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Abstract

Background. P is regarded as one of the major limiting factors in grassland ecosystems. Soil available
phosphorus deficiency could affect soil extracellular enzyme activity, which plays an essential role in
microbial metabolism. Yet, it is still unclear how soil available phosphorus affects soil extracellular
enzyme activity and microbial nutrient limitation of desert grassland in the context of climate warming.

Methods. The study carried out a short-term open-top chambers (OTCs) experiment in desert steppe to
examine the effects of warming, P addition and their interaction on soil properties, the activities of soil
extracellular enzyme s and stoichiometries.

Results. The findings demonstrated that soil acquisition enzyme stoichiometry of C: N: P was 1.2:1:1.5 in
this experiment region, which deviated from the global mean scale (1:1:1). Warming increased soil AN (
ammonium nitrogen and nitrate nitrogen) contents, decreased MBC (microbial biomass carbon) and MBN
(microbial biomass nitrogen). Phosphorus addition raised the soil available phosphorus contents and MBP
(microbial biomass phosphorus). Soil extracellular enzyme activities and stoichiometries in desert
grassland are largely impacted by soil AN, MBC: MBP, and MBN: MBP. These results revealed that the
changes of soil available nutrients and stoichiometries induced by short-term warming and P addition
could influence soil microbial activities and alleviate soil microbial carbon and phosphorus limitation. Our
findings highlight the critical role played by soil available phosphorus in regulating soil extracellular
enzyme activity and microbial nutrient limitation of desert grassland. It will be better to comprehend the
microbiological mechanisms underlying these events with further research on the soil microbial
communities.
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36 Abstract

37 Background. P is regarded as one of the major limiting factors in grassland ecosystems. Soil 

38 available phosphorus deficiency could affect soil extracellular enzyme activity, which plays an 

39 essential role in microbial metabolism. Yet, it is still unclear how soil available phosphorus 

40 affects soil extracellular enzyme activity and microbial nutrient limitation of desert grassland in 

41 the context of climate warming. 

42 Methods. The study carried out a short-term open-top chambers(OTCs) experiment in desert 

43 steppe to examine the effects of warming, P addition and their interaction on soil properties, the 

44 activities of soil extracellular enzymes and stoichiometries. 

45 Results. The findings demonstrated that soil acquisition enzyme stoichiometry of C: N: P was 

46 1.2:1:1.5 in this experiment region, which deviated from the global mean scale (1:1:1). Warming 

47 increased soil AN (ammonium nitrogen and nitrate nitrogen) contents, decreased MBC 

48 (microbial biomass carbon) and MBN (microbial biomass nitrogen). Phosphorus addition raised 

49 the soil available phosphorus contents and MBP (microbial biomass phosphorus). Soil 

50 extracellular enzyme activities and stoichiometries in desert grassland are largely impacted by 

51 soil AN, MBC: MBP, and MBN: MBP. These results revealed that the changes of soil available 

52 nutrients and stoichiometries induced by short-term warming and P addition could influence soil 

53 microbial activities and alleviate soil microbial carbon and phosphorus limitation. Our findings 

54 highlight the critical role played by soil available phosphorus in regulating soil extracellular 

55 enzyme activity and microbial nutrient limitation of desert grassland. It will be better to 

56 comprehend the microbiological mechanisms underlying these events with further research on 

57 the soil microbial communities.

58 Introduction

59 Phosphorus (P), one of the most significant mineral elements, is crucial for plant development, 

60 substance synthesis and energy metabolism (Sharma et al.,2020), Yet, due to the effects of 

61 climate change, human activities, land use patterns and other reasons, there has been a severe 

62 shortage of soil available P worldwide (Hinsinger, 2001; Hou et al., 2020). P has evolved into a 

63 major limiting factor for plant growth in grassland ecosystems (Du et al., 2020), which may have 

64 negative effects on primary productivity and other ecological processes (Tang et al.,2018; Hou et 

65 al.,2020). Since 1850-1900, the temperature of the atmosphere has risen by around 1.1 °C, and it 

66 is predicted to reach or exceed 1.5-2.0 °C in the future (IPCC, 2021). The availability of nutrients 

67 in the soil may change as a result of climate warming (Feike et al.,2012; Hu et al., 2022), which 

68 requires soil microbes to secrete extracellular enzymes in response to the variation of soil 

69 nutrients (Raiesi and Salek-Gilani,2018; Cui et al.,2019a), this is because the activity of soil 

70 extracellular enzymes regulates the decomposition of soil organic matter and the cycling of 

71 nutrients, which in turn affects the function of ecosystem services (Güsewell, 2004; Hu et al., 

72 2016). Soil extracellular enzyme secretion is frequently the rate-limiting step of microbial 

73 metabolism (Nannipieri et al.,2018). In this process, the temperature affects the soil microbial 

74 activity (Zi et al.,2018). According to the studies, global warming has the potential to change soil 

75 available phosphorus by altering mean annual temperature and precipitation(Hou et al.,2018), 
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76 and also have an impact on phosphorus fixation, mineralization, and weathering by indirectly 

77 affecting plant growth and soil microbial community structure (Delgado-Baquerizo et al.,2013). 

78 Evaluating the degree of nutrient availability and limitation of the microbial environment can be 

79 achieved by analyzing soil C, N, and P acquisition enzyme activities and stoichiometries 

80 (Moorhead et al., 2013; Dong et al., 2019).

81 The previous findings demonstrated that climate change can increase the availability of 

82 nutrients by accelerating the microbial breakdown of soil organic matter (Bardgett et al., 2008). 

83 The demand for carbon and phosphorus from microbes may change as a result of soil short-term 

84 warming, leading to greater microbial phosphorus limitation (Zheng et al.,2020). The addition of 

85 P enhanced the soil available phosphorus, reduced phosphorus limitation, and increased carbon 

86 sequestration (Manzoni et al.,2012; Wang et al., 2022). P addition had both enhancing and 

87 inhibitory impacts on the soil extracellular enzyme activity (Jing et al.,2016; Wang et al., 2020a), 

88 even the input rates of various phosphorus fertilizers affected soil acquiring enzyme activities 

89 (Waring et al.,2014; Tian et al.,2016). These findings imply that potential mechanisms 

90 influencing soil extracellular enzyme activity and microbial metabolism induced by soil 

91 available P in the context of climate change are controversial.

92 A typical fragile grassland ecosystem, the desert steppe is especially vulnerable to climate 

93 change (Zuo et al.,2020), which is important to sustain ecological security and socioeconomic 

94 development (Kang et al.,2007). The degradation of desert grasslands and the decline of 

95 ecosystem stability and service functions may be driven by climate change, overgrazing, and 

96 unreasonable exploitation (Reynolds et al.,2007; Deng et al., 2014; Zhang et al.,2019). Given the 

97 importance of the soil available nutrients for primary production and other ecological processes 

98 in grassland ecosystems (Tang et al., 2018), understanding the relationship between soil 

99 available phosphorus, soil extracellular enzyme activity, and its stoichiometry under warming 

100 conditions can help provide insight into the role of soil available phosphorus in controlling 

101 ecological processes, which is crucial to actively respond to climate warming and develop 

102 effective conservation strategies for desert grassland (Liu et al.,2017; Wang et al.,2021). Here, 

103 we set up a field experiment to investigate the response of soil extracellular enzyme activity and 

104 its stoichiometry to warming and P addition in desert grassland, we sought to address the 

105 following two issues: (ⅰ) how soil extracellular enzyme activities, microbial nutrient limitation 

106 reacts to short-term warming and P addition; and (ⅱ) what are the major factors affecting soil 

107 extracellular enzyme activities and stoichiometries. Based on the previous studies (Waring et 

108 al.,2014; Zheng et al., 2020), we hypothesized that (ⅰ) the degree of nutrient limitation of soil 

109 microorganisms was closely related to the content of soil available phosphorus; (ⅱ) warming 

110 and P addition would significantly reduce soil extracellular enzyme activity in desert grassland.

111 Materials & Methods

112 Study site

113 The experiment was conducted on a desert steppe in Eastern Yanchi County  N, 

114  E), Ningxia Hui Autonomous Region, northwest China. It is located on the 

115 southwest edge of the Mu Us Desert, which has a semiarid continental monsoon climate. 
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116 According to meteorological data from the Yanchi Meteorological Station, the average annual 

117 temperature is 8.8°C, and the average annual precipitation is 298.15mm, with the majority of the 

118 precipitation falling between July and September (1980-2021). The habitat type is the desert 

119 steppe. The soil type is classified as Arenosol (IUSS, 2015), with 4.12 g·kg-1 of soil organic 

120 matter, 0.40 g·kg-1 of total nitrogen, 0.32 mg·kg-1 of total phosphorus, 2.30 mg·kg-1 of available 

121 phosphorus, and pH 8.57. The dominant species in the region are Agropyron mogolicum, 

122 Lespedeza potaninii, Caragana korshinskii, Stipa bungeana, and Polygala tenuifolia Willd.

123 Experimental Design

124 We conducted a randomized split-plot design with two temperature treatments (CK, control; W, 

125 warming) as the main plot and three P addition levels (0 g·m-2·yr-1, 5 g·m-2·yr-1, and 10 g·m-2·yr-

126 1) as the subplot in April 2022. There were six treatments: P0, P5, P10, WP0, WP5, and WP10, each 

127 replicated four times, for a total of 24 treatment plots. A PVC sheet was put into the soil at a 

128 depth of 0.8 m to divide each subplot from the main plot, which was spaced 3 m apart to provide 

129 a buffer zone. The phosphorus fertilizer was supplied by triple superphosphate [Ca (H2PO4) 

130 2·H2O], which was evenly distributed to the treatment plots before rainfall from early June to 

131 August. Although the rate of phosphorus fertilizer input in this study is higher than the rate at 

132 which phosphorus is deposited in the atmosphere of northern China (Zhu et al., 2016), it meets 

133 with the current agricultural fertilization in China (Cui et al.,2020; Guo et al., 2022).

134 Based on the meteorological monitoring of the study site from 1980 to 2021 (Figure S1) and 

135 the existing research foundation of the team (Ma et al.,2019; Ma et al.,2021), we modified the 

136 experimental warming device. OTCs (Open Top Chambers) were used as a passive temperature 

137 rise device in this investigation. The stainless steel and high-transmittance glass material (5mm 

138 thick) were used to construct a regular octagonal prism structure, which has a substrate area of 

139 5.6 m2 and a vertical height of 1.8 m. They were installed in the sample plot permanently to 

140 avoid disruption. The air and soil temperatures at 15cm above and below ground were 

141 automatically recorded every half-hour using HOBO MX2302A and HOBO MX2201 data 

142 loggers, respectively (Onset Computer Corporation, Bourne, Massachusetts, USA).

143 Soil sampling and measurements

144 Three soil cores (5 cm in diameter, 15 cm in depth) were collected randomly from each plot after 

145 removing any surface debris on August 25, 2022. These soil samples were cleaned of plant roots, 

146 stone, or other pollutants, and manually homogenized to one composite sample, then returned to 

147 the laboratory immediately. The soil was divided into two parts, one of which was air-dried and 

148 sieved through a 2 mm mesh to measure soil organic carbon (SOC), total nitrogen (TN), total 

149 phosphorus (TP), and available phosphorus (AP). The other of which was stored at 4 °C to 

150 measure soil soluble organic carbon (DOC), ammonium nitrogen (NH4
+�N), nitrate nitrogen 

151 (NO3
-�N), microbial biomass, and soil C-, N-, P- acquiring enzyme activities.

152 Soil moisture content (SMC) was determined by oven-drying the soil at 105°C for 48 hours. A 

153 PHS-3E glass pH electrode (Leici, Shanghai, China) was used to measure the pH of the soil in a 

154 suspension of air-dried soil and distilled water (1:5, w/v) (Anderson and Ingram, 1993). A TOC 

155 analyzer was used to measure the soil DOC concentration (Vario TOC, Elementar, Hanau, 

PeerJ reviewing PDF | (2023:04:84334:0:1:NEW 9 Apr 2023)

Manuscript to be reviewed



156 Germany). Soil available nitrogen (NH4
+�N and NO3

-�N) was determined by the KCl extraction 

157 method with continuous flow analyzer; AP was determined by NaHCO3 extraction with 

158 molybdenum antimony anti-colorimetric method; Soil SOC and TN were determined by 

159 potassium dichromate external heating method and H2SO4-H2O2 digestion with Kjeldahl method; 

160 Soil TP was determined by HClO4-H2SO4 digestion with molybdenum antimony anti-

161 colorimetric method (Nelson, 1996). Microbial biomass (MBC, MBN, MBP) was extracted and 

162 analyzed by chloroform fumigation(Brookes et al.,1985; Vance et al.,1987), respectively.

163 Soil enzyme extraction and vector analysis

164 Soil C  BG), N (leucine aminopeptidase, LAP, and  

165 minidase, NAG), and P acquisition enzyme (alkaline phosphatase, ALP) activities were 

166 determined using a modified standard fluorescence technique (Saiya-Cork et al., 2002; German 

167 et al.,2011). Soil extracellular enzyme activity (EEA)was expressed in units of nmol g-1 h-1 

168 (Sinsabaugh et al.,2008; Sinsabaugh et al, 2009; Waring et al.,2014). The ratios of C, N, and P 

169 acquisition enzymes were calculated by the following formulae to determine soil extracellular 

170 enzyme stoichiometry (EES), respectively. Scatter plots of soil ecoenzymatic stoichiometry were 

171 used to identify microbial resource-limited (Hill et al.,2012; Jiang et al., 2022).

172 Soil e C: N = ln (BG) /ln (LAP + NAG)                                

173 Soil e C: P = ln (BG) /ln (ALP)                                                

174 Soil e N: P = ln (LAP + NAG) /ln (ALP)                                 

175 Soil C, N, and P -acquiring enzyme stoichiometries were assessed using vector analysis. 

176 Vector length and vector angle were calculated by the following formulae, respectively 

177 (Moorhead et al., 2016). Limitations on N and P are shown by vector angles of less than 45° and 

178 greater than 45°, respectively, while a relative carbon limitation is shown by vector length.

179 Relative C limitation =Vector Length= [ln(BG)/ln(LAP + NAG)]
2
+ [ln(BG)/ln(ALP)]

2

180 N/P limitation =Vector angle(º) = Degrees {ATAN2[(ln(BG)/ln(ALP),(ln(BG)/ln(LAP+NAG)]}

181 Statistical analyses

182 A two-way analysis of variance using a split-plot design was carried out to investigate the effects 

183 of warming, P addition, and their interaction effects on soil extracellular enzyme activity and 

184 stoichiometries of desert grassland. One-way ANOVA was used to compare the differences in 

185 soil properties, soil extracellular enzyme activity, and stoichiometries of the different treatments. 

186 Significant differences were tested using Duncan's multiple comparison tests (P<0.05), and the 

187 data for soil enzyme activity had been transformed using a natural logarithm before statistical 

188 analysis. Before performing an ANOVA, all data were tested for normality of the residuals and 

189 homogeneity of variances in SPSS 25.0 for Windows (SPSS Inc., Chicago, Illinois, USA). 

190 Pearson correlation analysis was used to determine the association between soil characteristics, 

191 microbial biomass and their stoichiometric. Mantel test was used to explore the correlation 

192 between carbon, nitrogen, and phosphorus acquisition enzyme activities and soil environmental 

193 factors. RDA(redundancy analysis) was used to explore the corresponding relationships of soil 

194 properties, microbial biomass, and extracellular enzyme activity in Canoco 5.0. For the graphics, 
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195 R 4.2.3 and Origin 2022 (Origin Laboratory Corporation, Northampton, MA, USA) were 

196 applied.

197 Results

198 Soil temperature and soil moisture content

199 OTCs had the anticipated warming effect in all temperature-increased treatment plots (Fig. 1), 

200 with an average increase of 1.17°C in air temperature 15cm above the ground and 0.65°C in soil 

201 temperature 15cm below ground. Warming considerably decreased soil moisture content by 

202 13.67%. While P addition significantly increased SMC by 11.20% and 19.52% at P5 and P10, 

203 respectively. Soil moisture content was not significantly affected by warming × P addition (Table 

204 1).

205 Soil properties

206 No significant effects of SOC, TN, or TP by warming (Table. 1). P addition had distinct effects 

207 on SOC under different P addition rates, experiencing a decline of 8.02% at P5 and an increase of 

208 2.44% at P10. P addition significantly increased TP and decreased TN. Warming × P addition 

209 resulted in a rise of SOC and TP. As for TN, WP10 decreased by 4.48%, while WP5 grew by 

210 13.43%. Warming and P addition did not significantly affect SOC: TN, but decreased SOC: TP. 

211 Warming × P addition increased SOC: TP at WP5 while lowering it by 22.59% at WP10. Soil 

212 TN: TP decreased by 2.58%, and 29.38% at WP5 and WP10, respectively.

213 The soil pH was not significantly affected by warming, P addition, and their interactions 

214 (Table 1). P addition and warming both lowered soil DOC contents, but their interaction effects 

215 significantly increased DOC 12.22% and 15.06% at WP5 and WP10, respectively. Warming and 

216 warming × P addition significantly increased the AN content. P addition decreased AN by 6.67% 

217 at P5 and did not change at P10. The addition of P had a considerable impact on available P 

218 content, and the higher the rate of P addition, the greater the increase in soil available P content. 

219 Nevertheless, there was no discernible influence of available P by warming. Warming and P 

220 addition decreased DOC: AN. Warming × P addition significantly affected DOC: AN, with 

221 33.05% decrease in WP5 and no significant difference in WP10. P addition and warming × P 

222 addition had a significant negative impact on DOC: AP and AN: AP.

223 Soil microbial biomass and their stoichiometry

224 Compared to the control plots (P0), all of the treatments led to a reduction in MBC and MBN 

225 (Figs. 2A and 2B). Warming and P addition did not significantly affect MBC and MBN, but 

226 their interaction significantly decreased them. MBP responded differently from MBC and MBN 

227 (Fig. 2C), warming lowered MBP by 9.01%, P addition and warming × P addition considerably 

228 increased MBP. Ratios of MBC: MBN, MBC: MBP, and MBN: MBP were significantly reduced 

229 by warming and P addition. Warming × P addition increased MBC: MBN (Fig. 2D) and a 

230 substantial decrease in MBC: MBP (Fig. 2E) and MBN: MBP (Fig. 2F).

231 Soil enzyme activity and their stoichiometry

232 Soil BG was significantly lowered by warming, P addition, and the effects of their interaction 

233 (Fig.3A). As for warming × P addition, the activity of BG at WP5 was higher than that at WP10. 

234 LAP+NAG was significantly decreased by P addition (Fig.3B), but not significantly affected by 
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235 warming and their interaction effects. Soil ALP was significantly reduced by warming, P 

236 addition, and warming × P addition (Fig.3C). Warming and P addition reduced ln (BG): ln 

237 (LAP+NAG) (Fig.3D), while demonstrating a different trend by Warming × P addition, rising by 

238 4.10% at WP5, and falling by 13.93% at WP10. Regarding ln (BG): ln (ALP) increased at WP5 

239 (Fig. 3E), with no significant impacts from other treatments. Warming, P addition and the 

240 interaction effects raised ln (LAP+NAG): ln (ALP) (Fig.3F). In addition, a significant correlation 

241 between BG, NAG+LAP, and ALP activity was also discovered (Fig. 4).

242 Vector analysis

243 All the treatments were over the 1:1 line (Fig. 5A), which showed that microbial nutrients were 

244 severely phosphorus limited. Warming, P addition, and their interaction effects reduced vector 

245 angle (Fig. 5B). Vector length and vector angle were decreased as a result of warming and P 

246 addition (Figs. 5C and 5D). Warming × P addition increased vector length by 11.64% at WP5 

247 and decreased by 7.53% at WP10. 

248 Relationships between soil properties and soil extracellular enzyme activities

249 Pearson correlation showed a significant relationship between soil AP and DOC: AP, AN: AP, 

250 MBN: MBP, MBC: MBP. Soil SMC content was significantly related to DOC: AP, AN: AP. 

251 Mantel correlation analysis showed that soil total nutrients and stoichiometry had no significant 

252 effects on soil EEAs and EES. However, a positive link between soil C and P acquisition enzyme 

253 activities and soil available nutrients, microbial biomass, and their stoichiometry was observed, 

254 soil N acquisition enzyme activity was closely related to DOC: AN, DCO: AP, and MBP. (Fig. 

255 6). By using a redundancy analysis, we further examined the connection between the soil 

256 available nutrients, soil EEAs, EES, and vectors (Fig.7). The results revealed that the important 

257 factors affecting soil EEAs and EES were AN, MBC: MBP, and MBN: MBP. There had a 

258 significant positive correlation between AN and e C: P. e N: P was positively correlated with AP. 

259 MBC was positively correlated with e C: N. Vector length was positively correlated with AN, 

260 while vector angle was significantly negatively correlated with available P (Fig. 7). 

261 Discussion

262 Short-term warming

263 In this study, we conducted a field experiment to investigate the effects of short-term warming 

264 and P addition on the soil extracellular enzyme activity and stoichiometries. Short-term warming 

265 increased soil AN content (Table 1), and reduced microbial biomass C and N (Fig.2). Soil C-, N-

266 , and P-acquiring enzymes were decreased by warming (Fig. 3), which was consistent with our 

267 hypotheses. No significant effect on the soil total nutrients and stoichiometries by warming 

268 (Table 1). Correlation analysis and redundancy analysis revealed a significant positive 

269 correlation between soil EEAs and soil available nutrients, microbial biomass and their 

270 stoichiometry (Figs. 6 and 7), these results were in keeping with the previous studies (Cui et al., 

271 2021; Li et al., 2022b). Further research on soil microbial communities of desert grassland is 

272 required to better understand the exact microbiological mechanisms by which microbial biomass 

273 controls the soil extracellular enzyme activity.      
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274 Soil moisture content may also affect soil EEA (Allison and Treseder,2008; Li et al., 2022a). 

275 Warming considerably decreased SMC in our study (Table 1), however, SMC had no significant 

276 impact on soil EEAs and EES (Figs. 6 and 7), and it was not a limiting factor for soil EEA. The 

277 experiment demonstrated that soil microorganisms may adapt to dry, infertile soil conditions by 

278 adjusting soil extracellular enzyme activity in response to their demands and the surrounding 

279 environment (Gong et al.,2015; Wang et al.,2017). Meanwhile, we discovered that warming 

280 slightly raised ln (BG): ln (ALP) and ln (LAP+NAG): ln (ALP), decreased ln (BG): ln 

281 (LAP+NAG) (Fig. 3), vector length and vector angle (Fig. 5), it is likely because warming 

282 reduced the soil microbial biomass C and N, and consequently influenced the secretion of C- and 

283 N-acquiring enzymes to adapt to environmental changes (Turner and Wright, 2014). Taken 

284 together, short-term warming changed the activities of soil microbial in desert steppe.

285 Phosphorus addition

286 Soil phosphatases typically showed higher activity in P-limited ecosystems, and soil C and N-

287 acquiring enzyme activity reflects microbial demand for energy and nutrients (Turner and 

288 Wright, 2014). In our study, P addition lowered soil extracellular enzyme activities (Fig. 3), 

289 which had a great impact on the activity of the P acquisition enzyme (Marklein and 

290 Houlton,2012; Shi et al.,2021). P addition significantly promoted the soil total P, available P and 

291 microbial biomass P content while concurrently reducing DOC, AN, MBC, and MBN contents 

292 (Table 1, Fig. 2). Varying alterations were found in MBC, MBN, and MBP, suggesting that soil 

293 microorganisms may preferentially fix P (Bünemann et al., 2012), which affected the 

294 stoichiometries of soil microbial biomass. Correlation analysis demonstrated a negative 

295 correlation between soil C-, P- acquiring enzyme activity and available P, MBP (Fig. 6) . The 

296 relationship is most likely explained by the fact that P addition increased plant growth and 

297 nutrient uptake while reducing the number of nutrients available for the synthesis of soil 

298 enzymes(Wang et al.,2008). Yet, contrary to the results of some research, this might be 

299 influenced by the factors like the rate of P addition, type of ecosystem and study site (Colvan et 

300 al,2001; Tian et al., 2016; Wang et al., 2020b).

301 In terms of soil extracellular enzyme stoichiometry, ln (BG): ln (LAP+NAG) decreased by P 

302 addition, whereas ln (BG): ln (ALP) and ln (LAP+NAG): ln (ALP) increased (Fig. 3), suggesting 

303 that P addition decreased microbial demand for carbon and soil microbial demand for alkaline 

304 phosphatase production costs in phosphorus-limited soils, and also affects microbial activity 

305 associated with C and N cycling enzymes(Allison et al., 2010). P addition decreased vector 

306 length and vector angle (Fig. 5), demonstrating that P addition can alleviate both the soil 

307 microbial carbon and phosphorus limitation in desert grassland, the result confirmed our 

308 hypothesis that soil microbial nutrient limitation of desert grassland is closely related to soil AP 

309 content.

310 The interactive effects of short-term warming and P addition

311 In this study, warming × P addition significantly reduced soil EEAs (Fig. 3). As for C- acquiring 

312 enzyme activity, WP5 was higher than WP10, which may be related to the significant increase in 

313 soil DOC and AN content. This, in turn, may have caused the low level of P5 addition rate to 
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314 secrete more C and N acquisition enzymes at higher temperatures, increasing microbial carbon 

315 and nitrogen demand (Fig. 2). At WP10, however, there were less available carbon and nitrogen 

316 in the soil, and fewer C- acquiring enzymes are secreted by the microorganisms. WP10 was 

317 consistently slightly higher than WP5 throughout the changes in N-, and P-acquiring enzyme 

318 activities, suggesting that the amount of available phosphorus may be a vital factor (Table 1). P-

319 acquiring enzymes were most significantly impacted by warming × P addition (Fig. 3) . It 

320 showed a negative feedback relationship between high available phosphorus content and soil 

321 EEA (Allison et al., 2007). The positive connection between the activities of the BG, 

322 LAP+NAG, and ALP indicates that these soil enzymes changed significantly under experiment 

323 warming and P addition (Fig. 4), and it further illustrates that the microbial acquisition to C, N, 

324 and P was altered. About soil EES, warming × P addition resulted in a reduction of ln (BG): ln 

325 (ALP) and ln (LAP+NAG): ln (ALP), increased ln (BG): ln (LAP+NAG) at WP5 and declined at 

326 WP10 (Fig. 3). Combining the results of the redundancy analysis and correlation analysis, the 

327 primary factors that influenced the soil EEAs and EES were the soil AN, MBC: MBP, and MBN: 

328 MBP. It can be shown that the interaction between warming and P addition had an impact on soil 

329 physicochemical properties, which altered the stoichiometry of soil extracellular enzymes (Zheng 

330 et al.,2015; Zhang et al.,2018).

331 Additionally, the natural log ratio of soil C-N-P- acquiring enzymes in this study was 1.2:1:1.3 

332 (Table S1), which differs from the global mean scale of 1:1:1 (Sinsabaugh et al., 2009), 

333 demonstrating that desert grassland in the study region was largely C and P limitation. This is 

334 partially consistent with the findings of the previous study, demonstrating that desert grassland 

335 was severely P-limited in the temperate grassland of northern China (Peng and Wang, 2016). 

336 The ratio of soil C: N: P acquisition enzymes adjusted to 1.3:1:1.2 at WP5, it is shown that a low 

337 phosphorus addition rate causes both soil microbial carbon and phosphorus limitation in the 

338 region, while the addition of P10 alleviated it. Also, previous research had revealed that adding P 

339 may boost soil microbial nitrogen demand, and lead to an increase in N-acquiring enzyme 

340 activity (Wang et al., 2020b). Nevertheless, it did not occur in our study, and this issue may need 

341 to be confirmed by further research. Vector analysis, however, revealed that relative carbon 

342 limitation increased at WP5 and reduced at WP10. As for phosphorus limitation, a higher level of 

343 phosphorus addition rate (P10) was beneficial to alleviate phosphorus limitation in the region. 

344 Warming × P addition changed the soil available nutrient contents and their stoichiometries, 

345 while soil nutrient stoichiometry influences microbial C, N, and P metabolism by regulating soil 

346 elemental balance(Cui et al., 2019b). In this process, the secretion of soil microbial enzymes in 

347 P-deficiency areas of desert grassland was stimulated to adapt to nutrient limitation (Schimel et 

348 al.,2007; Xiao et al.,2018). From the above results, in this study, soil available nutrients, 

349 microbial biomass, and their stoichiometry are the key factors contributing to microbial nutrient 

350 limitation in desert grassland.

351 Conclusions

352 In this study, we investigated how soil C, N, and P acquisition enzyme activities and 

353 stoichiometries responded to short-term warming and P addition in desert grassland. The results 
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354 showed that warming did not affect soil available P but altered soil AN, MBC, and MBN. P 

355 addition significantly raised soil available phosphorus contents, which had positive effects on the 

356 activities of BG, LAP+NAG, and ALP. For the different rates of P addition, P10 was preferable 

357 to P5 for eliminating the relative carbon and phosphorus limitation. Warming and P addition 

358 slightly raised ln (BG): ln (ALP) and ln (LAP+NAG): ln (ALP), decreased ln (BG): ln 

359 (LAP+NAG). About the interaction of warming and P addition, resulting in a reduction of ln 

360 (BG): ln (ALP) and ln (LAP+NAG): ln (ALP), increased ln (BG): ln (LAP+NAG) at WP5 and 

361 declined at WP10. The primary factors that influenced the soil EEAs and EES were the soil AN, 

362 MBC: MBP, and MBN: MBP. In conclusion, Short-term warming, P addition, and their 

363 interaction significantly affected soil extracellular enzymes and stoichiometries, which in turn 

364 changed microbial resource acquisition techniques in desert steppe. More extensive research on 

365 soil microbial communities is required to confirm the potential role that soil available 

366 phosphorus may play in actively adapting to global warming and microbial nutrient constraint.
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Table 1(on next page)

Warming, P addition and their interaction effects on soil properties, nutrients contents
and stoichiometries.

SMC, soil moisture content. SOC, soil organic carbon. TN, soil total nitrogen. TP, soil total

phosphorus. DOC, dissolved organic carbon. AN, soil ammonium nitrogen (NH4
+-N) and

nitrate nitrogen (NO3
--N). AP, soil available phosphorus. The results of two-way split-

plotANOVAs for the treatments are shown in the table ( * P < 0.05, ** p < 0.01, *** p <
0.001, and “—” indicate no significance). Lowercase letters show significant differences
among the treatments by Duncan’s test at p < 0.05.
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Treatment       pH      SWC        SOC           TN            TP             SOC:TN     
SOC:T

P           

TN:T

P             
 DOC        AN           AP            

DOC:A

N        

DOC:A

P              

AN:A

P         

P0      
8.55±    

0.11a      

9.73±       

0.41b       

6.98±         

1.39ab      

0.67±        

0.12ab      

0.34±        

0.02c         

10.46±        

0.62a           

20.27±       

3.45a          

1.94±      

0.33a       

20.79±        

1.50abc      

6.75±        

0.52cd      

3.58±        

0.39d         

3.09±          

0.21a           

5.83±          

0.26a          

1.9±         

0.17a        

P5     
8.53±     

0.09ab      

10.82

±              

0.93a        

6.42±         

0.79b          

0.55±        

0.12b        

0.4±          

0.04ab

c                

11.92±        

0.98a           

16.18±       

0.51bc        

1.37±      

0.16b

c              

17.77±        

1.27c          

6.30±        

0.56d        

30.43±      

1.89b         

2.83±          

0.26a           

0.59±          

0.07c          

0.21±       

0.02c        Control      

P1

0   

8.48±    

0.11ab      

11.63

±           

1.20a        

7.15±         

1.34ab        

0.62±        

0.1ab        

0.48±        

0.09a        

11.47±        

0.58a           

14.87±       

2.19c          

1.29±      

0.13c       

18.38±        

2.19c          

6.73±        

0.34cd      

41.60±      

2.80a         

2.74±          

0.36a           

0.44±          

0.07d          

0.16±       

0.01c        

P0     
8.39±        

0.05b      

8.40±       

0.26c        

7.05±         

0.99ab        

0.66±        

0.13ab      

0.37±        

0.08bc       

10.77±        

0.68a           

19.3±         

3.27ab        

1.8±        

0.36a

b             

19.75±        

3.47bc        

7.61±        

1.40bc      

3.80±        

0.48d         

2.62±          

0.34a           

5.21±          

0.7a            

1.99±       

0.15a        

P5     
8.44±        

0.05ab      

9.43±       

0.46b       

8.34±         

0.9a            

0.76±        

0.13a        

0.41±        

0.07ab

c   

11.11±        

1.35a           

20.56±       

2.33a          

1.89±      

0.43a       

23.33±        

2.64ab        

11.26±      

0.78a        

19.73±      

3.15c         

2.07±          

0.11b          

1.2±            

0.21b          

0.58±       

0.07b        

Warmin

g     

P1

0    

8.53±        

0.11ab      

9.59±       

0.22b       

7.33±         

0.41ab        

0.64±        

0.06ab      

0.47±        

0.05ab       

11.48±        

0.88a           

15.69±       

2.06bc        

1.37±      

0.17b

c              

23.92±        

2.66a          

8.19±        

0.82b        

46.90±      

6.78a         

2.95±          

0.52a           

0.52±          

0.12cd        

0.18±       

0.03c        

Warming        

P addition       

Warming × P     

�             

�             

�             

*              

**            

�            

�               

�               

�               

�             

�             

�             

�             

**             

�             

�                

�                

�                

�               

*                 

�               

**           

*             

�           

�               

�               

*                 

**             

*               

**             

�              

***            

***            

�               

*                 

**               

*                 

***             

***             

*               

***           

*               
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Figure 1
Air temperature at 15cm above the ground and soil temperature at 15cm below the
ground in the warming plots (inside of the OTCs) and the control plots (outside of the
OTCs).
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Figure 2
Warming, P addition and the interaction effects on soil microbial biomass and
stoichiometries.

MBC, microbial biomass carbon. MBN, microbial biomass nitrogen. MBP, microbial biomass
phosphorus. The results of two-way split-plot ANOVAs for the treatments are shown in the
figures (* P < 0.05, ** p < 0.01, *** p < 0.001, and ns indicate no significance), lowercase
letters above the multi-factor group histograms show significant differences among the
treatments by Duncan’s test at p < 0.05. Error bars show means ± SE (n=4).
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Figure 3
Warming, P addition and the interaction effects on soil extracellular enzyme activities
and stoichiometries.

BG, β-1,4-glucosidase. LAP, leucine aminopeptidase. NAG, β-1,4-N-acetylglucosaminidase.
ALP, alkaline phosphatase. The results of two-way split-plot ANOVAs for the treatments are
shown in the figures (* P < 0.05, ** p < 0.01, *** p < 0.001, and ns indicate no significance),
lowercase letters above the multi-factor group histograms show significant differences
among the treatments by Duncan’s test at p < 0.05. Error bars show means ± SE (n=4).
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Figure 4
Regression analysis of the soil C, N, and P acquisition enzyme activities.

BG, β-1,4-glucosidase. LAP, leucine aminopeptidase. NAG, β-1,4-N-acetylglucosaminidase.
ALP: alkaline phosphatase. All data were natural log(ln)-transformed.
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Figure 5
Scatter plots of the eco-enzyme stoichiometry of relative proportions of C/C+P to
C/C+N(A). Regression analysis of vector length and vector angle(B). Warming, P
addition and the interaction effects on vector length(C) and vector angle(D).

The results of two-way split-plot ANOVAs for the treatments are shown in the figures (* P <
0.05, ** p < 0.01, *** p < 0.001, and ns indicate no significance), lowercase letters above the
multi-factor group boxplots show significant differences among the treatments by Duncan’s
test at p < 0.05. Error bars show means ± SE (n=4).
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Figure 6
Correlation analysis on soil properties, soil extracellular enzyme activities and
stoichiometries.

SOC, soil organic carbon. TN, total nitrogen. TP, total phosphorus. SMC, soil moisture content.

DOC, dissolved organic carbon. AN, soil ammonium nitrogen (NH4
+-N) and nitrate nitrogen

(NO3
--N). AP, soil available phosphorus. MBC, microbial biomass carbon. MBN, microbial

biomass nitrogen. MBP, microbial biomass phosphorus. C acquisition enzyme, β-1,4-
glucosidase. N acquisition enzyme, leucine aminopeptidase and β-1,4-N-
acetylglucosaminidase. P acquisition enzyme, alkaline phosphatase.
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Figure 7
Redundancy analysis (RDA) on soil properties, soil extracellular enzyme activities and
stoichiometries, vector length, and vector angle.

SMC, soil moisture content. DOC, dissolved organic carbon. AN, soil ammonium nitrogen

(NH4
+-N) and nitrate nitrogen (NO3

--N). AP, soil available phosphorus. MBC, microbial biomass

carbon. MBN, microbial biomass nitrogen. MBP, microbial biomass phosphorus. BG, β-1,4-
glucosidase. LAP, leucine aminopeptidase. NAG, β-1,4-N-acetylglucosaminidase. ALP, alkaline
phosphatase. e C: N, e C: P, and e N: P represent ln (BG): ln (LAP + NAG), ln (BG): ln (ALP)
and ln (LAP +NAG): ln (ALP), respectively. VL, vector length. VA, vector angle.
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