOC111355891 (acyl-
CoA desaturase 1-like), LOC111350394 (ELOVL fatty acid elongase), LOC111349277
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Figure 3 The transcriptomic analysis, GO enrichment, and KEGG enrichment of differentially ex-
pressed genes after grayanotoxin I treatment in S. litura. (A) The number of upregulated and down-
regulated genes after grayanotoxin I treatment; (B) the heatmap of all differentially expressed genes after
grayanotoxin I treatment; (C) GO enrichment of differentially expressed genes; (D) KEGG enrichment of
differentially expressed genes.

Full-size DOI: 10.7717/peerj.16238/fig-3

(elongation of very long chain fatty acids protein 7 like), and LOC111360381 (fatty
acid-binding protein 2 like) were connected clearly in the network.

Further analysis revealed that LOC111354773 (putative fatty acyl-CoA reductase),
LOC111355891 (acyl-CoA desaturase 1-like), LOC111355893 (acyl-CoA desaturase 1-like),
LOC111352061 (putative fatty acyl-CoA reductase), and LOC111356581 (fatty acyl-CoA
reductase wat-like) were enriched in the longevity regulating pathway and were relevant to
the aging of the larvae. The aforementioned genes along with LOC111350394 (ELOVL fatty
acid elongase), LOC111348151 (phospholipase A1-like), and LOC111356581 (fatty acyl-
CoA reductase wat-like) were found to be associated with lipid metabolism. Additionally,
LOC111355891 (acyl-CoA desaturase 1 like), LOC111360381 (fatty acid-binding protein
2 like), and LOC111355893 (acyl-CoA desaturase 1-like) were found to be relevant to the
PPAR signaling pathway, as documented in Table 2 and Fig. 5B.
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Figure 4 Effects of grayanotoxin I on lipid metabolism-related genes, lipid metabolism-related en-
zyme activities, and FFA levels in S. litura. The second instar larvae of S. litura were treated with ddH2O
(control group) or 1.25 mg/L grayanotoxin I-containing diet for 72 h following which the midgut of S.
litura was collected for RNA-Seq. (A) The heatmap of differentially expressed lipid metabolism-related
genes; (B) qPCR verification of 4 randomly chosen lipid metabolism-related genes; (C–F) the level of free
fatty acid, lipase, acetyl-CoA carboxylase, and HOAD in the hemolymph of S. litura. All data were pre-
sented in mean± SD, *P < 0.05, **P < 0.01 vs. control group.

Full-size DOI: 10.7717/peerj.16238/fig-4

DISCUSSION
The impact of grayanotoxin I on S. litura was evaluated in the present study, revealing
a significant reduction in the survival rate, larvae growth, and delayed pupation.
Transcriptome analysis identified 285 DEGs responding to grayanotoxin I treatment.
GO enrichment and KEGG pathway enrichment indicated grayanotoxin I affected the
expression of genes related to cuticle development, extracellular matrix, wax biosynthesis,
insect hormone biosynthesis, fat digestion and absorption, etc. Notably, over sixteen of
these DEGs were linked to lipid metabolism, with a significant decrease in FFA, lipase,
and HOAD levels. These findings implicated grayanotoxin I probably interfered in lipid
synthesis, lipolysis, lipid trafficking, and fat body development, ultimately restraining the
growth of S. litura.

Traditional Chinese Medicine (TCM) has long been recognized for its low resistance
and high efficiency, making it a popular remedy for a wide range of human diseases as well
as agricultural insect infestations (Deota & Upadhyay, 2005; Wang et al., 2022; Wei et al.,
2018; Wang et al., 2016). Grayanotoxin I is a diterpenoid belonging to the grayanotoxin
family. Grayanotoxins are commonly found in plants of the Ericaceae family, including
Rhododendron and Pieris japonica (Yao et al., 2006). Previously, grayanane diterpenoid
glucosides were recognized as potent analgesics (Zheng et al., 2020). Our study found
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Figure 5 The protein-protein interactions and signal pathways of lipid-related DEGs. (A) The protein–
protein interaction of lipid-related DEGs analyzed by STRING online software; (B) the visualization of the
PPAR signaling pathway obtained from KEGG pathway online software.

Full-size DOI: 10.7717/peerj.16238/fig-5

under grayanotoxin I stress, the growth and development of S. litura were significantly
inhibited. Employing RNA-Seq, we have analyzed the transcriptome of S. litura to explore
the molecular mechanisms responsible for the actions of grayanotoxin I. Many lipid
metabolism-related genes responded to the treatment of grayanotoxin I, such as elevated
expression of acyl-CoA desaturase, esterase E4, lipase H, and phospholipase A, and
decreased expression of elongation of very long chain fatty acids protein, fatty acid-binding
protein, acyl-CoA reductase wat, and pancreatic-like lipase. We also observed a significant
reduction in the FFA level, activities of lipase, and HOAD after grayanotoxin I treatment.
Based on these observations, we conclude that grayanotoxin I exerts its effects through, at
least partly, modulating lipid metabolism-related gene expression in S. litura.

Lipids play crucial roles in the growth, development, and reproduction of insects. Fatty
acid-derived wax esters, fatty alcohols, and hydrocarbons are essential components of the
insect epidermis (Teerawanichpan, Robertson & Qiu, 2010). Very long-chain fatty acids
serve as the precursors of sphingolipids and glycerolipids, two fundamental components
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Table 2 The KEGG pathway terms of lipid metabolism-related DEGs.

Pathway
ID

Pathway Level 1 Level 2 P-value DGE ID Up/down
regulation

ko04212 Longevity regulating pathway—worm OS Aging 2.30E−06 LOC111354773 Up
ko04212 Longevity regulating pathway—worm OS Aging 2.30E−06 LOC111355891 Up
ko04212 Longevity regulating pathway—worm OS Aging 2.30E−06 LOC111355893 Up
ko04212 Longevity regulating pathway—worm OS Aging 2.30E−06 LOC111352061 Up
ko04212 Longevity regulating pathway—worm OS Aging 2.30E−06 LOC111356581 Down
ko04975 Fat digestion and absorption OS Digestive system 0.007337 LOC111360381 Down
ko03320 PPAR signaling pathway OS Endocrine system 0.030415 LOC111355891 Up
ko03320 PPAR signaling pathway OS Endocrine system 0.030415 LOC111360381 Down
ko03320 PPAR signaling pathway OS Endocrine system 0.030415 LOC111355893 Up
ko00073 Cutin, suberin, and wax biosynthesis M Lipid metabolism 1.99E−05 LOC111354773 Up
ko01040 Biosynthesis of unsaturated fatty acids M Lipid metabolism 0.011254 LOC111355891 Up
ko01040 Biosynthesis of unsaturated fatty acids M Lipid metabolism 0.011254 LOC111350394 Down
ko00062 Fatty acid elongation M Lipid metabolism 0.327476 LOC111350394 Down
ko01040 Biosynthesis of unsaturated fatty acids M Lipid metabolism 0.011254 LOC111355893 Up
ko00561 Glycerolipid metabolism M Lipid metabolism 0.559342 LOC111348151 Up
ko00073 Cutin, suberin, and wax biosynthesis M Lipid metabolism 1.99E−05 LOC111352061 Up
ko00073 Cutin, suberin, and wax biosynthesis M Lipid metabolism 1.99E−05 LOC111356581 Down
ko04152 AMPK signaling pathway EIP Signal transduction 0.268133 LOC111355891 Up
ko04146 Peroxisome CP Transport and catabolism 4.00E−05 LOC111354773 Up
ko04146 Peroxisome CP Transport and catabolism 4.00E−05 LOC111352061 Up
ko04146 Peroxisome CP Transport and catabolism 4.00E−05 LOC111356581 Down

Notes.
OS, Organismal Systems; CP, Cellular Processes; M, Metabolism; EIP, Environmental Information Processing.

of cell membranes. Unsaturated fatty acids and fatty acid content are also crucial for
the cold tolerance of insects (Arrese & Soulages, 2010). Furthermore, lipids serve as an
essential energy source for insect activities (Hannun & Obeid, 2002; Chertemps et al., 2007).
Due to the vital role lipids play in insects, lipid synthesis and lipolysis have become
attractive targets for agriculture pest control. For instance, an in vitro enzyme kinetic
experiment showed the pesticide spirotetramat bound to the carboxyltransferase (CT)
domain of ACC and inhibited the fatty acid biosynthesis in Myzus persicae, Spodoptera
frugiperda, and Tetranychus urticae (Lümmen et al., 2014). ACC is the rate-limiting enzyme
in the initial step of fatty acid synthesis, responsible for insect lipid accumulation and
epidermal function (Ray, Wilkinson & Paul, 2018). Piper aduncum (Piperaceae) essential
oil, when delivered to insect thorax by micropipette, effectively depleted lipid content in
fat body cells of brown stink bug Euschistus heros (Heteroptera: Pentatomidae), leading to
the inhibition of bug development and reproduction (Cossolin et al., 2019). Similarly, S.
frugiperda larvae, fed with corn leaf pieces immersed with citronella oil from Cymbopogon
winterianus, increased glycogen, but decreased protein, lipid, and total sugar content
leading to diminished reproduction (Silva et al., 2016). Our study observed a significant
decrease in insect survival rate, suppression of larvae growth, and delay in pupation
following grayanotoxin I treatment. Additionally, hemolymph FFA content and fat body
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lipids were notably decreased. These phenotypes strongly suggested the involvement of
lipid metabolism in the effects of grayanotoxin I on S. litura.

Lipase is an enzyme that catalyzes the hydrolysis of triglycerides into fatty acids and
glycerol, playing a crucial role in the digestion and transportation of lipids. Insects possess
several types of lipase, including pancreatic-like lipase, which hydrolyzes most dietary
fats. Fatty acid-binding proteins (FABPs) are a group of small, soluble intracellular
proteins responsible for efficient lipid trafficking and signaling within cells (Furuhashi &
Hotamisligil, 2008). In our current study, we observed a significant decrease in FABPmRNA
following grayanotoxin I treatment. FABPs are involved in regulating long-term memory,
sleep, and lipid accumulation in insects (Gerstner et al., 2011). Two FABP subtypes, slFABP1
(MFB2) and slFABP2 (MFB1) were found in the midgut of S. litura, and they are known to
participate in starving stress and body development (Huang et al., 2012). HOAD is a crucial
enzyme involved in the beta-oxidation of lipids, which is responsible for the energy supply
in insects. Grayanotoxin I treatment was found to suppress lipase and FABP activity,
potentially disrupting the formation and trafficking of FFA in S. litura. Additionally,
decreased HOAD activity may hinder fatty acid utilization and subsequent energy supply
for the pest.

Our study uncovered a decrease in the elongation of very long chain (ELOVL) fatty
acids elongase after grayanotoxin I treatment. ELOVL fatty acid elongase is primarily
located on the endoplasmic reticulum (ER) and promotes the synthesis of C18-26 fatty
acids from the C16 chain. ELOVL fatty acid elongases widely exist in different insects,
such as Bombyx mori, Locusta migratoria, and Ericerus pela Chavannes (Zuo et al., 2018;
Zhao et al., 2020;Ding et al., 2022). The very long chain fatty acids, including saturated and
unsaturated fatty acids, are crucial sources of accumulated fat in the fat body of insects. Our
present study found a significant decrease of ELOVL fatty acid elongase mRNA expression
after grayanotoxin I treatment. Considering the important roles of ELOVL elongase in
fat body development, we presumed that the effects of grayanotoxin I on S. litura growth
and development might, at least partly, be related to the inhibition of ELOVL fatty acid
elongase. Furthermore, our research revealed an increase in phospholipase A expression.
Phospholipases hydrolyze phospholipids and participate in cell signaling pathways. The
elevation of phospholipase A levels suggested the involvement of inflammation under
grayanotoxin I stress.

In our studies, the gut poisoning of grayanotoxin I on S. litura was tested by diet mixed
method according to the book ‘‘Standard Operation Practice for Pesticide Biological
Activity Testing’’ by Gu & Liu (2017). For the pesticide bioassay testing on S. litura, ‘‘diet
mixedwith insecticide’’ and ‘‘leaf dip feeding’’ were two commonly usedmethods for testing
gut poisoning, while spray application was used for contact toxicity studies (Gu & Liu,
2017; Bao et al., 2021). In the lab bioassay of insecticide, the ‘‘diet mixed with insecticide’’
method was widely used because this method is simple, cost-effective, time-saving, and
reliable. It is suitable for long-termmedication and particularly appropriate for insecticides
that are insoluble in water or have poor palatability (Sarkar & Roy, 2017; Huang et al.,
2021; Sun et al., 2022a).
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Besides S. litura, we have screened the insecticidal effects of grayanotoxin I on the
Diamondback moth, beet armyworm, and budworm. S. litura was the most sensitive insect
to grayanotoxin I, followed by Diamondback moth. Beet armyworm, and budworm were
not sensitive to grayanotoxin I stress. Therefore, we selected S.litura as the target insect.

CONCLUSIONS
The results of this study demonstrated that grayanotoxin I inhibited the growth and
development of S. litura. The mechanisms might, at least partly, be related to the
interference of lipid synthesis, lipolysis, and fat body development. These findings
provide valuable insights into a new, environmentally-friendly plant-derived insecticide,
grayanotoxin I, to control the spread of S. litura.
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