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ABSTRACT
Cancer immune responses are complex cellular processes in which cytokine–receptor
interactions play central roles in cancer development and response to therapy; dysregu-
lated cytokine–receptor communication may lead to pathological processes, including
cancer, autoimmune diseases, and cytokine storm; however, our knowledge regard-
ing cytokine-mediated cell–cell communication (CCI) in different cancers remains
limited. The present study presents a single-cell and pan-cancer-level transcriptomics
integration of 41,900 cells across 25 cancer types. We developed a single-cell method
to actively express 62 cytokine–receptor pairs to reveal stable cytokine-mediated cell
communications involving 84 cytokines and receptors. The correlation between the
sample-based CCI profile and the interactome analysis indicates multiple cytokine–
receptor modules including TGFB1, IL16ST, IL15, and the PDGF family. Some isolated
cytokine interactions, such as FN1–IL17RC, displayed diverse functions within over ten
single-cell transcriptomics datasets. Further functional enrichment analysis revealed
that the constructed cytokine–receptor interaction map is associated with the positive
regulation of multiple immune response pathways. Using public TCGA pan-cancer
mutational data, co-mutational analysis of the cytokines and receptors provided
significant co-occurrence features, implying the existence of cooperative mechanisms.
Analysis of 10,967 samples from 32 TCGA cancer types revealed that the 84 cytokine
and receptor genes are significantly associated with clinical survival time. Interestingly,
the tumor samples with mutations in any of the 84 cytokines and receptors have
a substantially higher mutational burden, offering insights into antitumor immune
regulation and response. Clinical cancer stage information revealed that tumor samples
with mutations in any of the 84 cytokines and receptors stratify into earlier tumor
stages, with unique cellular compositions and clinical outcomes. This study provides a
comprehensive cytokine–receptor atlas of the cellular architecture in multiple cancers
at the single-cell level.
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INTRODUCTION
Cytokines play essential roles in the immune response by mediating the activation of
proliferation and signaling in the innate and adaptive immune systems (Cameron &
Kelvin, 2000–2013). Recent studies have shown that cytokines are associated with cancer
development by aiding the formation of the tumor microenvironment (Kumar et al., 2022;
Lee & Margolin, 2011; Lin, Sharma & John, 2014). Cytokines exert their effects by binding
to specific receptors on target cells, thereby activating intracellular signaling pathways;
however, cell–cell interactions are dynamic and transient, and only a few technologies are
currently capable of capturing these interactions (Zhang et al., 2022). As major players in
immune regulation and inflammation, interleukins, interferons, tumor necrosis factors,
colony-stimulating factors, growth factors, and chemokines can be used to treat cancer
(Habanjar et al., 2023). To date, more than 20 different cytokine medications have been
approved and commercialized worldwide for the prevention and treatment of various
diseases (Habanjar et al., 2023; Propper & Balkwill, 2022; Wolfarth et al., 2022).

Interleukins are produced by lymphocytes, macrophages, and other cells, and play a vital
role in the control of immunity by modulating T-cell and B-cell activation, proliferation,
and differentiation (Martinez-Perez et al., 2021). Interferons exert an anticancer function;
for instance, IFNα induces tumor cell death via the Fas pathway and is successfully used as
a tumor immunotherapy (Kimura et al., 2003). In general, tumor necrosis factors (TNFs)
suppress P53 function and facilitate cell apoptosis (Joo et al., 2023). In addition, colony-
stimulating proteins, such as CSF-1 and their receptors, increase tumor cell proliferation
and survival in an autocrine or paracrine manner (Achkova & Maher, 2016). Moreover,
growth factors are a type of cytokine that regulates cell growth and differentiation. VEGF
(vascular endothelial growth factor) is one of the most significant factors for tumor
angiogenesis since it provides the necessary oxygen and nutrients while also mediating
tumor proliferation activity (You et al., 2023). Furthermore, chemokines can stimulate
target cells to migrate in a specific direction (Kim et al., 2011).

Specific proteins on the cell surface mediate transient cell–cell interactions (CCIs),
which are short-lived contacts between cells (Gutwillig et al., 2022). For cytokine-related
transient CCIs, cells synthesize and secrete cytokines to readily perform their biological
roles only in response to tissue damage and infection (Srivastava & Rasool, 2022). The vast
majority of cytokine receptors are membrane-spanning proteins containing extracellular,
transmembrane, and cytoplasmic domains. According to the three-dimensional structure
of cytokine–receptor complexes, the binding of cytokines to the receptor occurs through
electrostatic and van der Waals interactions, and no stable chemical bonds are formed. By
understanding the molecular mechanisms that mediate these cytokine-based stable CCIs
in multiple cells, we may gain deeper knowledge regarding the manner by which immune
cells communicate and how these interactions contribute to the development of cancer.

Single-cell RNA sequencing (scRNA-seq), a new method for high-throughput mRNA
sequencing at the single-cell level, can effectively determine cell–cell communications
(CCIs) that cannot be deciphered from tissue samples. Moreover, scRNA-seq solves the
issue of transcriptome heterogeneity within cell populations that is masked by conventional
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RNA-seq, allowing new rare cell types to be discovered (Liu & Zhao, 2021). Despite many
studies linking various types of cytokines to carcinogenesis, no comprehensive evaluation of
cytokine-mediatedCCIs in cancers has been performed to date. Here, we conducted the first
systematic exploration of cytokines in 41,900 cells across 25 cancer types. The constructed
stable cytokine–receptor CCI network provides a heterogenetic view of tumorigenesis and
the tumor immune microenvironment, providing a basis for cytokine-based drug research
and clinical application, which may more precisely direct future treatments.

MATERIALS AND METHODS
Collecting the single-cell transcriptomes across multiple cancer types
To explore the heterogeneity of cell–cell communications, we conducted a survey of
single-cell transcriptomes at the pan-cancer level. In the present study, we adopted a
scRNA-seq database CancerSEA, which contains 41,900 single-cell transcriptomes from 25
cancer types (Yuan et al., 2019). In total, CancerSEA has collected 72 datasets by focusing
on scRNA-seq data. In practice, we downloaded the processed transcripts per kilobase
million (TPM) value after quality control and normalization of each dataset on 20th May
2021. Subsequently, log2 transformation was applied to all the TPM expression values.
In addition to gene expression, CancerSEA also depicts 14 functional states related to
cancer development: angiogenesis, apoptosis, cancer stemness, cell cycle, cell proliferation,
differentiation, DNA damage and repair, epithelial–mesenchymal transition, hypoxia,
inflammation, invasion, metastasis, and quiescence at the single-cell level across 25 cancer
types. The general idea was to collect a list of signature genes associated with certain
functional states. The activities of all the functional states of a cell were then calculated
using the Gene Set Variation Analysis (GSVA) package in R (Hanzelmann, Castelo &
Guinney, 2013). In a word, these single-cell transcriptomes and cell status data serve as a
platform to explore the cell–cell communication from a cytokine–receptor perspective.

Curating the list of cytokines and receptors
To explore the cytokine–receptor interactome, we curated a list of cytokines and their
classification from an online resource (Cameron & Kelvin, 2000–2013). The receptors of
these cytokines were integrated fromOmniPath (Ceccarelli et al., 2020).We collected a total
of 328 unique cytokine–receptor interaction pairs involving a total of 122 cytokines and
126 receptors. It is important to note that multiple cytokines may interact with multiple
receptors and vice versa.

Determining active gene expression and building the initial cell–cell
communication networks
Since droplet-basedmicrofluidics measures gene expression in the transcriptome of a single
cell, a lowly expressed transcript is frequently undetected and therefore assigned a value of
zero (Linderman et al., 2022). Accordingly, we established a mechanism for filtering active
genes at the level of a single cell. In each dataset, the log2 transformed TPM value of a gene
must be 1 or greater.

It was necessary to extract actively expressed cytokine and receptor genes in order to
construct the fundamental framework of the cell–cell communication network in each
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dataset. We then joined cell pairs together if one of the cells actively expressed a cytokine
and the other actively expressed a receptor specific to that cytokine. Subsequently, all
possible CCIs for each dataset could be connected using this method. Only one of the
72 datasets downloaded from CancerSEA lacked both actively expressed cytokines and
receptors and was therefore filtered out.

In summary, there are a total of 71 datasets based on actively expressed cytokine–receptor
pairs, with a combined total of 86,923,583 cell–cell communications in 24 different types
of cancer. These preliminary CCIs include a total of 266 distinct active interacting pairs
involving 112 receptors and 104 cytokines.

Defining stable cell–cell communications
To prevent the collection of transient CCIs, we focused on stable cell–cell communications.
In brief, we calculated the stable cell communication ratio based on the active expression
of cytokines and receptors in a dataset using Eq. (1):

s=m/n2 (1)

where s is the stable expression ratio indicating the stability of the CCIs initiated by
a specific cytokine–receptor in a dataset; m is the number of CCIs based on actively
expressed cytokine–receptor patterns; n depicts the total cell number in a specific dataset;
and n2 indicates all theoretical CCIs in the given dataset. By focusing on an s value over
0.5, we defined a cytokine–receptor CCI as stable and applied the criteria to all 71 datasets
to collect all the stable CCIs and corresponding cytokine–receptor pairs.

Functional analysis and clinical application
For the 84 stably expressed cytokines and receptors, the functional features were further
explored based on the publicly available gene ontology and pathway annotations using the
R package GOSemSim (Yu et al., 2010). Briefly, we installed GOSemSim in R (version 4.3;
R Core Team, 2023) (2022.07.1 Build 554) and performed enrichment analysis (Boyle et al.,
2004); the P value was determined using the hypergeometric distribution. Only those GO
terms with two or more genes from the list of 84 cytokines or receptors were considered
when attempting to determine the significance of the GO terms. The estimated significance
level was adjusted for multiple hypothesis testing using the FDR control. A bubble plot was
generated, in which the colors represent adjusted P values and bubble size represents gene
counts.

To explore the mutational and clinical features, we mapped all 84 genes to the public
cancer genomics data using TCGAbiolinks (Colaprico et al., 2016). In total, the TCGA
pan-cancer database contains 10,967 samples across 32 cancer types. The clinical data
including survival time, tumor burden, and cancer stage information were extracted from
the samples with genetic variations of the 84 cytokines and receptors. Kaplan–Meier
survival curves were generated based on survival time. For multi-stage information, a
stacked bar chart was generated to present the distribution of mutated samples.
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Figure 1 PRISMA flow diagram for the construction of stable cell communications induced by
cytokine–receptor interactions.

Full-size DOI: 10.7717/peerj.16221/fig-1

RESULTS
Computational workflow used to explore the cytokine–receptor map
on a single-cell level in 41,900 cancer cells
Figure 1 shows the PRISMA flowdiagram for the construction of stable cell communications
induced by cytokine–receptor interactions. To explore the CCIs related to cancer
immunology, we established a computational workflow by focusing on cytokines and
their receptors (Fig. 2). The pipeline started from characterization of the expression levels
of cytokines and their receptors at the single-cell level. In brief, we collected a total of
328 interaction pairs with 122 cytokines and 126 receptors based on reviews and public
databases. All expression data were normalized within the dataset and used to define
actively expressed cytokines and receptors (see Methods). Accordingly, 266 unique active
interacting pairs between 104 cytokines and 112 receptors were extracted. Subsequently,
the CCIs were constructed based on the active expression of cytokines in one cell and
the active expression of known receptors in another cell from multiple cancer scRNA-seq
datasets.

To prevent the collection of transient CCIs (Liu & Zhao, 2021), we focused on stable cell
communications initiated by cytokine–receptor interaction pairs, which were supported by
over 50% of all the CCIs in a dataset. For instance, the cytokine–receptor pairTGFB1–SDC2
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Figure 2 The computational workflow for the construction of stable cell communications induced by
cytokine–receptor interactions.

Full-size DOI: 10.7717/peerj.16221/fig-2

initiated the most CCIs (18,054,208 CCIs) in an alveolar rhabdomyosarcoma scRNA-seq
dataset (Chen et al., 2018). In this dataset, the expression patterns of 6,875 single cells
were characterized; therefore, in theory, there were a total of 47,265,652 (6,875 × 6,875)
CCIs. By checking the stable CCI ratio (18,054,208 ÷ 47,265,652), TGFB1–SDC2 is only
involved in approximately 38% of all conceivable CCIs. Based on our stable CCI criteria,
we filtered this cytokine–receptor out in the final stable interaction map. Accordingly,
the outcome was 239 detectable and stable cytokine–receptor interaction pairs across 35
datasets, among which 62 unique interaction pairs were detected consisting of 42 cytokines
and 42 receptors.

The stable cytokine–receptor interaction map in cancers
By executing the computational workflow, we focused on all the unique cytokine–receptor
pairs to generate a cytokine–receptor interactionmapwith substantial CCI traffic in cancers
(Fig. 3A). In total, these stable CCIs involve 42 cytokine–receptor pairs and 84 genes. To
evaluate whether the 42 cytokines and 42 receptors initiate large-scale cell communication,
their molecular relationships were investigated. It should be noted that this interaction
map is presented at the molecular level; however, each link on the map could represent
hundreds of cell–cell communications. The hub nodes of a network are frequently used as
common links to handle information transmission over a short distance. In our map, 17
genes are completely connected to TGFB1 as the hub node; therefore, it is expected that
TGFB1 has pleiotropic effects on inflammation, cell growth, and differentiation (Tewari
et al., 2022). Regarding the hundreds and thousands of CCIs behind these 17 genes, the
results suggest that targeting TGFB1 may be an effective cancer prevention treatment to
block communication between tumor cells.

In addition, a further 11 cytokines and receptors are connected via IL6ST as the node,
which has also been reported as a prognostic biomarker in breast cancer (Martinez-Perez

Liu et al. (2023), PeerJ, DOI 10.7717/peerj.16221 6/18

https://peerj.com
https://doi.org/10.7717/peerj.16221/fig-2
http://dx.doi.org/10.7717/peerj.16221


FLT3TNFRSF10D

IL15RA

FLT3LGTNFSF10

IL15

FAS

TGFBR3

ERBB2

FASLG

TGFB3

TGFA

EBI3

LRP1

ITGA5

CNTF

PDGFB

ITGB5

GPR75

IL6R

IL6ST

CCR6

CD4

CLCF1

CCL20
IL16

SPP1

CCR3

IL2RG

ITGAV

CCL15

ICAM1

EDIL3

TNFRSF4

CSF2RA

IL17RC

TNFSF4

CSF2

FN1

PDGFRA ACKR2

IL7R

CCL5

IL7

IL10RB

IL12RB1

UCN2

IL23A

ITGB8

IL20RB

F3

IL20

IL6

IL1R1

IL1RAPL1

IL1RN

IL18

IL1RAP

IL11RA

IL1B
EGF

IL2RB

PDGFRB

ACVRL1

HGF

PDGFA

LDLR

CXCL12

IL11

PF4

CTF1

TNFSF13

IL1A

CSF1R

SDC2

IL18R1

CSF1

CXCR4

KCNJ15

CCR10

TGFB1

IL12A

CCL28

LIF

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

PD
G

FA
_P

D
G

FR
B

U
C

N
2_

IL
10

R
B

IL
6_

IL
6R

PD
G

FB
_P

D
G

FR
B

C
N

TF
_I

L6
R

C
N

TF
_I

L6
ST

PD
G

FB
_L

R
P1

TG
FB

3_
TG

FB
R

3
C

LC
F1

_I
L6

ST
ED

IL
3_

IT
G

AV
ED

IL
3_

IT
G

B
5

IL
18

_I
L1

8R
1

IL
6_

F3
IL

6_
IL

6S
T

IL
15

_I
L1

5R
A

LI
F_

IL
6S

T
TG

FB
1_

A
C

VR
L1

TG
FB

3_
A

C
VR

L1
TG

FB
1_

C
XC

R
4

TN
FS

F1
3_

SD
C

2
FN

1_
IL

17
R

C
TG

FB
1_

IT
G

AV
TG

FB
1_

SD
C

2
IL

11
_I

L6
ST

IL
11

_I
L1

1R
A

TG
FB

1_
IT

G
B

8
C

TF
1_

IL
6S

T
C

C
L5

_G
PR

75
IL

7_
IL

7R
C

C
L1

5_
C

C
R

3
SP

P1
_I

TG
A

5
SP

P1
_I

TG
AV

IC
A

M
1_

IL
2R

G
IL

16
_C

D
4

C
C

L5
_A

C
K

R
2

TN
FS

F4
_T

N
FR

SF
4

IL
23

A
_I

L1
2R

B
1

IL
15

_I
L2

R
G

C
C

L2
8_

C
C

R
10

IL
15

_I
L2

R
B

C
XC

L1
2_

C
XC

R
4

H
G

F_
SD

C
2

FA
SL

G
_F

A
S

IL
20

_I
L2

0R
B

EB
I3

_I
L6

ST
IL

18
_I

L1
R

A
PL

1
IL

1B
_I

L1
R

A
P

FL
T3

LG
_F

LT
3

IL
12

A
_I

L1
2R

B
1

C
SF

2_
C

SF
2R

A
TN

FS
F1

0_
TN

FR
SF

10
D

C
SF

1_
C

SF
1R

C
SF

2_
SD

C
2

TG
FA

_E
R

B
B

2
IL

1A
_I

L1
R

A
P

IL
1R

N
_I

L1
R

1
IL

16
_K

C
N

J1
5

PD
G

FA
_P

D
G

FR
A

C
C

L2
0_

C
C

R
6

PF
4_

LD
LR

EGF_ERBB2
PDGFA_PDGFRB

UCN2_IL10RB
IL6_IL6R

PDGFB_PDGFRB
CNTF_IL6R
CNTF_IL6ST
PDGFB_LRP1
TGFB3_TGFBR3

CLCF1_IL6ST
EDIL3_ITGAV

EDIL3_ITGB5
IL18_IL18R1

IL6_F3
IL6_IL6ST
IL15_IL15RA

LIF_IL6ST
TGFB1_ACVRL1

TGFB3_ACVRL1
TGFB1_CXCR4

TNFSF13_SDC2
FN1_IL17RC
TGFB1_ITGAV

TGFB1_SDC2
IL11_IL6ST

IL11_IL11RA
TGFB1_ITGB8

CTF1_IL6ST
CCL5_GPR75

IL7_IL7R
CCL15_CCR3

SPP1_ITGA5
SPP1_ITGAV

ICAM1_IL2RG
IL16_CD4

CCL5_ACKR2
TNFSF4_TNFRSF4

IL23A_IL12RB1
IL15_IL2RG

CCL28_CCR10
IL15_IL2RB
CXCL12_CXCR4

HGF_SDC2
FASLG_FAS

IL20_IL20RB
EBI3_IL6ST

IL18_IL1RAPL1
IL1B_IL1RAP

FLT3LG_FLT3
IL12A_IL12RB1

CSF2_CSF2RA
TNFSF10_TNFRSF10D

CSF1_CSF1R
CSF2_SDC2
TGFA_ERBB2

IL1A_IL1RAP
IL1RN_IL1R1

IL16_KCNJ15
PDGFA_PDGFRA

CCL20_CCR6

A                                                                                       B

Figure 3 The stable cytokine–receptor map for cancer cell communications. (A) The cytokine–receptor
interaction network summarized from the stable cell communications based on 41,900 samples combined
from 72 studies. The size of each node is correlated with the number of connections. The orange nodes
are cytokines and the blue nodes are receptors. The edge width is correlated with the number of associ-
ated datasets. The edges with arrows are significantly co-occurring pairs based on TCGA pan-cancer mu-
tational analysis. (B) The correlation plot for the 42 cytokine–receptor pairs based on the number of cell
communications in 72 datasets.

Full-size DOI: 10.7717/peerj.16221/fig-3

et al., 2021). With emerging roles in infection, chronic inflammation, autoimmunity, and
cancer, members of the IL-6 family may be ideal therapeutic targets for the manipulation
of disease states (Jones & Jenkins, 2018). Some other modules are also centred around
IL15 and the platelet-derived growth factor (PDGF) family. As one of the most common
γ -chain cytokines, IL15 has great potential as an cancer immunotherapy (Wolfarth et al.,
2022). Moreover, since PDGFs and their receptors are expressed in a variety of tumors,
these proteins frequently play crucial roles in cancer proliferation, metastasis, invasion,
and angiogenesis (Zou et al., 2022).

The remaining cytokines are mostly connected to their specific receptors. Despite the
FN1–IL17RC pair not being connected to any other cytokines or receptors, it was detected
in 16 datasets, indicating that this interaction may have a broader function in multiple
cancers. For example, a high expression level of fibronectin 1 (FN1) is associated with
poor prognosis in gastric cancer (Sun et al., 2020). Our data suggest that FN1–IL17RC may
play additional roles in acute lymphoblastic leukemia, bronchoalveolar carcinoma, breast
cancer, cervical cancer, glioblastoma, hepatocellular carcinoma, melanoma, non-small cell
lung cancer, and prostate cancer.

A recent systematic study revealed that co-mutations with a higher prognostic value have
a higher potential impact, implying a cooperative mechanism for tumorigenesis (Jiang et
al., 2022). By leveraging large-scale cancer genomics data, we also conducted co-mutational
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analysis based on 10,967 genes from 32 TCGA cancer types. Among the 62 connections,
two genes in 50 pairs were significantly co-mutated. Further, based on the number of CCIs,
we also conducted correlation analysis of all the 62 cytokine–receptor pairs (Fig. 3B).

Cancer type heterogeneity
We further investigated the CCIs from the top cytokine–receptor modules based on
the cancer types with which they are associated, allowing us to provide an overview of
the heterogeneity of cytokine-initiated CCIs in a number of different cancers. Based on
the 61 different interacting cytokine–receptor pairs, a total of 2,266,386 stable CCIs were
generated.We analyzed the similarities and differences between the CCIs that were induced
by various cytokines and receptors by mapping these CCIs to various cancer types.

Since TGFB1 and IL6ST are the two modules with the highest degree of molecular
connectivity, we compared the cancer types with which each of these modules is
associated (Fig. 4A). In general, the distribution of cancer types within these two
modules is comparable to that of all 61 cytokine–receptor pairs. This holds true for both
aforementioned modules. Cancers of the lung and breast, both of which have a greater
number of cells and datasets, were found to have a greater number of cytokine–receptor
pairs. It is important to note that TGFB1- and IL6ST -related CCIs were not found in
prostate or colorectal cancers included in a single dataset. In summary, these results suggest
that the TGFB1 and IL6ST modules may have broader effects in cell communications in
multiple cancer types.

The majority of these 61 cytokine–receptor pairs can be found in multiple types of
cancer. In total, there are 36 pairs detected in two or more cancer types. The remaining
25 cytokine–receptor pairs are unique to a particular form of cancer and cannot be
found elsewhere. Three of the 25 pairs are distinct to a single cancer type in two separate
datasets. For example, in two separate datasets pertaining to breast cancer, IL1RN–
IL1R1 was responsible for 3,779 and 1,445 new cases, respectively. Dysregulation of the
IL-1 proinflammatory cascade has been linked to cancer initiation, progression, and
invasiveness; however, its clinical significance in the treatment of cancer remains to be
determined (Litmanovich, Khazim & Cohen, 2018). In breast cancer, upregulation of the
IL-1 receptor is associated with anti-estrogen-resistant cancer stem cells and novel IL-1
antagonists are being developed as a treatment for a variety of cancers, which have shown
good safety profiles in the short term; nevertheless, long-termmonitoring of adverse events
are required to confirm these findings. In most cancer-related clinical trials, inhibition of
the IL-1 system has improved symptoms, particularly following the use of novel drugs as
adjuvant treatments with chemotherapy (Litmanovich, Khazim & Cohen, 2018); however,
there exist no dependable data regarding survival improvement or antitumor activity,
which may be of greater importance.

In addition, two cytokine–receptor pairs (IL16–CD4 and ICAM1–IL2RG) are uniquely
detected in two leukemia datasets. Positioned at the center of the SN-Treg signaling
network, IL16 can attract CD4+ T cells and inhibit CD3-mediated lymphocyte activation
and proliferation (Zhang & Xu, 2002), and recombinant human IL16 has shown inhibitory
effects on the growth of human T-cell leukemia Jurkat cells (Zhang & Xu, 2002). Moreover,
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human genome. The color and size of the nodes are presented at the bottom of the figure.

Full-size DOI: 10.7717/peerj.16221/fig-4

ICAM1 has been reported to be upregulated in multiple myeloma cells in comparison
with normal cells. An anti-ICAM1 antibody–drug conjugate has displayed potent anti-
myeloma cytotoxicity in vitro and in vivo (Sherbenou et al., 2020); therefore, this anti-
ICAM1 antibody–drug conjugate should be further studied for toxicity and if proven safe,
tested for clinical efficacy in patients with relapsed or refractory multiple myeloma.

Positive regulation of the immune response
To acquire a functional overview of our constructed cytokine–receptor map, we carried
out functional enrichment analysis with an emphasis on the pathways involved in
the immune response and cancer development (Fig. 4B, Table S1). As expected, a
significant association was found between the 84 cytokines and receptors and pathways
involved in cancer (corrected P-value = 10−53). Interestingly, more genes are specific to
gastric cancer (corrected P-value = 10−3), which was not included in our cancer type
distribution. Additionally, there is a pathway connecting cancer and immunology, which
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(altered group) and those with no mutations (unaltered group). (C) The cancer stage of samples with mu-
tations in the 84 cytokines and receptors (altered group) and those with no mutations (unaltered group).

Full-size DOI: 10.7717/peerj.16221/fig-5

focuses on interactions that occur between immune cells and microRNAs in the tumor
microenvironment (corrected P-value = 10−5).

Unsurprisingly, a significant number of immune response pathways are enriched among
the 84 genes, since one of the primary functions of cytokines is to regulate the immune
response. For example, we uncovered 11 positive regulatory roles including the adaptive
immune response (correctedP-value= 10−16), lymphocyte-mediated immunity (corrected
P-value = 10−13), leukocyte-mediated immunity (corrected P-value = 10−12), and T cell-
mediated immunity (corrected P-value = 10−11). Taken together, these findings provide
evidence that our cytokine–receptor interaction map contains a number of pro-immunity
factors that have the potential to be utilized in the modulation of cancer immunology.
Numerous cytokines have been validated for use in the treatment of cancer, some of which
include IL-2 for the treatment ofmetastatic melanoma and renal cell carcinoma, in addition
to IFN as an adjuvant therapy for stage III melanoma (Lee & Margolin, 2011).

Clinical application of the cytokine–receptor interaction map
To further investigate the potential clinical application of our cytokine–receptor interaction
map, we carried out a survival analysis based on 10,967 samples taken from TCGA pan-
cancer datasets covering 32 different cancer types. This allowed us to examine the potential
clinical application of the cytokine–receptor pairs in our stable CCI network. A significant
relationship exists between these 84 genes and patient survival (Fig. 5A, Log rank test
P-value = 0). More interestingly, the P-values for the 42 cytokines and 42 receptors
are both higher than the P-value for their combination, confirming that co-mutated
cytokine–receptor pairs have higher prognostic value.

Based on genetic mutations in the 84 genes, we were able to classify the samples into two
groups. Interestingly, the group with genetic changes has a significantly higher mutational
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Figure 6 The t-SNE (A) and UMAP (B) biplots demonstrating the connection between intratumor het-
erogeneity and cell status in 430 glioblastoma cells. The orange circles represent cells; the purple ‘‘+’’
represents genes with the highest percentage of variants; and green vectors represent the five cell states.

Full-size DOI: 10.7717/peerj.16221/fig-6

burden (Fig. 5B), which is defined by the number of genetic changes in a cancer cell.
In general, more genetic changes may result in the presentation of a greater number of
antigens at the cell surface, increasing the chance of an immune response being initiated.
This also explains why a high mutational burden in less common solid tumors is often
associated with poorer patient survival (Shao et al., 2020). On the contrary, those samples
with genetic mutations in the 84 cytokines and receptors are more likely to be in the earlier
stages, such as stage I (Fig. 5C), indicating that the distribution of mutational burden may
correlate with pathological/histological subtype and stage (Qiu et al., 2020). In summary,
we reveal that cytokines and their associated receptors are more likely to be mutated in late
stage cancer, generating a higher mutational burden. Accordingly, these highly mutated
cancer cells are more likely to be recognized by immune cells and promote the immune
response. Our data provide a new perspective on cytokine–mediated immune regulation.

Correlation among different cell states
Performing multiple gene-based signature expression analyses allowed us to characterize
the relative expression strength in different pathways and identify the cooperative and
antagonistic effects between pathways. For illustration purposes, we took a dataset
containing glioblastoma samples and evaluated the cytokine and receptor status of each
individual cell sample (GSE57872) (Patel et al., 2014). In the single-cell transcriptome,
thousands of gene expression data from hundreds of cells are frequently present; therefore,
it is impossible to observe and compare gene expression in all cells. The simplest method
is to reduce the data dimensions. t-SNE and UMAP are the two most efficient techniques
for reconstructing data distribution in a lower-dimensional space while maintaining its
structure; thus, all genes (purple plus), cells (orange circle), and pathways (teal vector)
could be mapped in two dimensions (Fig. 6).
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In both the t-SNE and UMAP charts, the cytokine vector follows the same direction
as inflammation and differentiation (Fig. 6), and DNA damage and repair are inversely
proportional to the cytokine vector. Consequently, the cytokine may have a significant
effect on the degree of inflammation and differentiation of glioblastoma cells.

In summary, our pathway-level analysis may provide a novel overview of the relationship
among the processed cancer markers, also highlighting immune regulation mediated by
cytokines. For example, it has been reported that inflammatory cytokines can induce DNA
damage and inhibit DNA repair in cholangiocarcinoma cells via a nitric oxide-dependent
mechanism (Zhang & Xu, 2002). Notably, cytokine signaling diversity within different
cancer cell populations is often obscured by conventional RNA-seq in tissue samples,
and only scRNA-seq can effectively solve the problem of cytokine-mediated cellular
heterogeneity. Thus, our computational approach facilitates the discovery of new, rare cell
communications and the acquisition of fresh understanding.

DISCUSSION
In the present study, we performed the largest pan-cancer meta-analysis of cytokine–
receptor interactions at the single-cell level. Based on millions of putative cell
communications, we prioritized the most essential cytokine–receptor interactions and
constructed a cytokine–receptor interaction map at the single-cell level. By focusing on
immunological functions, we found that a number of critical interleukins and growth
factors bridge various receptors in multiple cancers. In addition, these cytokine-mediated
biological processes are significantly associated with positive regulation of the immune
response in different immune cells; therefore, these inflammatory cytokines and counter-
regulatory substances are ideal candidates for cancer immunotherapy.

Traditional transcriptome sequencing (bulk RNA-seq) provides the average expression
levels of genes in a population of cells but overlooks inter-cell differences; therefore, the
detection of cell–cell communications (CCIs) is challenging. On the contrary, scRNA-seq
dissociates and sequences tissue at the single-cell level, and it is feasible to accurately
determine the expression status of ligands and receptors involved in CCIs. However, in
the current single-cell RNA sequencing platforms, such as 10X Genomics, droplet-based
microfluidics are frequently used to measure gene expression (Qiu, 2020). In theory,
droplet technology necessitates the amplification of extremely minute amounts of mRNA,
resulting in a phenomenon known as ‘‘dropout’’, in which an expressed transcript is not
detected and is therefore assigned a value of zero. In the present study, we focused on the
actively expressed cytokines and their receptors.

In cancer cells, transient CCIs play multiple roles in cell signaling, development, and
immunity. Each type of transient CCI is mediated by a distinct group of proteins. Immune
cells detect and respond to foreign invaders via transient CCIs. T cells, for instance,
utilize adhesion molecules to bind to antigen-presenting cells, allowing them to receive
signals that aid in their anti-infection efforts. Typically, the extracellular N-terminal
domain is the site of cytokine recognition. The extracellular 6th and 7th transmembrane
helical portions of the receptor have a relatively large degree of freedom to move, as
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evidenced by their three-dimensional structure (Urvas & Kellenberger, 2023). By oscillating
these two helical portions, a structural domain for cytokine binding is formed, thereby
activating the receptor. Consequently, it is easy to separate cytokines from their receptors
under conditions of fluctuating temperature, pH, and acidity. Based on the preceding
explanation, we focused on the cytokine-induced CCIs detected in more than half of the
theoretical CCIs in a dataset, thus excluding the vast majority of transient cases. There may
be a more effective way to optimize the cutoff for identifying stable CCIs. We believe that
methods based on large-scale deep learning have the potential to solve this issue. As a result
of limited computational resources, our study arbitrarily selected 50% of the theoretical
CCIs in a dataset as the cutoff.

There are existing methods for the construction of CCIs; for example, CellChat is able to
deduce the signaling communications that occur between different cell groups according
to the genes that are differently expressed in each group (Jin et al., 2021). As a result, the
output of CellChat is the interaction between cell group 1 and cell group 2, indicating
that CellChat is unable to establish cell communication at the single-cell level. In addition,
CellChat uses grouping criteria based on cell types, as opposed to tissue origins, to organise
cells. It automatically groups cells based on their annotation types. This indicates that
CellChat identifies and analyses cell-cell communication patterns and interactions among
cells that share similar cell type annotations, irrespective of their tissue of origins. In the
present study, we investigated the CCI at the level of a single cell rather than a cell group. In
lieu of differentially expressed genes, we proposed a general method based on expression
data.

By collecting known cytokine–receptor interaction information, we linked the cells and
predicted the stable CCIs, finally identifying 84 cytokines and receptors related to stable
CCIs in multiple cancers. Some publications such as CytokineLink, a map of cytokine
communication in inflammatory and infectious diseases (Olbei et al., 2021), also construct
cytokine networks specific to inflammatory bowel disease and COVID-19. Although the
tool provides a list of CCIs based on cytokines and receptors, it is extremely broad at the
tissue level: source adipose tissue > CCL7 > CCR2 > basophil, which is not suitable for
our single cell-based CCI identification.

We found that thousands of TCGA cancer samples have genetic mutations in the 84
genes. By comparing those with samples without any mutations in the 84 cytokine and
receptors, we explored patient survival, mutational burden, and cancer stage information.
Since these observations are based on the TCGA pan-cancer datasets, tumor mutation
burden refers to the total number of alterations found within the TCGA tumor genomes.
The presence of high TMB levels increases the likelihood of neoantigens being generated,
which distinguishes cancer cells from normal, healthy cells (Jhunjhunwala, Hammer &
Delamarre, 2021). It is possible for the immune system to identify cancer cells as foreign
invaders since high levels of mutational load are believed to enhance antigen presentation
to T cells. This, in turn, increases the likelihood of tumors being identified by broadening
the repertoire of T cells that can kill tumor cells (Mpakali & Stratikos, 2021).
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CONCLUSIONS
Our data provide the first evidence that cytokines and their receptors, when mutated or
actively expressed in tandemwith one another,may be associated with increasedmutational
burden and promotion of the immune response. In many scenarios, these single cell-based
communications may influence the tumor microenvironment; therefore, these cytokine-
and receptor-based biomarkers may be translated into prognostic predictors for cancer
immunology.
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