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ABSTRACT

Corals are colonial animals within the Phylum Cnidaria that form coral reefs, playing

a significant role in marine environments by providing habitat for fish, mollusks,

crustaceans, sponges, algae, and other organisms. Global climate changes are causing

more intense and frequent thermal stress events, leading to corals losing their color due

to the disruption of a symbiotic relationshipwith photosynthetic endosymbionts. Given

the importance of corals to the marine environment, monitoring coral reefs is critical

to understanding their response to anthropogenic impacts. Most coral monitoring

activities involve underwater photographs, which can be costly to generate on large

spatial scales and require processing and analysis that may be time-consuming. The

Marine Ecology Laboratory (LECOM) at the Federal University of Rio Grande do

Norte (UFRN) developed the project ‘‘#DeOlhoNosCorais’’ which encourages users

to post photos of coral reefs on their social media (Instagram) using this hashtag,

enabling people without previous scientific training to contribute to coral monitoring.

The laboratory team identifies the species and gathers information on coral health

along the Brazilian coast by analyzing each picture posted on social media. To optimize

this process, we conducted baseline experiments for image classification and semantic

segmentation. We analyzed the classification results of three different machine learning

models using the Local Interpretable Model-agnostic Explanations (LIME) algorithm.

The best results were achieved by combining EfficientNet for feature extraction and

Logistic Regression for classification. Regarding semantic segmentation, the U-Net

Pix2Pix model produced a pixel-level accuracy of 86%. Our results indicate that this

tool can enhance image selection for coral monitoring purposes and open several

perspectives for improving classification performance. Furthermore, our findings can

be expanded by incorporating other datasets to create a tool that streamlines the time

and cost associated with analyzing coral reef images across various regions.

Subjects Marine Biology, Data Mining and Machine Learning, Data Science

Keywords Convolutional neural network, Machine learning, Computer vision, Marine ecology

INTRODUCTION

Corals are cnidarians that live in colonies and produce calcium carbonate skeletons, which

build coral reefs providing habitat for various species including algae, fungi, bacteria,
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Figure 1 Example of a bleaching event for a coral of the species Siderastrea stellata (Furtado, 2022).

Full-size DOI: 10.7717/peerj.16219/fig-1

and fish. These reefs sustain approximately 25% of all marine species (Chen et al., 2015).

Corals also hold significant economic importance for coastal regions, contributing about

US$ 30 billion annually through fishing and tourism linked to the marine ecosystem.

Furthermore, they supply food and resources to approximately 500 million people

worldwide (Hoegh-Guldberg, 2011). However, due to climate change, coral coverage is

shrinking at an alarming rate of 1–2% per year (Hoegh-Guldberg, 2011), driven by ocean

warming that prompts corals to expel their photosynthetic endosymbionts, a phenomenon

known as coral bleaching (Hoegh-Guldberg, 1999). This event leads to the white appearance

(Fig. 1), resulting from a decline in endosymbiont abundance, which highlights the white

coral skeleton through its gelatinous and transparent tissue. While corals can generally

adapt to temperature fluctuations in the ocean, frequent and severe warming events often

lead to extensive coral mortality (Hughes et al., 2018).

Given the paramount importance of coral reefs to the marine ecosystem, monitoring

becomes essential to mitigate potential environmental and economic impacts. Currently,

coral monitoring primarily relies on images captured by divers. In areas where diving

is restricted, an Autonomous Underwater Vehicle (AUV) can serve as an alternative.

Modasshir et al. (2018) demonstrated an AUV equipped with a Convolutional Neural

Network (CNN) designed to detect and identify various coral species. The tracking

mechanism also provides a total count for each species per transect. Marine ecology

experts store and analyze these images to identify any anomalies that require thorough

processing. Several researchers have been embracing machine learning techniques to

streamline image analysis. As of our current knowledge, the seminal work was presented in

2012 by Beijbom and colleagues (Beijbom et al., 2012). They introduced theMoorea Labeled

Corals (MLC) dataset along with a handcrafted feature set based on texture and color. In

2013, Shihavuddin et al. (2013) employed the Grey-Level Co-occurrence matrix (GLCM)

to train diverse classifiers for coral classification. Nevertheless, the recent achievements of
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deep learning (DL) techniques in various computer vision applications have prompted

researchers to reevaluate the coral classification problem.

In this context, it is worth mentioning three related works published by Mahmood

and his colleagues. In Mahmood et al. (2016), they combined handcrafted representations

with VGG (Simonyan & Zisserman, 2014) features to distinguish between live corals

and bleached ones. More recently, they evaluated the effectiveness of deep residual

networks (ResNets) (Mahmood et al., 2020) and transfer learning (Ospina et al., 2020).

They concluded that DL significantly outperforms traditional machine learning techniques.

These findings were further supported by Gómez-Ríos et al. (2019) and Lumini, Nanni &

Maguolo (2019), who achieved superior results compared to Shihavuddin et al. (2013) on

the RSMAS and EILAT datasets (Shihavuddin, 2017) using DL.

A recentmilestone in classification is CoralNet (Chen et al., 2021), a website that provides

tools for manual, semi-automatic, and automatic analysis of coral reef images. As of 2021,

the website contained 1,741,855 images from 2,040 distinct sources, with over 65 million

annotations uploaded by nearly 3,000 users. The machine learning engine, CoralNet

1.0, employs EfficientNet-B0 (Tan & Le, 2019) as a feature extractor and a Multi-layer

Perceptron as a classifier.

Raphael et al. (2020) demonstrated the effectiveness of automated DL classification in

optimizing coral monitoring in a shallow reef in the Gulf of Eilat compared to manual

classification. They retrieved 5,000 photographic images from video samples filmed

between June 2017 and June 2018, facing challenges such as image quality, distance from

the object, angle of view, and lighting conditions. They reported an accuracy of 80.13%

using ResNet-50 (He et al., 2015).

Another field of study that has benefited from the advances in DL is semantic image

segmentation (Zhu et al., 2016). This kind of algorithm aims to assign a category label

to each image pixel. However, these algorithms require good quality densely labeled

segmentation data to perform well. Since such data is rarely available, Alonso et al. (2017)

proposed a pipeline to generate synthetic segmentation data. The authors argue that their

method can yield high-quality segmentation. A comparison of DLmethods for the semantic

segmentation of coral reef images can be found in King, Bhandarkar & Hopkinson (2018).

As far as our knowledge extends, theMosaics UCSD dataset (Edwards et al., 2017) stands

as the only dataset featuring densely labeled images. It encompasses 16 mosaics with high

resolution and 1,290 M labeled pixels distributed across 35 semantic classes. Building

on their prior work, Alonso et al. (2019) aimed to create a densely labeled dataset from

a sparsely labeled one, and they carried out their initial experiment using the Mosaics

UCSD dataset. The authors cropped the images into 512 × 512 segments, resulting in

4,957 images. They employed a modified architecture of Deeplabv3 (Chen et al., 2017) and

achieved a mIoU of 51.57% in their experiments on the dataset.

In this study, we introduce the ‘‘#DeOlhoNosCorais’’ dataset, comprising 1,411

images showcasing 21 classes of corals that include scleractinian corals, hydrocorals

and zoanthids along the Brazilian coast, accompanied by their respective segmentation

maps. For the analytical procedures we treated scleractinian corals, hydrocorals and

zoanthids simply as corals. The dataset encompasses a total of 7,082 M labeled pixels,
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Figure 2 Example of the segmentationmap for an image which contains a coral of the speciesMontas-

traea cavernosa (Furtado, 2022).

Full-size DOI: 10.7717/peerj.16219/fig-2

which is 5.5 times larger than the Mosaics UCSD dataset. This segmentation information

significantly contributes to the exploration of new semantic segmentation strategies for

coral images. In comparison to other datasets like MLC and Pacific Labeled Corals (PLC),

our proposed dataset is a substantial advancement. The dataset is publicly accessible

(https://doi.org/10.5281/zenodo.7338208). The segmentation map, as illustrated in Fig. 2,

provides a comprehensive depiction of the coral’s location within the image.

‘‘#DeOlhoNosCorais’’ is an initiative led by the Marine Ecology Laboratory at the

Federal University of Rio Grande do Norte (UFRN), Brazil, aimed at advancing the

monitoring of coral health along the Brazilian coastline. The core objective of this project

is to encourage users of various social media platforms to share photographs of coral

reefs that they have captured using their personal equipment. These images are to be

accompanied by the designated project hashtag (#DeOlhoNosCorais). Through the

utilization of this collaborative approach, contributions from individuals across social

media channels contribute to the dynamic expansion of the existing dataset. Contributions

are not restricted to corals, as citizen scientists often contribute with pictures of hydrocorals

and zoanthids.

Simultaneously, this dataset can serve as training data for machine learning models

capable of classifying shared photographs in real-time. Furthermore, the development of

a semantic segmentation model allows for precise isolation of corals within these images.

Despite its inherent advantages, the dataset presents several challenges for machine learning

algorithms. These challenges encompass the presence of noise elements, as exemplified in

Fig. 3, such as textual overlays and watermarks, as well as fluctuations in color patterns

leading to variations in saturation, white balance, and brightness. Inconsistencies in image

resolutions also exist.

Drawing parallels with the achievements showcased by the CoralNet project (Chen

et al., 2021), these models bear significant potential for expediting the classification and

segmentation of numerous photographs captured by divers during their underwater

expeditions, as highlighted byRaphael et al. (2020).González-Rivero et al. (2020) concluded

in their article that CNNs brought about enhanced image classification methods through

automated image recognition. This method outperformed traditional machine learning

approaches, demonstrating a reliable concurrence of 97% between expert and automated

assessments, alongside an overall error rate of 4%. Analyses of community composition

Furtado et al. (2023), PeerJ, DOI 10.7717/peerj.16219 4/24

https://peerj.com
https://doi.org/10.7717/peerj.16219/fig-2
https://doi.org/10.5281/zenodo.7338208
http://dx.doi.org/10.7717/peerj.16219


Figure 3 Some challenging images from the #DeOlhoNosCorais dataset. Text: Did you know that

corals can also be OSMOTROPHIC? Some people have already commented! What’s your guess? Share it

here! (Furtado, 2022).

Full-size DOI: 10.7717/peerj.16219/fig-3

indices underscored the persistence of this agreement across various bioregions,

maintaining levels of 83% to 94%.While error rates differed among taxonomic groups, they

indicated that AI-powered systems could achieve a functional taxonomic resolution similar

to that of trained human observers. By implementing artificial intelligence for automated

image classification, the time-consuming data processing and reporting constraints in coral

reef monitoring can be drastically mitigated. This technology accelerates image analysis by

at least a factor of 200 and incurs only a fraction of the expenses associated with manual

image annotation (1%).

To establish a baseline for future comparisons, we evaluated this dataset in two

distinct scenarios: classification and segmentation. For classification, we conducted two

experiments: using the full image and using sub-images. Following the findings reported

by Mahmood et al. (2020), we employed two deep learning strategies. We also applied

the Local Interpretable Model-Agnostic Explanations (LIME) algorithm to interpret the

classification results. In terms of segmentation, we present results for the binary semantic

segmentation approach using U-Net.

DATASET

The initial release of the #DeOlhoNosCorais dataset encompasses 1,411 images with 21

classes. These images contained scleractinian corals, hydrocorals, and zoanthids but are

simply referred to as corals in the analytical procedures, results, and discussion. The images

were captured between 2014 and 2021 in Brazilian reefs. In addition to the publicly available

images collected from Instagram, the dataset includes additional images contributed by

divers from the LECOM-UFRN research group. The dataset were collected as previously

described in Furtado (2022).

Each image within the dataset possesses two labels: its primary class (Fig. 4A) and the

corresponding segmentation map (Fig. 4B). LECOM-UFRN labeled the images using the

Labelme tool (Wada, 2016), and duplicate images were eliminated using the FiftyOne tool

(Moore & Corso, 2020).
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Figure 4 Dataset labeling (A) original image - major class: Palythoa caribaeorum (B) segmentation

map - pink: Zoanthus sociatus, purple: Palythoa caribaeorum, blue: Palythoa spp (Furtado, 2022).

Full-size DOI: 10.7717/peerj.16219/fig-4

Figure 5 Labelme interface.

Full-size DOI: 10.7717/peerj.16219/fig-5

The selection of Labelme (Fig. 5) was based on its user-friendly interface for generating

polygonal annotations, as well as its capability to export annotations in formats like

VOC-format and COCO-format, which are suitable for training machine learning models.

Differing from other datasets such as MLC (Beijbom et al., 2012), PLC (Beijbom et

al., 2015), Rosenstiel School of Marine and Atmospheric Sciences (RSMAS) dataset

(Shihavuddin, 2017), and EILAT dataset (Shihavuddin, 2017), the proposed dataset solely

encompasses coral labels. It lacks labels for organisms like algae, sponges, or minerals such

as sand within the coral reef ecosystem. These dual labels depicted in Fig. 4 render this

dataset a formidable benchmark for key computer vision challenges, such as categorical
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Figure 6 Examples of potential computer vision tasks using Fig. 4A. (A) Categorical semantic segmen-

tation, (B) categorical instance segmentation, (C) categorical object detection, (D) binary semantic seg-

mentation, (E) binary instance segmentation, (F) binary object detection (Furtado, 2022).

Full-size DOI: 10.7717/peerj.16219/fig-6

semantic segmentation (Fig. 6A), binary semantic segmentation (Fig. 6D), categorical

instance segmentation (Fig. 6B), binary instance segmentation (Fig. 6E), categorical object

detection (Fig. 6C), and binary object detection (Fig. 6F).

A challenge arising from the utilization of a public coral dataset pertains to the necessity

for a clear demarcation between training, validation, and testing folds. This predicament

impedes result reproducibility and hinders comparisons between different approaches.

The creators of the MLC dataset (Beijbom et al. (2012)) opted to partition training and

testing data based on the image capture dates. The #DeOlhoNosCorais dataset followed a

similar strategy during assembly, given that one of its objectives was to gauge the feasibility

of employing machine learning to expedite the analysis of images extracted from social

media. This date-based division was chosen to assess models in a real-world context where

new images will continually be introduced to the model. The model must demonstrate

resilience to technological changes and other variations. Moreover, while cross-validation

mightmaintain a consistent distribution, its resultsmight not be applicable due to situations

where a model trained on 2019 images is tested on 2015 images, introducing a random

arrangement’s impact on fold difficulty.

To augment the size of the training set, the additional images taken by divers from

the research group were incorporated. The Instagram images were allocated to training,
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Table 1 Distribution of dataset among training, validation, and testing sets (Furtado, 2022).

Training Validation Testing

Images 889 181 341

validation, and testing sets according to their respective dates. The division rules were as

follows:

• Training set: images dated up to 01/01/2019 + additional images from LECOM-UFRN

• Validation set: images dated between 01/01/2019 and 06/30/2019

• Testing set: images dated between 07/01/2019 and 08/24/2021

The extended testing period of two years is due to reduced posts during the Covid-19

pandemic. It is important to emphasize that the testing set emulates potential model

encounters in a production environment spanning from 07/01/2019 to 08/24/2021. In

reality, the model may confront reposted images and altered image distributions, including

shifts in technology and other variables. Table 1 depicts the image distribution across

the sets. For the #DeOlhoNosCorais dataset experiments, the validation set was utilized

to fine-tune machine learning model hyperparameters. Subsequently, the models were

evaluated using the testing set, with training conducted using the combined training and

validation sets with the refined hyperparameters.

Table 2 showcases the proposed dataset’s distribution. Evidently, some classes possess

limited samples, while others are absent from specific partitions due to the date-based

division. As new images are incorporated into the dataset, this issue will be mitigated.

EXPERIMENTAL PROTOCOL

This section delineates the experimental protocol and metrics adopted for our baseline

experiments encompassing both classification and semantic segmentation. In the context of

classification tasks, we formulated two distinct experiments. The first experiment involved

utilizing the full image to assess the machine learning model’s performance in the face

of unaltered original images and associated noise, as illustrated in Fig. 3. Additionally,

we employed the Local Interpretable Model-Agnostic Explanations (LIME) algorithm to

evaluate the models’ predictions on three testing set images, offering insights into the

interpretation of classification outcomes. This experimental approach aimed to simulate

real-world scenarios and gauge the models’ efficacy in image classification.

The second experiment focused on leveraging segmentation maps to extract sub-

images from the full images. Here, our objective was to compare model outcomes with

reduced noise, concentration on coral elements within images, and an augmented dataset

volume for training. This experimental setup aligns with earlier endeavors, similar to

methodologies applied to the MLC, EILAT, and RSMAS datasets, where coral-centered

images were employed for trainingmachine learningmodels. Shifting our focus to semantic

segmentation, we adopted binary labels (coral/not coral). This approach underscored the

potential of harnessing machine learning for precise coral localization within entire images.

This not only highlighted the potential for improved data clarity but also established a
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Table 2 #DeOlhoNosCorais dataset (Furtado, 2022).

Classes Training Validation Testing

1- Agaricia spp 64 5 5

2- Favia gravida 57 6 1

3-Madracis decactis 6 1 3

4-Meandrina braziliensis 0 0 4

5-Millepora alcicornis 114 20 33

6-Millepora braziliensis 0 1 4

7-Montastraea cavernosa 250 29 34

8-Mussismilia braziliensis 7 8 6

9-Mussismilia harttii 13 8 19

10-Mussismilia hispida 36 39 78

11-Mussismilia leptophylla 0 1 1

12- Palythoa caribaeorum 85 21 59

13- Palythoa spp 0 3 8

14- Parazoanthus swiftii 2 0 0

15- Porites astreoides 50 8 9

16- Porites branneri 2 1 2

17- Scolymia wellsi 1 7 11

18- Siderastrea stellata 168 17 27

19- Tubastraea spp 20 4 22

20- Zoanthus sociatus 10 1 9

21- Zoanthus spp 4 1 6

Total 889 181 341

foundation for future explorations, where the potential for localizing and categorically

classifying coral could be further investigated. Some portions of this text were previously

published as part of a master’s thesis (Furtado, 2022).

Full image classification

As evident from Table 2, the proposed dataset exhibits substantial class imbalance. To

facilitate the classification experiment, a sub-sample of the dataset was chosen, ensuring

that each class contained at least 50 images for training. The selected classes and their

distribution for the full image classification task are detailed in Table 3.

Given the recent surge in popularity and remarkable achievements of deep learning

models, we employed two Convolutional Neural Networks (CNNs) for our experiments.

The first CNN utilized the EfficientNetB7 (Tan & Le, 2019) for feature extraction and

Logistic Regression for classification. A similar model was employed in the work by

Chen et al. (2021). In this configuration, the CNN’s dense layers were omitted, and the

convolutional layers were initialized with pre-trained weights from the ImageNet dataset

(Deng et al., 2009).

In the second scenario, a CNNwas trained on the target dataset for feature extraction and

classification. The ResNet101 (He et al., 2015) yielded the best results in this experiment.

ResNet also exhibited superior performance in prior works such as King, Bhandarkar
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Table 3 Distribution of the sub-sample used for the full image classification experiments (Furtado,

2022).

Classes Training Validation Testing

1- Agaricia spp 64 5 5

2- Favia gravida 57 6 1

3-Millepora alcicornis 114 20 33

4-Montastraea cavernosa 250 29 34

5- Palythoa caribaeorum 85 21 59

6- Porites astreoides 50 8 9

7- Siderastrea stellata 168 17 27

Total 788 106 168

Table 4 Training parameters for the ResNet101 model in the full image classification task.

SGD

Model Training steps Epoch Learning rate Momentum Exponential decay

Dense layer 100 10−4 0.9 0.005ResNet101

(ImageNet) Full training 32 10−5 0.9 0.020

Dense layer 100 5×10−5 0.9 0.005ResNet101

(PLC) Full training 48 5×10−6 0.9 0.020

& Hopkinson (2018), Gómez-Ríos et al. (2019), and Raphael et al. (2020). Two distinct

initializations were compared: ImageNet and PLC. In the first case, ResNet101 was

initialized solely with ImageNet weights. In the second case, the network was initialized

with ImageNet weights and subsequently fine-tuned using the PLC dataset. Further details

about the subset of the PLC dataset utilized can be found in Appendix A. Ultimately, both

CNNs were trained on the target dataset.

Table 4 presents the training parameters used for the two ResNet101 models in the full

image classification task. For both models, a batch size of 32 and dropout (Srivastava et al.,

2014) in the dense layer of 0.2 were employed. The training process comprised two steps: i)

initialization of the dense layers and ii) training of all layers. For the model (EfficientNetB7

+ LR), the Logistic Regression (LR) was trained with the parameter C = 1.

Following training, the classification protocol includes a step involving analysis using

the LIME (Local Interpretable Model-Agnostic Explanations) technique (Ribeiro, Singh &

Guestrin, 2016). This algorithm aids in interpreting the results, revealing regions within the

image that hold greater importance for the classification outcomes.

In terms of metrics, given the imbalanced nature of the problem, we report theMatthews

Correlation Coefficient (MCC) (Eq. 1), F1-score, and Accuracy. These metrics, along with

others such as Precision and Recall, can be derived from the counts of True Positives (TP),

True Negatives (TN), False Positives (FP), and False Negatives (FN) generated by the

classifier.

MCC=
TP×TN −FP×FN

√
(TP+FP)(TP+FN )(TN +FP)(TN +FN )

(1)
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Figure 7 Patches extracted from Fig. 4A. (A) Palythoa caribaeorum, (B) Palythoa caribaeorum (C) Pa-

lythoa spp (D) Zoanthus sociatus (Furtado, 2022).

Full-size DOI: 10.7717/peerj.16219/fig-7

The MCC incorporates TP, FP, FP, and FN, yielding a high value (close to 1) when

all classes are predicted correctly, even if one or more classes are disproportionately

under-represented or over-represented.

Sub-images classification

To enhance the dataset’s size and explore the impact of noise in the images, as illustrated in

Fig. 3, we conducted an experiment using sub-images extracted from the full images. The

patches were obtained using bounding boxes generated around the corals, as depicted in

Fig. 6C. Figure 7 displays the patches extracted from Fig. 4A, highlighting how the patches

mitigate the noise present in the full image.

To enable the classification experiment, we exclusively utilized patches containing more

than 50,176 (224 × 224) pixels to ensure high-quality patches and match the input size

required by the models used. We maintained the rule of selecting only classes with a

minimum of 50 images for training. Table 5 presents the selected classes for the sub-image

classification task and their respective distribution.Notably, the number of images increased

by 68% compared to the full image dataset (Table 3).

The same models and methodology used for full image classification were employed,

with one alteration: the EfficientNetB7 was replaced with the EfficientNetB0 due to the

input size. Table 6 outlines the training parameters for the two ResNet101 models.
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Table 5 Distribution of the base used for the sub-images classification task (Furtado, 2022).

Classes Training Validation Testing

1- Agaricia spp 85 12 9

2- Favia gravida 79 6 4

3-Millepora alcicornis 137 27 40

4-Montastraea cavernosa 303 31 51

5- Palythoa caribaeorum 249 37 92

6- Porites astreoides 58 16 12

7- Siderastrea stellata 432 11 24

8 - Zoanthus sociatus 51 3 15

Total 1,394 143 247

Table 6 Training parameters for the ResNet101 model for the sub-images classification task (Furtado,

2022).

SGD

Model Training

steps

Epoch Learning

rate

Momentum Exponential

decay

Dense layer 100 10−4 0.9 0.005ResNet101

(ImageNet) Full training 12 10−5 0.9 0.020

Dense layer 100 5×10−5 0.9 0.005
ResNet101 (PLC)

Full training 40 5×10−6 0.9 0.020

Table 7 Distribution of pixel density among training, validation, and testing sets.

Non-Coral (Background) Coral Total labeled pixels

Training 70.4% 29.6% 6,643 M

Validation 63.6% 36.4% 164 M

Testing 68.5% 31.5% 275 M

Binary semantic segmentation

For the semantic segmentation, to utilize the complete dataset outlined in Table 1, we

converted the labels into binary form (coral/not coral) to address the class imbalance issue

observed in the classification experiments. Table 7 presents the distribution of pixel density

among the training, validation, and testing sets, along with the total count of labeled pixels.

We utilized a modified version of the well-known U-Net architecture, referred to as

U-Net Pix2Pix (TensorFlow, 2020). This variant employs MobileNetV2 (Sandler et al.,

2018) as the encoder and Pix2Pix (Isola et al., 2016) as the decoder. The model was trained

using an Adam optimizer (Kingma & Ba, 2017) with a learning rate of 10−3, a batch size

of 32, and 20 epochs. In the context of semantic segmentation, the common evaluation

metric is the IoU (Intersection over Union). The IoU measures the overlap between the

predicted segmentation and the ground truth, divided by the combined area of both. For

binary or multi-class segmentation, the mean IoU for an image is computed by averaging

the IoU of each individual classes.
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Table 8 Results for the classification task for the validation and testing sets.

Accuracy F1 MCC

Val. Testing Val. Testing Val. Testing

EfficientNetB7 + LR 0.82 0.71 0.80 0.69 0.78 0.63

ResNet101 (ImageNet) 0.73 0.59 0.63 0.53 0.67 0.48

ResNet101 (PLC) 0.67 0.58 0.62 0.51 0.60 0.47

Notes.

Bold text represents the best result in each respective column.

EXPERIMENTAL RESULTS

This section presents the outcomes and discussions related to both classification and binary

semantic segmentation tasks.

Full image classification

Table 8 displays the achieved metrics for the full image classification task in both

validation and testing sets. Notably, the most favorable results were obtained from the

EfficientNetB7+LR model. The model trained using the PLC dataset did not lead to an

improvement in the performance of the ResNet101. Figure 8 illustrates the confusion

matrix for the EfficientNetB7+LR model on the testing set. The model correctly predicted

the only image of the class Favia gravida in the testing set and achieved an accuracy of 0.9

for the class Millepora alcicornis. However, relatively lower performance was observed for

the classesMontastraea cavernosa and Porites astreoides, with accuracies of 0.56.

To gain deeper insights into the model’s performance, we chose three images from

the testing set for conducting LIME’s analysis (Fig. 9). The results of the models for each

image are summarized in Table 9. For Fig. 9A, all classifiers correctly predicted the top

class with high probability. In the case of Fig. 9B, while all models misclassified the input,

the EfficientNetB7+LR model managed to identify the correct class as its second-best

prediction. However, for the last image (Fig. 9C) containing textual information, none of

the models correctly classified the input. Two models identified the correct class as their

second-best prediction, but with notably low probabilities.

Figure 10 presents the LIME results for Top 1 and Top 2 of the three models shown in

Fig. 9A. The LIME algorithm labels the pixels of the image in green and red to indicate

positive and negative influences, respectively. Those pixels, red and green, are always

surrounded by yellow ones. Therefore, a single green or red pixel is always bordered by

yellow. This is why the yellow color dominates the image. As we can observe, the models

generally focus on the central coral in the image. The EfficientNetB7+LR model also

interacts with a fish and a shadow within the image. However, models based on ResNet101

interact much more with other regions of the image, such as sand and the background.

This may explain the lower performance of these methods in the classification tasks.

Figure 11 presents the LIME results for Fig. 9B. Similar to Fig. 9A, the models focus on

the central region of the coral. However, the ResNet101 models consider a considerable

amount of the background.
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Figure 8 Confusionmatrix for the EfficientNetB7 + LRmodel in the full image classification task on

the testing set.

Full-size DOI: 10.7717/peerj.16219/fig-8

Figure 9 Images extracted from the testing set for the LIME’s analysis. Classes: (A)Millepora alcicornis,

(B)Montastraea cavernosa, (C) Palythoa caribaeorum. Text: Have you noticed how common the zoanthid

Palythoa caribaeorum is in our reefs? Do you know what makes this organism dominant? (Furtado, 2022).

Full-size DOI: 10.7717/peerj.16219/fig-9
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Table 9 Probabilities predicted by the models for Fig. 9. Highest probability class (class 1), second-

highest probability class (class 2).

Top 1 Top 2

Input—model Class Prob. Class Prob.

Fig. 9A —EfficientNetB7 + LR Millepora alcicornis 0.990 Palythoa caribaeorum 0.010

Fig. 9A —ResNet101 (ImageNet) Millepora alcicornis 0.990 Porites astreoides 0.010

Fig. 9A —ResNet101 (PLC) Millepora alcicornis 0.999 Favia gravida 0.001

Fig. 9B —EfficientNetB7 + LR Siderastrea stellata 0.540 Montastraea Cavernosa 0.450

Fig. 9B —ResNet101 (ImageNet) Siderastrea stellata 0.970 Palythoa caribaeorum 0.020

Fig. 9B —ResNet101 (PLC) Siderastrea stellata 0.999 Montastraea Cavernosa 0.001

Fig. 9C —EfficientNetB7 + LR Siderastrea stellata 0.710 Palythoa caribaeorum 0.120

Fig. 9C —ResNet101 (ImageNet) Porites astreoides 0.520 Siderastrea stellata 0.220

Fig. 9C —ResNet101 (PLC) Porites astreoides 0.550 Palythoa caribaeorum 0.220

Notes.

Bold text indicates the correct class for the corresponding Figure.

Figure 10 LIME results for Fig. 9A: (A) Top 1 for EfficientNetB7+LR, (B) Top 1 for ResNet101, (C) Top

1 for ResNet (PLC), (D) Top 2 for EfficientNetB7+LR, (E) Top 2 for ResNet101 (ImageNet), (F) Top 2

for ResNet (PLC).

Full-size DOI: 10.7717/peerj.16219/fig-10

Finally, Fig. 12 presents the LIME results for Fig. 9C. An interesting aspect of this

image is the absence of centered coral and the presence of text. It is noted that all three

models interact with the presence of text in the image, evaluating it positively or negatively.

Therefore, the predictions for the image are unreliable due to interactions with other
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Figure 11 LIME results for Fig. 9B: (A) Top 1 for EfficientNetB7+LR, (B) Top 1 for ResNet101, (C) Top

1 for ResNet (PLC), (D) Top 2 for EfficientNetB7+LR, (E) Top 2 for ResNet101 (ImageNet), (F) Top 2

for ResNet (PLC).

Full-size DOI: 10.7717/peerj.16219/fig-11

artifacts in the image. Consequently, removing text, watermarks, and noise is necessary for

achieving a more reliable model prediction.

Sub-images classification

The results for the sub-image classification task are presented in Table 10. The results

demonstrate the superiority of EfficientNet+LR over the ResNet models in both the

validation and testing sets, mirroring the results obtained when using the full image.

Another noteworthy observation is the performance disparity among the various ResNet

models. ResNet101 (ImageNet) outperformed ResNet101 (PLC) on the validation set.

However, the performance of ResNet101 (ImageNet) significantly declined on the

testing set, whereas ResNet101 (PLC) consistently maintained its performance across

sets. Consequently, the utilization of the PLC dataset contributed to the enhancement of

the model’s generalization.

The confusion matrix for the sub-image classification task using the EfficientNetB0+LR

model on the testing set is illustrated in Fig. 13. In comparison to the full-image task, the

performance on the validation set exhibited similarity, considering the inclusion of an

additional class in the sub-image task. However, upon comparing the results of the testing

set, the sub-image task demonstrated an approximately 10% performance improvement.

This illustrates that, in certain cases, the additional information within the image adversely
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Figure 12 LIME results for Fig. 9C: (A) Top 1 for EfficientNetB7+LR, (B) Top 1 for ResNet101, (C) Top

1 for ResNet (PLC), (D) Top 2 for EfficientNetB7+LR, (E) Top 2 for ResNet101 (ImageNet), (F) Top 2

for ResNet (PLC)). Text: Have you noticed how common the zoanthid Palythoa caribaeorum is in our

reefs? Do you know what makes this organism dominant?.

Full-size DOI: 10.7717/peerj.16219/fig-12

Table 10 Results for the sub-images classification task for the validation and testing sets.

Accuracy F1 MCC

Val. Testing Val. Testing Val. Testing

EfficientNetB0 + LR 0.80 0.79 0.76 0.80 0.77 0.73

ResNet101 (ImageNet) 0.78 0.71 0.75 0.70 0.73 0.62

ResNet101 (PLC) 0.73 0.74 0.71 0.73 0.69 0.66

Notes.

Bold text represents the best result in each respective column.

affects the model’s predictions. Another noteworthy aspect is that the increased number of

images also contributes to the models’ improved generalization.

Binary semantic segmentation

The results for binary semantic segmentation using the U-net (Pix2Pix) model are

presented in Table 11. The model achieved comparable results in both sets, indicating

strong generalization.
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Figure 13 EfficientNetB0 + LR confusionmatrix for the sub-images classification task on the testing

set.

Full-size DOI: 10.7717/peerj.16219/fig-13

Table 11 Results for the binary semantic segmentation task using the U-net (Pix2Pix) for the valida-

tion and testing sets (Furtado, 2022).

Accuracy per pixel mIoU

Val. Testing Val. Testing

U-net (Pix2Pix) 0.86 0.86 0.74 0.70

Figure 14 displays five samples chosen from the testing set. It depicts the original image,

ground truth, and the predicted segmentation map. These examples illustrate the model’s

ability to accurately locate corals in diverse scenarios within the image.

CONCLUSION

In this paper, we introduced the #DeOlhoNosCorais dataset, consisting of 1,411 images of

scleractinian corals, hydrocorals and zoanthids along the Brazilian coast, each accompanied

by its corresponding segmentation map. The dataset encompasses 7,082 M labeled

pixels, offering potential applications across various tasks and in conjunction with other

datasets. We proposed a straightforward methodology to partition the data into training,

validation, and testing sets, ensuring fair comparisons. Additionally, we conducted baseline
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Figure 14 Five examples of predictions using the U-net (Pix2Pix) on the testing set (Furtado, 2022).

Full-size DOI: 10.7717/peerj.16219/fig-14

experiments for classification and segmentation tasks, establishing a foundation for future

comparisons.

Concerning the classification task, the model leveraging EfficientNetB7 for feature

extraction and Logistic Regression for classification outperformed the end-to-end trained

ResNet101 in both scenarios: using the full image and sub-images. While achieving

accuracy and F1 Score of 0.70 and 0.80with the full image and sub-images respectively, there
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Table A1 Distribution of the PLC dataset used for training the ResNet101.

Classes Training Validation

1- Acropora 5,181 159

2- Favia 1,343 74

3- Favites 1,124 55

4-Macroalgae 22,783 700

5-Millepora 3,114 158

6-Montipora 12,082 444

7- Other scleractinians 21,614 724

8- Pavona 2,033 52

9- Platygyra 703 44

10- Pocillopora 9,756 244

11- Porites 11,400 332

12- Soft Coral 4,860 144

Total 95,993 3,130

remains room for improvement. As a prospective avenue, we suggest employing Generative

Adversarial Networks (GANs) to synthetically expand the training dataset. LIME algorithm

results indicated that the classification models prioritize corals as significant regions for

predictions. Furthermore, themodels are susceptible to influences from artifacts introduced

by users on social platforms, such as text boxes, potentially leading to erroneous predictions.

The semantic segmentation experiments offer promising avenues for enhancing

classification outcomes. By exclusively utilizing regions highlighted by the segmentation

process, noise areas like those containing textual information can be mitigated.
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APPENDIX A

PLC

Table A1 illustrates the distribution of the sub-base within the PLC dataset utilized for

model training. Out of the 20 available classes, twelve were selected for inclusion. Image

patches of size 224 × 224 pixels were extracted, centered on the labeled pixel.

For training purposes, images from the reference set were employed, while the evaluation

set with archived labels served as the validation set. Table A2 presents the training

parameters for the ResNet101 model on the PLC dataset. A batch size of 32 was employed,

along with a dropout rate of 0.2 in the dense layer. The model was pre-trained on the

ImageNet dataset.
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Table A2 Training parameters for the ResNet101 model on the PLC dataset.

SGD

Training steps Epoch Learning rate Momentum Exponential decay

Dense layer 43 10−4 0.9 0.005

Full training 59 10−5 0.9 0.020
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