Phylomitogenomics elucidates the evolution of symbiosis in Thoracotremata (Decapoda: Cryptochiridae, Pinnotheridae, Varunidae) (#84881)

First revision

Guidance from your Editor

Please submit by 17 Aug 2023 for the benefit of the authors .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

- 1 Tracked changes manuscript(s)
- 1 Rebuttal letter(s)
- 7 Figure file(s)
- 2 Table file(s)
- 1 Raw data file(s)

Q Custom checks

DNA data checks

- Have you checked the authors <u>data deposition statement</u>?
- Can you access the deposited data?
- Has the data been deposited correctly?
- Is the deposition information noted in the manuscript?

Field study

- Have you checked the authors <u>field study permits</u>?
- Are the field study permits appropriate?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Phylomitogenomics elucidates the evolution of symbiosis in Thoracotremata (Decapoda: Cryptochiridae, Pinnotheridae, Varunidae)

Tao Xu Corresp., 1, Henrique Bravo 1, Sancia van der Meij 1, 2

Corresponding Author: Tao Xu Email address: tao.xu@rug.nl

Background: Thoracotremata belong to the large group of "true" crabs (infraorder Brachyura), and they exhibit a wide range of physiological and morphological adaptations to living in terrestrial, freshwater and marine habitats. Moreover, the clade comprises various obligately symbiotic taxa (Aphanodactylidae, Cryptochiridae, Pinnotheroidea, some Varunidae) that are specialised to living with invertebrate hosts, but the evolutionary history of these symbiotic crabs is still unresolved.

Methods: Here we assembled and characterised the complete mitochondrial genomes (hereafter mitogenomes) of three gall crab species (Cryptochiridae): Kroppcarcinus siderastreicola, Opecarcinus hypostegus and Troglocarcinus corallicola. A phylogenetic tree of the Thoracotremata was reconstructed using 13 protein coding genes and two ribosomal RNA genes of the three new gall crab mitogenomes and a further 72 available thoracotreme mitogenomes. Furthermore, we applied a comparative analysis to characterise mitochondrial gene order arrangement, and performed a selection analysis to test for selective pressure of the protein coding genes in obligately symbiotic Cryptochiridae, Pinnotheridae and Asthenognathus inaequipes and Tritodynamia horvathi (Varunidae). No mitogenome data was available for the other pea crab families and Aphanodactylidae.

Results: The results of the phylogenetic reconstruction confirm the monophyly of Cryptochiridae, which clustered separately from the Pinnotheridae. The latter clustered at the base of the tree with robust branch values. The symbiotic varunids *A. inaequipes* and *T. horvathi* clustered together in a clade with free-living Varunidae species, highlighting that obligate symbiosis in the Thoracotremata independently evolved on multiple occasions. Different gene orders were detected in obligate symbionts and free-living species when compared with the ancestral brachyuran gene order. Lastly, the selective pressure analysis detected two positively selected sites in the *nad6* gene of Cryptochiridae, but the evidence for positive selection in Pinnotheridae and *A. inaequipes* and *T. horvathi* was weak. Adaptive evolution of mitochondrial protein coding genes is perhaps related to the higher energetic demands of a symbiotic lifestyle.

¹ Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands

² Marine Biodiversity Group, Naturalis Biodiversity Center, Leiden, Netherlands

- 1 Phylomitogenomics elucidates the evolution of symbiosis in
- 2 Thoracotremata (Decapoda: Cryptochiridae, Pinnotheridae,
- 3 Varunidae)
- 4 Tao Xu ¹, Henrique Bravo ¹, Sancia E.T. van der Meij ^{1,2}
- 5 ¹ GELIFES, University of Groningen, Groningen, The Netherlands
- 6 ² Marine Biodiversity Group, Naturalis Biodiversity Center, Leiden, The Netherlands
- 8 Corresponding Author:
- 9 Tao Xu¹
- 10 Nijenborgh 7, 9747 AG, Groningen, The Netherlands
- 11 E-mail address: parksonxt@163.com

7

13

14

15 16

. .

17

18

19

20

21

22

23

24

25

26

27

28

Abstract

30	Background: Thoracotremata belong to the large group of "true" crabs (infraorder Brachyura),
31	and they exhibit a wide range of physiological and morphological adaptations to living in
32	terrestrial, freshwater and marine habitats. Moreover, the clade comprises various obligately
33	symbiotic taxa (Aphanodactylidae, Cryptochiridae, Pinnotheroidea, some Varunidae) that are
34	specialised to living with invertebrate hosts, but the evolutionary history of these symbiotic crabs
35	is still unresolved.
36	Methods: Here we assembled and characterised the complete mitochondrial genomes (hereafter
37	mitogenomes) of three gall crab species (Cryptochiridae): Kroppcarcinus siderastreicola,
38	Opecarcinus hypostegus and Troglocarcinus corallicola. A phylogenetic tree of the
<u> </u>	Thoracotremata was reconstructed using 13 protein coding genes and two ribosomal RNA genes
40	of the three new gall crab mitogenomes and a-further 72 available thoracotreme mitogenomes.
41	Furthermore, we applied a comparative analysis to characterise mitochondrial gene order
42	arrangement, and performed a selection analysis to test for selective pressure of the protein
43	coding genes in obligately symbiotic Cryptochiridae, Pinnotheridae and Asthenognathus
44	inaequipes and Tritodynamia horvathi (Varunidae). No mitogenome data was available for the
45	other pea crab families and Aphanodactylidae.
46	Results: The results of the phylogenetic reconstruction confirm the monophyly of
47	Cryptochiridae, which clustered separately from the Pinnotheridae. The latter clustered at the
48	base of the tree with robust branch values. The symbiotic varunids A. inaequipes and T. horvathi
49	clustered together in a clade with free-living Varunidae species, highlighting that obligate
50	symbiosis in the Thoracotremata independently evolved on multiple occasions. Different gene
51	orders were detected in obligate symbionts and free-living species when compared with the

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

ancestral brachyuran gene order. Lastly, the selective pressure analysis detected two positively selected sites in the *nad6* gene of Cryptochiridae, but the evidence for positive selection in Pinnotheridae and *A. inaequipes* and *T. horvathi* was weak. Adaptive evolution of mitochondrial protein coding genes is perhaps related to the higher energetic demands of a symbiotic lifestyle.

Introduction

Brachyuran crabs, one of the most diverse groups of crustaceans, were divided into three (sub)sections based on the position of the gonopore by Guinot (1978, 1979): Podotremata, Heterotremata, and Thoracotremata. Podotremata have since been shown to be paraphyletic. whereas the reciprocal monophyly of Heterotremata and Thoracotremata is supported (Tsang et al., 2014). Thoracotemata consist of five superfamilies (Aphanodactyloidea, Grapsoidea, Ocypodoidea, Pinnotheroidea and Cryptochiroidea) together comprising 21 families (DecaNet, 2023), however, Tsang et al. (2022) have proposed a new, not yet formalised, division into seven superfamilies. Thoracotreme crabs inhabit widely different habitats in terrestrial, freshwater and marine environments across the world. Evolutionary adaptations to these different environments could be either the result of the pressure exerted by the environments themselves or by the crabs' innate ability to adapt to new habitats. For example, the majority of grapsoidean and ocypodoidean crabs are free-living and can be found in almost all reported habitats for brachyuran crabs (Tan et al., 2016; Wang et al., 2020), while most of Pinnotheroidea (pea crabs), Cryptochiroidea (gall crabs) and Aphanodactyloidea live in obligate symbiotic relationships with specific invertebrate hosts, albeit with rare exceptions (Castro 2015). Pea crabs associate with bivalves, gastropods, echinoids, holothurians, polychaetes, other crustaceans, and ascidians (Castro, 2015; Theil et al., 2016; Hultgren et al., 2022), whereas gall crabs inhabit dwellings in

74	scleractinian corals (Fize and Serène, 1957; Kropp, 1990). Obligate symbionts within
75	Thoracotremata are also found in Varunidae (superfamily Grapsoidea): Sestrostoma balssi
76	(Shen, 1932), S. depressum (Sakai, 1965), and S. toriumii (Takeda, 1974) reside in the tubes of
77	callianassids, upogebiids, echiurans, and polychaetes (Castro, 2015); Asthenognathus inaequipes
78	Stimpson, 1858, inhabits holothurians (Lee et al., 2010); and Tritodynamia horvathi Nobili,
79	1905, associates with polychaetes (Sakai, 1976; Otani et al., 1996).
80	The monophyly of the Thoracotremata has been confirmed by various studies (Von
81	Sternberg and Cumberlidge, 2001; Tsang et al., 2014; Wang et al., 2020), but the monophyly of
82	the superfamilies within the Thoracotremata has long been debated and discussed (Schubart et
83	al., 2006; Tsang et al., 2014, 2018, 2022; Van der Meij and Schubart, 2014; Chen et al., 2018;
84	Ma et al., 2019, Sun et al., 2022). Aphanodactylidae and Pinnotheridae are (mostly) obligately
85	symbiotic with invertebrate hosts and display similar overall macromorphology. Both families
86	were initially classified in the superfamily Pinnotheroidea, however, recent phylogenetic studies
87	indicated that they are only distantly related. Poore and Ahyong (2023) elevated
88	Aphanodactylidae to superfamily level. Whilst the Cryptochiridae are classified in their own
89	superfamily, - the Cryptochiroidea - Wetzer et al. (2009) questioned this based on molecular data
90	(16s rRNA) and proposed Cryptochiridae to be included within Grapsoidea. However, their
91	phylogeny included only one cryptochirid species. A later study by Van der Meij and Schubart
92	(2014) also used 16s rRNA but contained 10 species rather than only one, and retrieved the
93	Cryptochiridae as monophyletic and independent from Grapsoidea. Subsequent thoracotreme
94	classification schemes have retained the superfamily status of the Cryptochiroidea (see overview
95	in Tsang et al. 2022), and indicated the need for additional gall crab sequences to elucidate the

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

position of Cryptochiridae in the Thoracotremata, due to weak branch support and uncertainty of tree topology (Sun et al., 2022; Tsang et al., 2022).

Although Pinnotheridae and Cryptochiridae are considered monophyletic, their phylogenetic position within the Thoracotremata - and thus the origin and evolution of thoracotreme symbiosis - is still unresolved (Sun et al., 2022; Tsang et al., 2022; Wolfe et al., 2022; Kobayashi et al., 2023). Sun et al. (2022) retrieved pea crabs at the basis of a phylogenetic tree of the Thoracotremata, whilst gall crabs clustered, with equivocal branch support, with an Ocypodoidea lineage (Camptandriidae/Xenophthalmidae/Dotillidae). This is in disagreement with the results of Tsang et al. (2022) whose phylogenetic arrangement showed both families of symbiotic crabs clustering together – albeit also with equivocal results – far away from the basal branches in the phylogenetic tree. In a study conducted by Wolfe et al. (2022) Cryptochiridae clustered, with low support, with Xenograpsidae, whereas Kobayashi et al. (2023) retrieved a close relationship between Cryptochiridae and Grapsidae. Symbiotic lifestyles in Thoracotremata likely evolved independently on multiple occasions, eg. given the distant relationship between Aphanodactylidae and Pinnotheridae and members of Varunidae showing a distant phylogenetic position from gall crabs and pea crabs (Watson-Zink, 2021; Sun et al., 2022), but the question of the evolutionary origin of Cryptochiridae and Pinnotheridae remains open (Tsang et al., 2022). The mitogenome of most metazoans has relatively high nucleotide substitution rates, lack

The mitogenome of most metazoans has relatively high nucleotide substitution rates, lack of extensive recombination and conserved gene content, thus making it an informative molecular signal for phylogenetic reconstruction and adaptive evolution analysis (Gissi et al., 2008).

Additionally, mitochondrial gene order can provide an extra source of phylogenetic information (Basso et al., 2017). Moreover, the life-strategy of a species in response to different environmental pressures may affect the function of mitochondrial genes and exert selective

pressure on them. Numerous examples have shown that taxa adapted to inhabiting a specific niche undergo positive selection (Li et al., 2018; Chen et al., 2022). The range of life strategies, 120 121 including symbiosis, in the Thoracotremata allow us to study whether there is positive selection 122 in the mitogenomes of these crabs. 123 So far, a single mitogenome is available for gall crabs, that of the Indo-Pacific species 124 Hapalocarcinus marsupialis Stimpson, 1859 s.l. (Sun et al., 2022; see Bähr et al. (2021) for a discussion of the species complex). Cryptochiridae is a peculiar group of diminutive crabs, 125 obligately associated with scleractinian corals. There are currently 55 described species across 21 126 127 genera (DecaNet, 2023); however, recent studies have uncovered large numbers of undescribed cryptochirid species awaiting formal description (e.g. Bähr et al., 2021; Xu et al., 2022). 128 129 Pinnotheridae is a large and diverse family, often associated with invertebrate hosts, containing 130 approximately 330 species in 69 genera, and species new to science are regularly described (e.g. Ahyong, 2020; Ng & Rahayu, 2022). Currently, mitogenomic data is available for eight 131 symbiotic pinnotherids. Furthermore, mitogenomes of the symbiotic varunids A. inaequipes and 132 133 *T. horvathi* are available for study. Here we reconstruct a phylogeny of the Thoracotremata using a phylomitogenomic 134 135 approach based on 75 species (from 14 out of 21 recognised families), including three newly 136 sequenced Cryptochiridae mitogenomes. Based on the inferred phylogeny reconstruction and 137 comparative analysis, we aim to elucidate: 1) the monophyly and phylogenetic position of 138 Cryptochiroidea; 2) the evolution of symbiosis in Thoracotremata; and 3) by means of a test for selective pressure, whether a symbiotic lifestyle results in positive selection for certain Protein 139 140 Coding Genes (PCGs) in the mitogenome.

Materials & Methods

142	Sample collection and mitochondrial genome sequencing
143	The three gall crab species used in this study were collected from two sites in the Caribbean.
144	Troglocarcinus corallicola Verrill, 1908, was sampled from Orbicella faveolata (Ellis &
145	Solander, 1786) in Anse à Jacques, Guadeloupe (16°12'29.4"N, 61°25'22.1"W) on April 27,
146	2021. Kroppcarcinus siderastreicola Badaro, Neves, Castro & Johnsson, 2012, collected from
147	Siderastrea siderea (Ellis & Solander, 1786) on February 24, 2022, and Opecarcinus hypostegus
148	(Shaw & Hopkins, 1977), collected from Agaricia humilis Verrill, 1901 on March 14, 2022,
149	were sampled in Piscadera Bay, Curação (12°7'18.17"N, 68°58'10.66"W). The crabs were stored
150	in 70% ethanol and transported to the University of Groningen, and from there the entire
151	specimens were sent to the Beijing Genomics Institute (BGI) in Hong Kong for DNA extraction,
152	and paired-end sequencing using the DNBSEQ-G400 platform.
153	Sampling in Guadeloupe was authorised by the Direction de la Mer de Guadeloupe under
154	Autorisation N°09/2021. Sampling in Curação was under collecting permits of the Curação an
155	Government provided to CARMABI (Government reference: 2012/48584).
156	Mitochondrial genome assembly and annotation
157	The raw data were filtered by removing adaptors sequences, contamination and low-quality from
158	raw reads using fastp v.0.23.2 (Chen et al., 2018) with default parameters. The clean data were
159	assembled with GetOrganelle v.1.7.6.1 (Jin et al., 2020) on the Peregrine high performance
160	cluster of the University of Groningen. The assembled mitogenomes were subsequently imported
161	into MITOS1 on the MITOS Web Server (http://mitos.bioinf.uni-leipzig.de/index.py) (Bernt et

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

al., 2013) for annotation, and the start and stop codons were confirmed manually using Geneious v.8.1.3. The GCview online service (https://proksee.ca/) was used for the visualisation of the mitogenome maps. The assembled and annotated mitogenomes with gene features were uploaded to GenBank under accession numbers OQ308778 (*K. siderastreicola*), OQ308779 (*O. hypostegus*), OQ308780 (*T. corallicola*).

Mitochondrial genome characterisation

After complete annotation of the mitogenome, the nucleotide composition for each species was calculated in MEGA X (Kumar et al., 2018) and the composition skew was calculated using the formulas of AT skew = (A - T) / (A + T) and GC skew = (G - C) / (G + C). The Relative Synonymous Code Usage (RSCU) for concatenated PCGs was estimated using the Sequence Manipulation Suite: Codon Usage (https://www.bioinformatics.org/sms2/codon_usage.html) with the invertebrate mitochondrial genetic code (Stothard, 2000) and visualised with the web tool EZcodon (http://ezmito.unisi.it/ezcodon; Cucini et al., 2021) combined with the package ggplot2 (Wickham, 2016) in R v.4.2.2 (R Core Team 2013). The transfer RNA (tRNA) genes were identified with MiTFi, implemented in the MITOS web server, using the default settings. The secondary structures of tRNAs were visualised with ViennaRNA Web Services (Kerpedjiev et al., 2015). Details of the mitogenome of the cryptochirid *H. marsupialis* s.l. (Sun et al., 2022) were missing in the original paper. This mitogenome was included in above-mentioned analysis to allow for better comparison with our newly obtained Cryptochiridae mitogenomes. Using the cytochrome c oxidase subunit I (cox1) barcode from the mitogenome by Sun et al. (2022) we identified their specimen as *H. marsupialis* HM.08 (Van der Meij et al. in prep.).

Phylogenetic analysis

Seventy-two thoracotreme and five heterotreme crabs (as outgroups) for which whole mitogenomes are available were retrieved from GenBank (Table S1). With the addition of the three new gall crab mitogenomes this resulted in a dataset of 80 mitogenomes for phylogenetic inference.

The 13 PCGs and two ribosomal RNA genes (rRNAs; rrnS: 12S ribosomal RNA and rrnL: 16S ribosomal RNA) were aligned separately using MAFFT v.7.407 (Katoh and Standley, 2013) and subsequently Gblocks v.0.91b (Talavera and Castresana, 2007) was applied to remove ambiguously aligned regions using default settings. All PCGs and rRNAs were combined in a concatenated dataset containing 11,193 nucleotides. PartitionFinder 2 (Lanfear et al. 2017) was used to detect the best partition scheme, as well as the best-fit nucleotide substitution models for the respective partitions, based on the corrected Akaike Information Criterion (AICc; Hurvich and Tsai, 1989).

Maximum Likelihood (ML) and Bayesian Inference (BI) approaches were used for the phylogenetic analysis. The selected partition schemes and best-fit substitution models are available in Table S5. ML was inferred in IQ-TREE v.1.6.8 (Nguyen et al. 2015) with 20,000 ultrafast bootstraps (Minh et al. 2013), and MrBayes v.3.2.7 (Ronquist et al., 2012) was used for the BI analysis; we ran two parallel runs of four chains (one cold and three heated chains) each performing for 10 x 10⁶ generations, sampling every 1000 iterations. Consensus trees were constructed in MrBayes with a burnin of 25%, however, the average standard deviation of split frequencies was 0.03, surpassing the recommended threshold (<0.01) proposed by the software authors as a measure of convergence. The trees were visualised in FigTree v.1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/).

Comparative analysis of mitochondrial gene order

Besides the five heterotreme crabs as outgroups, the mitogenomes of 75 thoracotreme crabs were annotated by MITOS1 (http://mitos.bioinf.uni-leipzig.de/index.py). The Mitochondrial Gene Order (MGO) of *Xenograpsus testudinatus* Ng, Huang & Ho, 2000, is based on Ki et al. (2009) because MITOS 1 generated only 20 tRNAs, while it contains 22 tRNAs according to the original paper.

The comparative gene order analysis was conducted using CREx (Bernt et al., 2007). In this analysis we compared the MGO of all taxa in our dataset with the ancestral gene order (the most widespread gene order) of the Brachyura (Basso et al., 2017). The gene rearrangement scenarios in CREx are based on common intervals, which considers reversals, transpositions, reverse transpositions, and tandem-duplication-random-loss (TDRL) as possible gene rearrangement events, while the control region is excluded from the analysis.

Analysis of selective pressure

To test for selective pressure on each of the PCGs, the ratio of nonsynonymous (dN) to synonymous (dS) substitutions rates (ω = dN/dS) was calculated using the codon-based maximum likelihood (CodeML) application in PAML v.4.7 (Yang, 2007). Codon alignments were implemented in the PAL2NAL web server (http://www.bork.embl.de/pal2nal/; Suyama et al., 2006). Here we used two models to test for selective pressure: (branch model and branch-site model), and a total of 13 PCGs was computed separately for each of these models. The topology of the ML tree resulting from the phylogenetic analyses, without outgroups and branch lengths, was used for the selective pressure analyses. The downstream analysis excluded strange ω ratios,

which occurred when the dN or dS values were equal to zero due to limited substitution information from the sequences.

The branch model (free-ratio model) was used to test if the ω ratios vary between branches in the phylogeny: this model allows an independent ω ratio for each branch on the phylogenetic tree. Furthermore, the results of ω ratios in the free-ratio model were classified into two groups: obligate symbionts (Cryptochiridae, Pinnotheridae, varunids *A. inaequipes* and *T. horvathi*) and free-living crabs (all other taxa). The branch-site model (i.e., Model A null vs Model A) was applied in this study, which assumes that ω ratios vary among sites and across the branches of the phylogeny. The branches of three symbiotic lineages were labelled as foreground branches while the rest were set as background branches in the branch-site model in three different topologies only containing one of three symbiotic lineages.

The Wilcoxon rank sum test was used to determine whether the ω ratios differed significantly between grouped lineages (i.e., symbiotic crabs vs free-living crabs) in the free-ratio model. The Likelihood-Ratio Test (LRT) was used to compare branch-site models determining the best fitting model to our data. The parameters setting for LRT followed Zhang et al. (2005). Then, the Bayes Empirical Bayes (BEB) was used to calculate the posterior probability that each site acted with positive selection under the alternative model in the site models and branch-site models (Yang et al., 2005). The visualisation was executed by *ggplot2* v3.4.0 (Wickham, 2016) in R v4.2.2 (R Core Team, 2020).

247

Results

Mitochondrial genome

248	The complete mitogenomes of the cryptochirids <i>H. marsupialis</i> s.l., <i>K. siderastreicola</i> , <i>O</i> .
249	hypostegus and T. corallicola, were 15,422 bp, 15,629 bp, 15,702 bp and 15,637 bp in size,
250	respectively. They all contained the usual 13 PCGs, two rRNA genes, 22 tRNA genes and non-
251	coding regions (Fig. 1, Table S2) generally observed in decapod mitogenomes. Twenty-two out
252	of the 37 genes were located on the majority strand (J-strand) and the remaining 15 were located
253	on the minority strand (N-strand).
254	The nucleotide composition, AT-content and GC-content of the mitogenomes of the 75
255	thoracotreme crabs are summarised in Table S4. Of the four gall crabs, K. siderastreicola had the
256	highest AT-content (74.57%) and <i>H. marsupialis</i> s.l. had the lowest value (69.54%).
257	PCGs comprised 11,144 (T. corallicola), 11,149 (K. siderastreicola), 11,104 (O.
258	hypostegus) and 11,068 (H. marsupialis s.l.) codons. Nine (cox1, cox2, atp8, atp6, cox3, nad3,
259	nad6, cob and nad2) PCGs were located on J-strand and four (nad1, nad4, nad4l and nad5) on
260	the N-strand. The start and stop codons of the four gall crab species are summarised in Tables
261	S2.
262	RSCU and amino acid composition of 13 PCGs for four gall crabs are shown in Figure
263	S1. TTA (Leu), ATT (Ile), TTT (Phe) and ATA (Met) were the dominant codons (amino acids)
264	in four gall crabs, and CGC (Arg), CCG (Pro), TCG(Ser) and ACG (Thr) were less commonly
265	used (Table S3).
266	The majority of tRNAs encoded in the mitogenomes of the four gall crabs showed a
267	cloverleaf secondary structure (Fig. S2). The dihydroxyuridine (DHU) loop was absent in tRNA-

Ser1 in *T. corallicola*, while *O. hypostegus* and *H. marsupialis* s.l. only had the DHU loop but not the DHU arm. tRNA-Thr only had the thymine pseudouracil cytosine (ΤΨC) arm without the TΨC loop in both *T. corallicola* and *K. siderastreicola*, while the same scenario was found for tRNA-Asn and tRNA-Phe in *T. corallicola*, tRNA-Asp in *O. hypostegus* and tRNA-Gly in *H. marsupialis* s.l. (Fig. S2).

Phylogenetic analysis

ML and BI generated almost identical phylogenetic topologies (Figs. 2, S3); the only difference was that *Varuna litterata* (Fabricius, 1798), *V. yui* Hwang & Takeda, 1986 and *Metaplax longipes* Stimpson, 1858 formed a well-supported clade in BI (Fig. S3), whereas *M. longipes* did not cluster with both *Varuna* species in the ML tree (Fig. 2). The superfamilies Ocypodoidea and Grapsoidea were polyphyletic and the two symbiotic superfamilies were retrieved as separate monophyletic clades with strong nodal support (ML=100, BI=1). The Pinnotheroidea clustered at the base of the phylogenetic tree (ML=100, BI=1) in its own independent clade, while the Cryptochiroidea lineage was located at a distant phylogenetic position compared to the position of pea crabs. The symbiotic varunids *A. inaequipes* and *T. horvathi* clustered together, with full support, in a clade containing all other Varunidae.

Comparative analysis of mitochondrial gene order

The comparative analysis of MGO by pairwise comparison with the ancestral gene order of Brachyura detected ten rearrangement patterns in 75 thoracotreme crabs. Within Cryptochiridae, the three Atlantic species *T. corallicola*, *K. siderastreicola* and *O. hypostegus* had the same gene order (pattern eight), which differed from the pattern for the Indo-Pacific species *H. marsupialis* s.l. (pattern seven), where *tRNA-His* changed location and was transposed in between *tRNA-Ser2*

and *tRNA-Phe* (Fig. 3). For Pinnotheridae, pattern one, nine and ten were found. *Amusiotheres obtusidentatus* (Dai in Dai, Feng, Song & Chen, 1980), *Pinnotheres pholadis* De Haan, 1835 and *Pinnaxodes major* Ortmann, 1894 shared pattern one, while *Pinnotheres excussus* Dai in Dai, Feng, Song & Chen, 1980, *Arcotheres sinensis* (Shen, 1932), *Arcotheres purpureus* (Alcock, 1900) and *Arcotheres* sp. shared pattern nine; *Indopinnixa haematosticta* (Sakai, 1934) had pattern ten. Pattern three was only detected in *A. inaequipes*, whereas the other symbiotic varunid *T. horvathi* shared pattern two with the remaining Varunidae. As for the free-living crabs, five patterns, including ancestral gene order of Brachyura, were found across the different families (Figs. 2, 3).

Three out of four types of MGO rearrangement events, including reversals, transpositions and TDRL, were detected in 75 thoracotreme crabs. MGO rearrangement of four gall crabs was found to be caused by only one TDRL event and *A. inaequipes* and *T. horvathi* exhibited this event twice, while pea crabs were detected with multiple transposition and reversal events. Furthermore, reversal events occurred in three pea crab species (Fig. 3) in this study.

Selection analysis

We used a free-ratio model to calculate selective pressure for terminal branches of the phylogenetic tree. In particular for the free-ratio model, the average value of ω ratios for nine PCGs was higher for the obligate symbionts than free-living crabs, with exceptions of the other four genes, *cox2*, *cox3*, *nad2* and *nad4l* (Fig. 4; Table S7). The average ω ratios of *atp6*, *cob* and *nad 5 were* significantly higher in the symbiotic crabs than the free-living crabs (Fig. 4, Table S7; Wilcoxon rank sum test, p=0.04, p=0.04 and p=0.02, respectively). Using the branch-site model, two amino acid sites in gall crabs were detected under positive selection in *nad6* by BEB

313

314

315

316

317

318

(posterior probability $\geq 95\%$), as well as five amino acid sites in atp8, one site in cob and two in nad5 with weak positive selection evidence. In pea crabs, genes atp8, cob, nad2, nad4, nad5 and nad6, as well as two genes atp8 and nad5 in Asthenognathus inaequipes and Tritodynamia horvathi, were inferred with weak positive selection evidence (Table S8).

Discussion

Origin and phylogenetic position of obligate symbiotic crabs

319 robust branch support (ML=100, BI=1) within the Thoracotremata (Figs. 2, S3), deserving of 320 superfamily rank. Earlier studies used a single Cryptochiroidea representative, hence no conclusions about the superfamily status could be drawn based on those trees (Wetzer et al. 321 322 2009; Tsang et al., 2014, 2018; Sun et al., 2022; Kobayashi et al., 2023). 323 A phylomitogenomic study of the Thoracotremata by Sun et al. (2022), based on a similar dataset, retrieved the cryptochirid H. marsupialis s.l. as closely related to an Ocypodoidea 324 lineage (Camptandriidae/Xenophthalmidae/Dotillidae), albeit with equivocal branch support. 325 Furthermore, a recent phylogenetic study conducted by Kobayashi et al. (2023), based on 82 326 327 thoracotreme mitogenomes, retrieved Cryptochiridae as a sister to the Grapsidae clade. Our 328 phylogenetic reconstruction, with three additional cryptochirid mitogenomes, retrieved 329 Cryptochiroidea as a separate lineage with full support. Tsang et al. (2022) provided suggestions 330 for taxonomic revisions at superfamilial level, and proposed three new superfamilies in addition 331 to the currently recognised four superfamilies. The main clades in our phylogenetic 332 reconstruction (Fig. 2) are largely in agreement with their multi-marker analyses, however, the

Phylomitogenomics confirmed Cryptochiroidea as an independent monophyletic clade, with

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

lack of mitogenomic data for various families (e.g. Glyptograpsidae, Leptograpsodidae, Aphanodactylidae and Heloeciidae) and the insufficient number of representative species for several families (e.g. Plagusiidae, Mictyridae, Camptandriidae and Xenophthalmidae) do not allow us to fully compare our results with their proposed new classification. In addition, insufficient representative species within individual families was also problematic in their analyses (e.g. in Leptograpsodidae, Xenograpsidae and Glyptograpsidae). Future studies working on the classification within Thoracotremata need to contain more species given the large number of undescribed species in some families (Ma et al., 2019), and the relatively small number of thoracotreme species (out of >1300 recent Thoracotremata) included in most phylogenetic reconstructions (Tsang et al., 2014, 2022; Sun et al., 2022; Kobayashi et al., 2023). Symbiosis in Thoracotremata was inferred to have independently evolved three times. The phylogenetic trees ML and BI (Figs. 2, S3) reveal Cryptochiroidea and Pinnotheroidea as distant, independent clades, eliminating the possibility of a single origin of these obligate symbiotic crabs; a question left unanswered in the study by Tsang et al. (2022). Our result of multiple independent origins of symbiosis in the Thoracotremata is in line with Van der Meij and Schubart (2014), Wolfe et al. (2022) and Kobayashi et al. (2023). Moreover, a molecular clock approach employed by Tsang et al. (2014) revealed that pea crabs (Pinnotheridae) evolved a symbiotic lifestyle before gall crabs. Recently, Tsang and Naruse (2023) added two new pea crab families in the Pinnotheroidea: Parapinnixidae and Tetriasidae. Mitogenomic data from these families, as well as the Aphanodactylidae, are currently lacking, but given the distant relationships between the Aphanodactylidae and the Pinnotheroidea, symbiosis has evolved on more than three occasions in the Thoracotremata with cryptochirid, pinnotherid, varunid and aphanodactylid lineages. Parallel evolution of symbiosis is not unique for the Thoracotremata. It

has also been observed in other taxonomic groups (e.g. Gastropoda (Goto et al., 2021); palaemonid shrimps (Horkà et al., 2016); Copepoda (Bernot et al., 2021); etc). The switch from a free-living to a symbiotic lifestyle appears to be relatively common in marine invertebrates (Horká et al., 2016). Sun et al. (2022) included A. inaequipes and T. horvathi (Varunidae) in their dataset, but did not recognise the species as obligate symbionts. Astenognathus inaequipes is symbiotic with holothurians (Lee et al., 2010), whereas T. horvathi associates with the polychaete Loimia medusa (Savigny, 1822) (Sakai, 1976; Otani et al., 1996). Tsang et al. (2022) considered T. horvathi as free-living in their analyses, a decision we disagree with based on Sakai (1976) and Otani et al. (1996). Our phylogenetic reconstruction agrees with their assignment of *Tritodynamia* to the Varunidae (Tsang et al., 2022; DecaNet, 2023).

Gene arrangement

Gene rearrangements occurred frequently in Thoracotremata (Fig. 3). While metazoan mitogenomes are generally conserved, exceptions exist in Mollusca (Serb and Lydeard, 2003), Echinodermata (Perseke et al., 2008), Cnidaria (Kilpert et al., 2012), and Decapoda (Tan et al., 2018; Wang et al., 2021; Kobayashi et al., 2023). Interestingly, Tan et al. (2019) reported that the occurrence of MGO rearrangements, with pairwise comparisons to the ancestral arthropod ground pattern, is unevenly distributed across decapod infraorders. They reported on four MGO patterns within 37 brachyuran species, and 13 MGO patterns among 22 anomuran species. However, the diversity of MGO patterns in Brachyura appears to be underestimated. Here we report ten MGO patterns (pattern eight is a new one) occurring within the Thoracotremata alone. Our pairwise comparisons were based on the ancestral brachyuran gene order (Basso et al., 2017) and not on the ancestral arthropod ground pattern, which differ by one tRNA gene, however this

does not affect the MGO diversity patterns. Comparative analysis confirmed that all obligate
symbionts and 59% of the free-living species have undergone variable MGO rearrangement
events (Fig. 2). Thoracotreme crabs could potentially exhibit a greater diversity of MGO patterns
if more mitogenomes become available. High MGO diversity has also been found in other
marine species, including fishes (Poulsen et al., 2013), bivalves (Yang et al., 2019), echinoderms
(Mu et al., 2018; Galaska et al., 2019) and worms (Gonzalez et al., 2021).
Different MGO patterns were detected in symbiotic gall crabs, pea crabs and varunids.
Tandem-duplication-random-loss took place in gall crabs, resulting in two patterns: the Indo-
Pacific species <i>H. marsupialis</i> s.l. has a unique pattern (pattern seven), and the Atlantic species
K. siderastreicola, O. hypostegus and T. corallicola share the same MGO pattern (pattern eight;
Fig. 2). Despite their shared distribution range, the latter three species are not closely related (var
der Meij and Klaus, 2015; van der Meij and Nieman, 2016). Transposition, reversal and TDRL
events were found in pea crabs, which contributes to them having three MGO patterns (patterns
one, nine and ten). Moreover, a unique pattern (three) was found in <i>A. inaequipes</i> , while <i>T.</i>
horvathi shared an MGO (pattern two) with the other Varunidae. The different mitochondrial
gene rearrangement scenarios are perhaps related to their evolutionary history associating with
different invertebrate hosts. Gall crabs are obligate symbionts of scleractinian corals, pea crabs
associate with a range of invertebrate hosts (but not scleractinian corals), A. inaequipes is
associated with holothurians, whereas <i>T. horvathi</i> associates with polychaetes (Fize and Serène,
1957; Sakai, 1976; Lee et al., 2010; Castro, 2015; Palacios Theil et al., 2016; de Gier and
Becker, 2020). Sun et al. (2022) proposed that mitochondrial gene rearrangements may correlate
with the specialised lifestyles within the Thoracotremata, however, this does not agree with our
results of the MGOs being mostly linked to the various thoracotreme clades (Fig. 2). Moreover,

Haan, 1835. <i>Pinnotheres excussus</i> has been reported as a symbiont of <i>Gafrarium</i> bivalves and <i>P</i> .
pholadis has been reported to live with various bivalve species (Palacios Theil et al., 2016; de
Gier and Becker, 2020; Table S1). Both pea crab species are thus associated with bivalve
molluscs, which questions a possible correlation between not only specialised lifestyles but also
between host association and MGO rearrangements. The reasons contributing to variable MGO
patterns observed in different lineages within the Thoracotremata are still unclear.
Identical gene orders shared by relatively distinct organisms were observed in this study.
Sharing of the same MGO is extremely rare for distinct taxa with a probability of two
mitochondrial genomes sharing identical derived genome organisation being one in 2664
(Dowton et al., 2002; Babbucci et al., 2014). However, Babbucci et al. (2014) observed the ant
Formica fusca Linnaeus, 1758 (Hymenoptera) sharing the same MGO with Ditrysia (e.g.
Parnassius bremeri Bremer, 1864; Aporia crataegi (Linnaeus, 1758); Ochrogaster lunifer
Herrich-Schäffer, 1855), which is the largest clade of Lepidoptera. Here we detected MGO
pattern four in 12 grapsoids (e.g. Parasesarma tripectinis (Shen, 1940), Orisarma sinense (H.
Milne Edwards, 1853), Cristarma eulimene (De Man in Weber, 1897; Fig. 2) and one ocypodoid
crab (Minuca minax (Le Conte, 1855)). Pattern seven of H. marsupialis s.l. is shared by
Scopimera intermedia Balss, 1934, a free-living crab in the Dotillidae (Fig. 2). This result is not
in agreement with Sun et al. (2022), who reported S. intermedia with the ancestor MGO pattern
of Brachyura. The occurrence of distant lineages sharing the same MGO illustrates convergent
evolution in these lineages. In general, species sharing the same MGO belong to the same
clade/group with exception of pattern seven, however, the number of species in this study is
relatively small when compared to the overall number of extant species (>1300) in the

Thoracotremata. Pattern sharing has already been detected in crabs (Wang et al., 2021; Sun et al., 2022; Kobayashi et al., 2023), as well as, for example, in birds (Mindell et al., 1998), insects

(Babbucci et al., 2014) and worms (Weigert et al., 2016).

Gene order information can be used as an informative character when defining groups at various taxonomic levels (Babbucci et al., 2014; Basso et al., 2017). MGOs have been shown to effectively supplement phylogenetic analyses to investigate evolutionary systematics in invertebrates (Boore and Brown 1998; Dowton et al., 2002; Basso et al., 2017). So far gall crabs have two distinct MGO patterns (seven and eight), and pea crabs have three (one, nine and ten; Figs. 2, 3). The symbiotic varunid *A. inaequipes* is the only crab in our dataset with pattern three. The MGOs, in addition to the phylogenetic analysis, suggests that the obligate symbionts in the Thoracotremata are only distantly related. Combined with their different host usage this is further evidence that these lineages evolved independently. Adaptive evolution (e.g. by transitioning from a free-living to a symbiotic lifestyle) could promote MGO rearrangements as mitogenomes are more likely to be influenced by evolutionary processes than nuclear genes (Shen et al., 2019; Lau et al., 2021).

Selection analysis

Positive selection can drive mitochondrial genes to better adapt to a symbiotic lifestyle. Previous studies have assigned the positive selection signals detected on animal mitochondrial PCGs to oxygen usage and energy metabolism as all 13 PCGs in a mitogenome are involved in aerobic metabolism (Sun et al., 2018; Shen et al., 2019; Lü et al., 2023). The branch-site model identified multiple amino acid sites in different genes that had experienced positive selection in gall crabs, pea crabs and the two varunids, although the evidence for positive selection in the latter two lineages was comparatively weak. These results suggest that adaptive evolution of mitochondrial

genes has played a key role in the different energy cost of symbionts. In addition, the free-ratio model detected that the ω ratios for nine PCGs were higher in symbiotic species than in free-living species. Notably, *atp6*, *cob* and *nad5* exhibited significantly higher ratios in symbiotic species than in free-living ones. Perhaps symbiotic species have accumulated more non-synonymous mutations, resulting in (likely) advantageous amino acid changes to facilitate adaptation to their symbiotic lifestyle. In a diverse range of taxa, adaptations to different lifestyles were studied, e.g. flying vs flightless in birds and insects, deep vs shallow habitats in fish, high vs low altitudes in grasshoppers and mud-dwelling vs terrestrial habitats in mud shrimps (Mitterboeck et al., 2017; Wang et al., 2017; Li et al., 2018; Sun et al., 2018; Shen et al., 2019). Our study is the first one to compare ω ratios taking into account the evolutionary lifestyle patterns of symbiotic and free-living species in Thoracotremata, and the importance of mitochondrial genes in shaping the evolution of symbiotic associations.

Detected positive selection scenarios in symbiotic crabs may be caused by differences in reproduction, body size, mobility (or a combination of factors) compared with free-living species. Several factors could influence the oxygen or energy usage. Cryptochiridae and Pinnotheridae have a very high reproductive investment when compared to their free-living counterparts (e.g. Hines, 1992; Hartnoll, 2006; Bähr et al., 2021). Moreover, symbiotic crabs live associated with an invertebrate host, resulting in little movement during the adult stage (mostly in females). The process of settlement as a megalopa, however, involves swimming or crawling to reach a suitable location on the host organism, which requires high energy expenditure. At the same time, certain symbiont species might need to expend energy to overcome host defences, such as the physical barrier on the surface of the host (Liu et al., 2016). The positive selection

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

observed in the mitogenome of the symbiotic crabs could potentially be attributed to their unique ecological and physiological characteristics compared to their free-living counterparts.

Conclusions

Cryptochiroidea, Pinnotheroidea and the varunids A. inaequipes and T. horvathi where retrieved in three separate lineages in our phylogenetic reconstruction, thus based on our results symbiosis independently evolved at least three times in the Thoracotremata. The recent inclusion of two additional pea crab families in the Pinnotheroidea and the recent elevation of Aphanodactyloidea to superfamily level highlights the need for more (mitogenomic) data to further clarify their positions in the Thoracotremata, however, given the distant relationship between the Aphanodactyloidea and Pinnotheroidea, symbiosis likely evolved at least four times in the Thoracotremata (Tsang et al., 2022; Tsang and Naruse, 2023). Furthermore, our gene arrangement analysis (Figs. 2, 3) shows how, in general, the MGO pattern is stable between clades, highlighting the potential usefulness of MGOs in phylogenetic studies. Lastly, our selection analysis revealed strong evidence for positive selection in gall crabs but weak evidence in both pea crabs and symbiotic varunids (A. inaequipes and T. horvathi). Currently little is known about the exact role and function of these genes, although they are potentially linked to aerobic metabolism. Further research is needed to explore the possible link between mobility, reproduction, body size or other factors that are at play in these positive selection scenarios.

Acknowledgements

We are grateful to Charlotte Dromard (Université des Antilles) and Mark Vermeij (CARMABI) for their support. We also thank the Center for Information Technology (CIT) of the University

491 of Groningen for their support with the Peregrine high performance computing cluster, and Shane Ahyong (Australian Museum) for providing background information on *Tritodynamia* 492 horvathi. We thank Emma Palacios Theil and two anonymous reviewers for their constructive 493 494 comments that helped improve an earlier version of this manuscript. References 495 Ahyong ST. 2020. Resolution of the identity of *Pinnotheres latipes* Hombron & Jacquinot, 1846 496 and description of a new species of *Viridotheres* Manning, 1996 (Decapoda: Brachyura: 497 498 Pinnotheridae): two symbionts of bivalve molluscs. The Journal of Crustacean Biology 40:879-886. https://doi.org/10.1093/jcbiol/ruaa059. 499 500 Babbucci M, Basso A, Scupola A, Patarnello T, Negrisolo E. 2014. Is it an ant or a butterfly? Convergent evolution in the mitochondrial gene order of Hymenoptera and Lepidoptera. 501 Genome biology and evolution 6:3326-3343. https://doi.org/10.1093/gbe/evu265. 502 503 Bähr S, Johnson ML, Berumen ML, Hardenstine RS, Rich WA, van der Meij SET. 2021. 504 Morphology and reproduction in the *Hapalocarcinus marsupialis* Stimpson, 1859 species complex (Decapoda: Brachyura: Cryptochiridae). Journal of Crustacean Biology 505 506 41:ruab052. https://doi.org/10.1093/jcbiol/ruab052. 507 Basso A, Babbucci M, Pauletto M, Riginella E, Patarnello T, Negrisolo E. 2017. The highly rearranged mitochondrial genomes of the crabs Maja crispata and Maja squinado 508 509 (Majidae) and gene order evolution in Brachyura. Scientific Reports 7:1-17. 510 https://doi.org/10.1038/s41598-017-04168-9. Bernot JP, Boxshall GA, Crandall KA. 2021. A synthesis tree of the Copepoda: integrating 511 512 phylogenetic and taxonomic data reveals multiple origins of parasitism. *PeerJ* 9:e12034. 513 https://doi.org/10.7717/peerj.12034.

514	Bernt M, Donath A, Junling F, Externorink F, Florentz C, Fritzsch G, Putz J, Middendorf M,
515	Stadler PF. 2013. MITOS: improved de novo metazoan mitochondrial genome
516	annotation. Molecular Phylogenetics and Evolution 69:313-319.
517	https://doi.org/10.1016/j.ympev.2012.08.023.
518	Bernt M, Merkle D, Ramsch K, Fritzsch G, Perseke M, Bernhard D, Schlegel M, Stadler PF,
519	Middendorf M. 2007. CREx: inferring genomic rearrangements based on common
520	intervals. Bioinformatics 23:2957-2958. https://doi.org/10.1093/bioinformatics/btm468.
521	Boore JL, Brown WM. 1998. Big trees from little genomes: mitochondrial gene order as a
522	phylogenetic tool. Current opinion in genetics & development 8:668-674.
523	https://doi.org/10.1016/S0959-437X(98)80035-X.
524	Castro P. 2015. Symbiotic Brachyura, pp. 543-581 (Chapter 71-10). In, P. Castro, P. Davie, D.
525	Guinot, F. R. Schram & J. C. von Vaupel Klein (eds.), Decapoda: Brachyura, Treatise on
526	Zoology – Anatomy, Taxonomy, Biology, vol. 9C-I, Brill, Leiden and Boston. 543-581.
527	https://doi.org/10.1163/9789004190832_012.
528	Chen J, Xing Y, Yao W, Zhang C, Zhang Z, Jiang G, Ding Z. 2018. Characterization of four new
529	mitogenomes from Ocypodoidea & Grapsoidea, and phylomitogenomic insights into
530	thoracotreme evolution. <i>Gene</i> 675:27-35. https://doi.org/10.1016/j.gene.2018.06.088.
531	Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor.
532	Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560.
533	Chen Z, Ma S, Qin G, Qu M, Zhang B, Lin Q. 2022. Strategy of micro-environmental adaptation
534	to cold seep among different brittle stars' colonization. Frontiers in Ecology and
535	Evolution:1121. https://doi.org/10.3389/fevo.2022.1027139.
536	Chow LH, Ahyong ST, Lam YF, Naruse T, Ng PK, Tsang LM. 2023. Shift in symbiotic lifestyle

537	as the major process shaping the Evolution of pea crabs (Decapoda: Brachyura:
538	Pinnotheroidea). Preprint. Available at SSRN 4383996.
539	http://dx.doi.org/10.2139/ssrn.4383996.
540	Cucini C, Leo C, Iannotti N, Boschi S, Brunetti C, Pons J, Fanciulli PP, Frati F, Carapelli A,
541	Nardi F. 2021. EZmito: a simple and fast tool for multiple mitogenome analyses.
542	Mitochondrial DNA Part B 6:1101-1109.
543	https://doi.org/10.1080/23802359.2021.1899865.
544	de Gier W, Becker, C. 2020. A review of the ecomorphology of pinnotherine pea crabs
545	(Brachyura: Pinnotheridae), with an updated list of symbiont-host associations. Diversity
546	12:431. https://doi.org/10.3390/d12110431.
547	DecaNet eds. 2023. DecaNet. Accessed at https://www.decanet.info on 24 July 2023
548	https://doi.org/10.14284/600.
549	Dowton M, Castro LR, Austin AD. 2002. Mitochondrial gene rearrangements as phylogenetic
550	characters in the invertebrates: the examination of genome 'morphology'. <i>Invertebrate</i>
551	Systematics 16:345-356. https://doi.org/10.1071/IS02003.
552	Fize A, Serène R. 1957. Les Hapalocarcinidés du Viet-Nam. Archives du Museum national
553	d'Histoire naturelle, Paris, Sèptieme Série. 5:i-xiii + 1–202, pls. I–XVIII.
554	Galaska MP, Li Y, Kocot KM, Mahon AR, Halanych KM. 2019. Conservation of mitochondria
555	genome arrangements in brittle stars (Echinodermata, Ophiuroidea). Molecular Biology
556	and Evolution 130:115–120. https://doi.org/10.1016/j.ympev.2018.10.002.
557	Gissi C, Iannelli F, Pesole G. 2008. Evolution of the mitochondrial genome of Metazoa as
558	exemplified by comparison of congeneric species. <i>Heredity</i> 101:301–320.
559	https://doi.org/10.1038/hdy.2008.62.

560	Gonzalez BC, Martínez A, Worsaae K, Osborn KJ. 2021. Morphological convergence and
561	adaptation in cave and pelagic scale worms (Polynoidae, Annelida). Scientific Reports
562	11: 10718. https://doi.org/10.1038/s41598-021-89459-y.
563	Goto R, Takano T, Eernisse DJ, Kato M, Kano Y. 2021. Snails riding mantis shrimps:
564	Ectoparasites evolved from ancestors living as commensals on the host's burrow wall.
565	Molecular Phylogenetics and Evolution 163:107122.
566	https://doi.org/10.1016/j.ympev.2021.107122.
567	Guinot D. 1978. Principes d'une classification évolutive des crustacés décapodes brachyoures.
568	Bulletin Biologique de le France et de le Belgique 112:211-292.
569	Guinot D. 1979. Données nouvelles sur la morphologie, la phylogenèse et la taxonomie des
570	Crustacés Décapodes Brachyoures. Mémoires du Muséum National d'Histoire Naturelle,
571	Paris, Série A, Zoologie.112:1–354.
572	Hartnoll RG. 2006. Reproductive investment in Brachyura. <i>Hydrobiologia</i> 557:31–40.
573	https://doi.org/10.1007/s10750-005-9305-6.
574	Hines AH. 1992. Constraint on reproductive output in brachyuran crabs: pinnotherids test the
575	rule. American Zoologist 32:503-511. https://doi.org/10.1093/icb/32.3.503.
576	Horká I, De Grave S, Fransen CH, Petrusek A, Ďuriš Z. 2016. Multiple host switching events
577	shape the evolution of symbiotic palaemonid shrimps (Crustacea: Decapoda). Scientific
578	Reports 6:1-13. https://doi.org/10.1038/srep26486.
579	Hultgren K, Foxx C, and Palacios Theil E. 2022. Host-associated morphological convergence in
580	symbiotic pea crabs. Evolutionary Ecology 36:273-286. https://doi.org/10.1007/s10682-
581	022-10153-0.

Biometrika 76:297–307. https://doi.org/10.1093/biomet/76.2.297.
Jin JJ, Yu WB, Yang JB, Song Y, DePamphilis CW, Yi TS, Li DZ. 2020. GetOrganelle: a fast
and versatile toolkit for accurate de novo assembly of organelle genomes. Genome
biology 21:1–31. https://doi.org/10.1186/s13059-020-02154-5.
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7:
improvements in performance and usability. Molecular Biology and Evolution 30: 772-
780. https://doi.org/10.1093/molbev/mst010.
Kerpedjiev P, Hammer S, Hofacker IL. 2015. Forna (force-directed RNA): Simple and effective
online RNA secondary structure diagrams. <i>Bioinformatics</i> 31:3377–3379.
https://doi.org/10.1093/bioinformatics/btv372.
Ki JS, Dahms HU, Hwang JS, Lee JS. 2009. The complete mitogenome of the hydrothermal vent
crab Xenograpsus testudinatus (Decapoda, Brachyura) and comparison with brachyuran
crabs. Comparative Biochemistry and Physiology. Part D: Genomics and Proteomics 4:
290–299. https://doi.org/10.1016/j.cbd.2009.07.002.
Kilpert F, Held C, Podsiadlowski L. 2012. Multiple rearrangements in mitochondrial genomes of
Isopoda and phylogenetic implications. Molecular Phylogenetics and Evolution 64: 106-
117. https://doi.org/10.1016/j.ympev.2012.03.013.
Kobayashi G, Itoh H, Nakajima N. 2023. Molecular phylogeny of thoracotreme crabs including
nine newly determined mitochondrial genomes. Zoological Science 40:224-234.
https://doi.org/10.2108/zs220063.
Kropp RK. 1990. Revision of the genera of gall crabs (Crustacea: Cryptochiridae) occurring in
the Pacific Ocean. http://hdl.handle.net/10125/1293.

605	Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary
606	genetics analysis across computing platforms. Molecular Biology and Evolution 35:
607	1547. https://doi.org/10.1093/molbev/msy096.
608	Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. 2017. PartitionFinder 2: new
609	methods for selecting partitioned models of evolution for molecular and morphological
610	phylogenetic analyses. Molecular Biology and Evolution 34:772-773.
611	https://doi.org/10.1093/molbev/msw260.
612	Lau NS, Sam KK, Ahmad AB, Siti KA, Ahmad Zafir AW, Shu-Chien AC. 2021. Gene
613	arrangement and adaptive evolution in the mitochondrial genomes of terrestrial sesarmid
614	crabs Geosesarma faustum and Geosesarma penangensis. Frontiers in Ecology and
615	Evolution:850. https://doi.org/10.3389/fevo.2021.778570.
616	Lee SH, Lee KH, Ko HS. 2010. First record of holothurian symbiotic crab Asthenognathus
617	inaequipes (Decapoda: Brachyura: Varunidae) from Korea. Animal Systematics,
618	Evolution and Diversity 26:337-339. https://doi.org/10.5635/KJSZ.2010.26.3.337.
619	Li XD, Jiang G-F, Yan LY, Li R, Mu Y, Deng WA. 2018. Positive selection drove the adaptation
620	of mitochondrial genes to the demands of flight and high-altitude environments in
621	grasshoppers. Frontiers in Genetics 9:605. https://doi.org/10.3389/fgene.2018.00605.
622	Liu JCW, Høeg JT, Chan BK. 2016. How do coral barnacles start their life in their hosts?
623	Biology Letters 12(6):20160124. https://doi.org/10.1098/rsbl.2016.0124.
624	Lü Z, Liu Y, Zhao S, Fang J, Zhu K, Liu J, Gong L, Liu L, Liu B. 2023. Amblyopinae
625	Mitogenomes Provide Novel Insights into the Paraphyletic Origin of Their Adaptation to
626	Mudflat Habitats. International Journal of Molecular Sciences 24:4362.
627	https://doi.org/10.3390/ijms24054362.

628	Ma KY, Qin J, Lin C-W, Chan T-Y, Ng PK, Chu KH, Tsang LM. 2019. Phylogenomic analyses
629	of brachyuran crabs support early divergence of primary freshwater crabs. Molecular
630	Phylogenetics and Evolution 135:62-66. https://doi.org/10.1016/j.ympev.2019.02.001.
631	Mindell DP, Sorenson MD, Dimcheff DE. 1998. Multiple independent origins of mitochondrial
632	gene order in birds. Proceedings of the National Academy of Sciences 95:10693-10697.
633	https://doi.org/10.1073/pnas.95.18.10693.
634	Minh BQ, Nguyen MAT, von Haeseler A. 2013. Ultrafast Approximation for Phylogenetic
635	Bootstrap. Molecular Biology and Evolution 30:1188-1195.
636	https://doi.org/10.1093/molbev/mst024.
637	Mitterboeck TF, Liu S, Adamowicz SJ, Fu J, Zhang R, Song W, Meusemann K, Zhou X. 2017.
638	Positive and relaxed selection associated with flight evolution and loss in insect
639	transcriptomes. <i>GigaScience</i> 6:gix073. https://doi.org/10.1093/gigascience/gix073.
640	Mu W, Liu J, Zhang H. 2018. Complete mitochondrial genome of Benthodytes marianensis
641	(Holothuroidea: Elasipodida: Psychropotidae): Insight into deep sea adaptation in the sea
642	cucumber. PLoS One 13:e0208051. https://doi.org/10.1371/journal.pone.0208051.
643	Ng PK, Rahayu DL. 2022. A new species of pea crab of the genus <i>Indopinnixa</i> Manning &
644	Morton, 1987 (Decapoda, Brachyura, Pinnotheridae) from Flores in eastern Indonesia,
645	with a key to the genus. Crustaceana, 95(8-9): 1011-1020.
646	https://doi.org/10.1163/15685403-bja10246.
647	Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective
648	stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology
649	and Evolution 32:268–274. https://doi.org/10.1093/molbev/msu300.
650	Otani T, Takahashi T, Matsuura S. 1996. Growth and breeding of the swimming pea crab

651	Tritodynamia horvathi reared in the laboratory. Fisheries science 62:670-674.
652	https://doi.org/10.2331/fishsci.62.670.
653	Palacios Theil E, Cuesta JA, Felder DL. 2016. Molecular evidence for non-monophyly of the
654	pinnotheroid crabs (Crustacea: Brachyura: Pinnotheroidea), warranting taxonomic
655	reappraisal. Invertebrate Systematics 30:1-27. https://doi.org/10.1071/IS15023.
656	Perseke M, Fritzsch G, Ramsch K, Bernt M, Merkle D, Middendorf M, Bernhard D, Stadler PF,
657	Schlegel M. 2008. Evolution of mitochondrial gene orders in echinoderms. <i>Molecular</i>
658	Phylogenetics and Evolution 47:855-864. https://doi.org/10.1016/j.ympev.2007.11.034.
659	Poore GC, Ahyong ST. 2023. Marine Decapod Crustacea: A Guide to Families and Genera of
660	the World: CSIRO PUBLISHING. CRC Press, 916 pp.
661	Poulsen JY, Byrkjedal I, Willassen E, Rees D, Takeshima H, Satoh TP, Shinohara G, Nishida M
662	Miya M. 2013. Mitogenomic sequences and evidence from unique gene rearrangements
663	corroborate evolutionary relationships of myctophiformes (Neoteleostei). BMC
664	Evolutionary Biology 13:1–22. https://doi.org/10.1186/1471-2148-13-111.
665	R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for
666	Statistical Computing, Vienna, Austria.
667	Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L,
668	Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic
669	inference and model choice across a large model space. Systematic Biology 61:539-542.
670	https://doi.org/10.1093/sysbio/sys029.
671	Sakai T. 1976. Crabs of Japan and the Adjacent Seas. Vols. 1.–3. Kodansha Ltd, Tokyo, English
672	text: xxix + 773 pp., Japanese text: 461 pp., plate volume: 16 pp., 251 pls.
673	Schubart CD, Cannicci S, Vannini M, Fratini S. 2006. Molecular phylogeny of grapsoid crabs

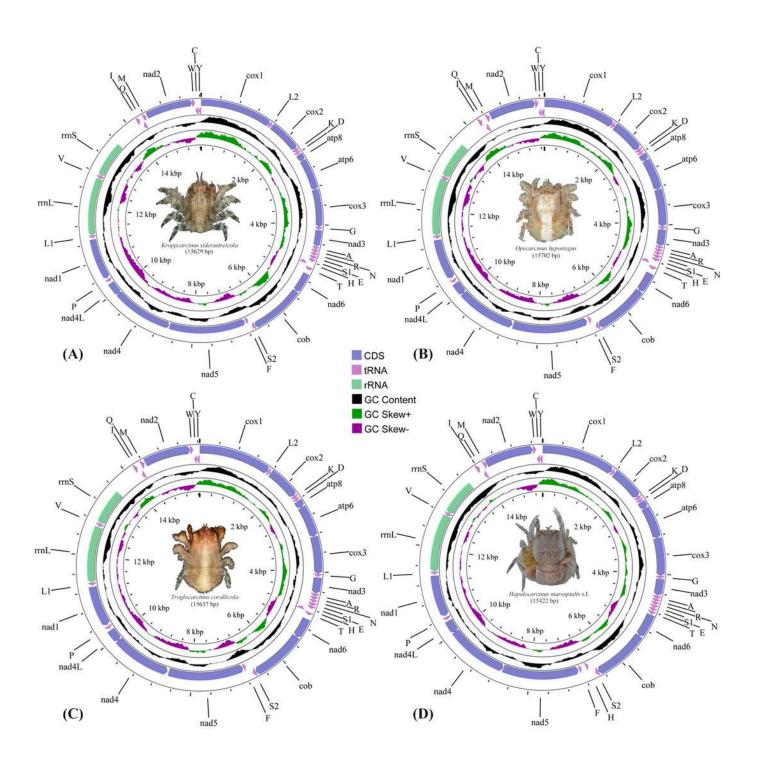
674	(Decapoda, Brachyura) and allies based on two mitochondrial genes and a proposal for
675	refraining from current superfamily classification. Journal of Zoological Systematics
676	Evolutionary Research 44:193-199. https://doi.org/10.1111/j.1439-0469.2006.00354.x.
677	Serb, JM, Lydeard C. 2003. Complete mtDNA sequence of the North American freshwater
678	mussel, Lampsilis ornata (Unionidae): an examination of the evolution and phylogenetic
679	utility of mitochondrial genome organization in Bivalvia (Mollusca). Molecular Biology
680	and Evolution 20:1854–1866. https://doi.org/10.1093/molbev/msg218.
681	Shen X, Pu Z, Chen X, Murphy RW, Shen Y. 2019. Convergent evolution of mitochondrial
682	genes in deep-sea fishes. Frontiers in Genetics 10:925.
683	https://doi.org/10.3389/fgene.2019.00925.
684	Stothard P. 2000. The sequence manipulation suite: JavaScript programs for analyzing and
685	formatting protein and DNA sequences. Biotechniques 28:1102–1104.
686	https://doi.org/10.2144/00286ir01.
687	Sun S, Hui M, Wang MX, Sha ZL. 2018. The complete mitochondrial genome of the
688	alvinocaridid shrimp Shinkaicaris leurokolos (Decapoda, Caridea): Insight into the
689	mitochondrial genetic basis of deep-sea hydrothermal vent adaptation in the shrimp.
690	Comparative Biochemistry and Physiology. Part D: Genomics and Proteomics 25: 42–
691	52. https://doi.org/10.1016/j.cbd.2017.11.002.
692	Sun S, Jiang W, Yuan Z, Sha Z. 2022. Mitogenomes provide insights into the evolution of
693	Thoracotremata (Brachyura: Eubrachyura). Frontiers in Marine Science 9:483.
694	https://doi.org/10.3389/fmars.2022.848203.
695	Suyama M, Torrents D, Bork P. 2006. PAL2NAL: robust conversion of protein sequence
696	alignments into the corresponding codon alignments. Nucleic Acids Research 34:W609-

W612. https://doi.org/10.1093/nar/gkl315.
Talavera G, Castresana J. 2007. Improvement of Phylogenies after Removing Divergent and
Ambiguously Aligned Blocks from Protein Sequence Alignments. Systematic Biology
56:564-577. https://doi.org/10.1080/10635150701472164.
Tan MH, Gan HM, Lee YP, Austin CM. 2016. The complete mitogenome of purple mottled
shore crab Cyclograpsus granulosus H. Milne-Edwards, 1853 (Crustacea: Decapoda:
Grapsoidea). Mitochondrial DNA Part A 27:3981-3982.
https://doi.org/10.3109/19401736.2014.989514.
Tan MH, Gan HM, Lee YP, Bracken-Grissom H, Chan T-Y, Miller AD, Austin CM. 2019.
Comparative mitogenomics of the Decapoda reveals evolutionary heterogeneity in
architecture and composition. Scientific Reports 9:1-16. https://doi.org/10.1038/s41598-
019-47145-0.
Tan MH, Gan HM, Lee YP, Linton S, Grandjean F, Bartholomei-Santos ML, Miller AD, Austin
CM. 2018. ORDER within the chaos: Insights into phylogenetic relationships within the
Anomura (Crustacea: Decapoda) from mitochondrial sequences and gene order
rearrangements. Molecular Phylogenetics and Evolution 127:320-331.
https://doi.org/10.1016/j.ympev.2018.05.015.
Tsang C, Schubart CD, Hou Chu K, K. L. Ng P, Ming Tsang L. 2022. Molecular phylogeny of
Thoracotremata crabs (Decapoda, Brachyura): toward adopting monophyletic
superfamilies, invasion history into terrestrial habitats and multiple origins of symbiosis.
Molecular Phylogenetics and Evolution:107596.
https://doi.org/10.1016/j.ympev.2022.107596.

' 19	Tsang LM, Ahyong ST, Shih H-T, Ng PKL. 2018. Further polyphyly of pinnotheroid crabs: the
'20	molecular phylogenetic position of the polychaete-associated Aphanodactylidae.
'21	Invertebrate Systematics 32:92-99. https://doi.org/10.1071/IS17038.
722	Tsang LM, Naruse T. 2023. Recognition of Parapinnixidae Števčić, 2005, and Tetriasidae fam.
23	nov. in Pinnotheroidea De Haan, 1833 (Crustacea: Brachyura: Thoracotremata). Zootaxa
7 24	5249:540–558. https://doi.org/10.11646/zootaxa.5249.5.2.
25	Tsang LM, Schubart CD, Ahyong ST, Lai JCY, Au EYC, Chan T-Y, Ng PKL, Chu KH. 2014.
7 26	Evolutionary History of True Crabs (Crustacea: Decapoda: Brachyura) and the Origin of
27	Freshwater Crabs. Molecular Biology and Evolution 31:1173-1187.
7 28	https://doi.org/10.1093/molbev/msu068.
'29	van der Meij SET, Klaus S. 2015. Evolutionary diversification of coral-dwelling gall crabs
7 30	(Cryptochiridae). PhD thesis, Naturalis Biodiversity Center, Faculty of Science, Leiden
'31	University.
732	van der Meij SET, Nieman AM. 2016. Old and new DNA unweave the phylogenetic position of
733	the eastern Atlantic gall crab Detocarcinus balssi (Monod, 1956) (Decapoda:
' 34	Cryptochiridae). Journal of Zoological Systematics Evolutionary Research 54:189-196.
'35	https://doi.org/10.1111/jzs.12130.
7 36	van der Meij SET, Schubart CD. 2014. Monophyly and phylogenetic origin of the gall crab
737	family Cryptochiridae (Decapoda: Brachyura). Invertebrate Systematics 28:491–500.
738	https://doi.org/10.1071/IS13064.
' 39	Von Sternberg R, Cumberlidge N. 2001. On the heterotreme-thoracotreme distinction in the
' 40	Eubrachyura de Saint Laurent, 1980 (Decapoda, Brachyura). Crustaceana 74:321-338.
' 41	https://doi.org/10.1163/156854001300104417.

742	Wang Q, Tang D, Guo H, Wang J, Xu X, Wang Z. 2020. Comparative mitochondrial genomic
743	analysis of Macrophthalmus pacificus and insights into the phylogeny of the
744	Ocypodoidea & Grapsoidea. Genomics 112:82-91.
745	https://doi.org/10.1016/j.ygeno.2019.12.012.
746	Wang Q, Wang J, Wu Q, Xu X, Wang P, Wang Z. 2021. Insights into the evolution of Brachyur
747	(Crustacea: Decapoda) from mitochondrial sequences and gene order rearrangements.
748	International Journal of Biological Macromolecules 170:717-727.
749	https://doi.org/10.1016/j.ijbiomac.2020.12.210.
750	Wang Z, Shi X, Sun L, Bai Y, Zhang D, Tang B. 2017. Evolution of mitochondrial energy
751	metabolism genes associated with hydrothermal vent adaption of Alvinocaridid shrimps.
752	Genes & Genomics 39:1367-1376. https://doi.org/10.1007/s13258-017-0600-1.
753	Weigert A, Golombek A, Gerth M, Schwarz F, Struck TH, Bleidorn C. 2016. Evolution of
754	mitochondrial gene order in Annelida. Molecular Phylogenetics and Evolution 94:196-
755	206. https://doi.org/10.1016/j.ympev.2015.08.008.
756	Wetzer R, Martin JW, Boyce SL. 2009. Evolutionary origin of the gall crabs (family
757	Cryptochiridae) based on 16S rDNA sequence data. Decapod Crustacean Phylogenetics
758	Crustacean Issues 18:475-490.
759	Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
760	ISBN 978-3-319-24277-4. https://ggplot2.tidyverse.org.
761	Wolfe JM, Ballou L, Luque J, Watson-Zink VM, Ahyong ST, Barido-Sottani J, Chan TY, Chu
762	KH, Crandall KA, Daniels SR. 2022. Convergent adaptation of true crabs (Decapoda:
763	Brachyura) to a gradient of terrestrial environments. bioRxiv 2012–2022.
764	https://doi.org/10.1101/2022.12.09.519815.

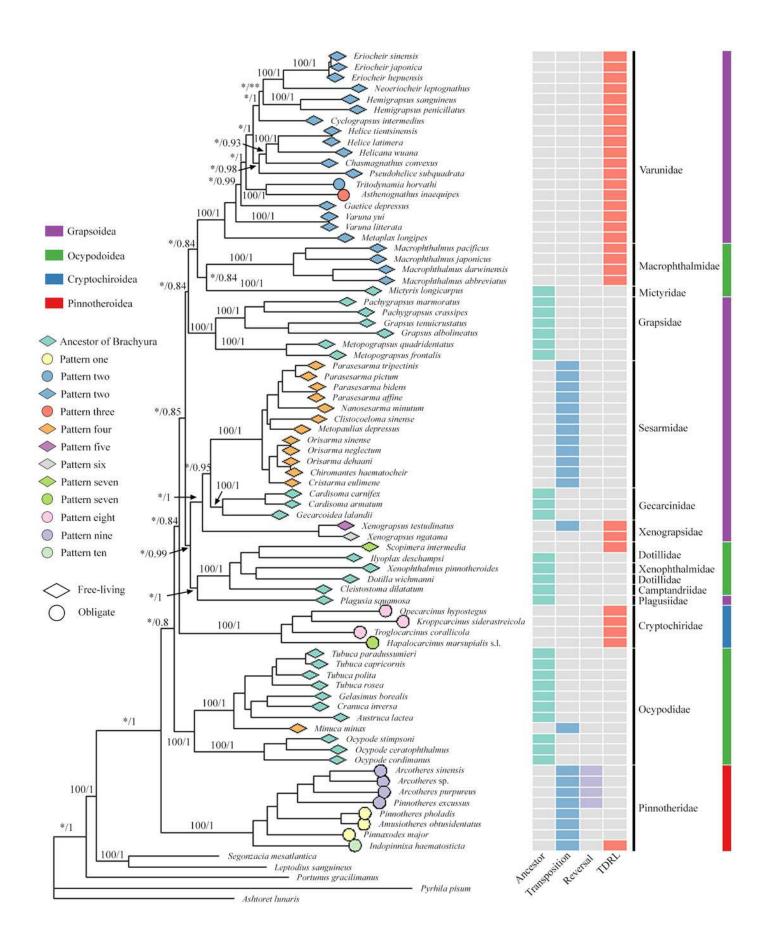
765	Xu T, Bravo H, Paulay G, van der Meij SET. 2022. Diversification and distribution of gall crabs
766	(Brachyura: Cryptochiridae: Opecarcinus) associated with Agariciidae corals. Coral
767	Reefs 41: 699-709. https://doi.org/10.1007/s00338-021-02163-1.
768	Yang M, Gong L, Sui J, Li X. 2019. The complete mitochondrial genome of Calyptogena
769	marissinica (Heterodonta: Veneroida: Vesicomyidae): Insight into the deep-sea adaptive
770	evolution of vesicomyids. PLoS One 14:e0217952.
771	https://doi.org/10.1371/journal.pone.0217952.
772	Yang Z, Wong WS, Nielsen R. 2005. Bayes empirical Bayes inference of amino acid sites under
773	positive selection. Molecular Biology and Evolution 22:1107-1118.
774	https://doi.org/10.1093/molbev/msi097.
775	Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. <i>Molecular Biology and</i>
776	Evolution 24:1586-1591. https://doi.org/10.1093/molbev/msm088.
777	Zhang J, Nielsen R, Yang Z. 2005. Evaluation of an improved branch-site likelihood method for
778	detecting positive selection at the molecular level. Molecular Biology and Evolution
779	22:2472-2479. https://doi.org/10.1093/molbev/msi237.



The mitochondrial genome maps

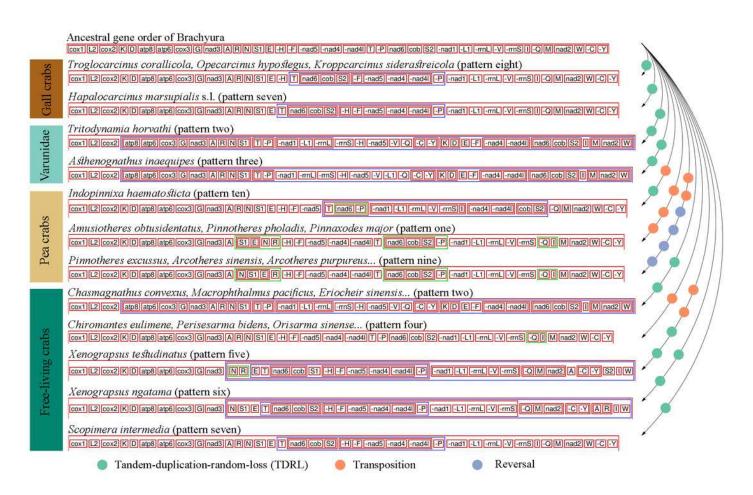
The mitochondrial genome maps of: (A) Kroppcarcinus siderastreicola; (B)

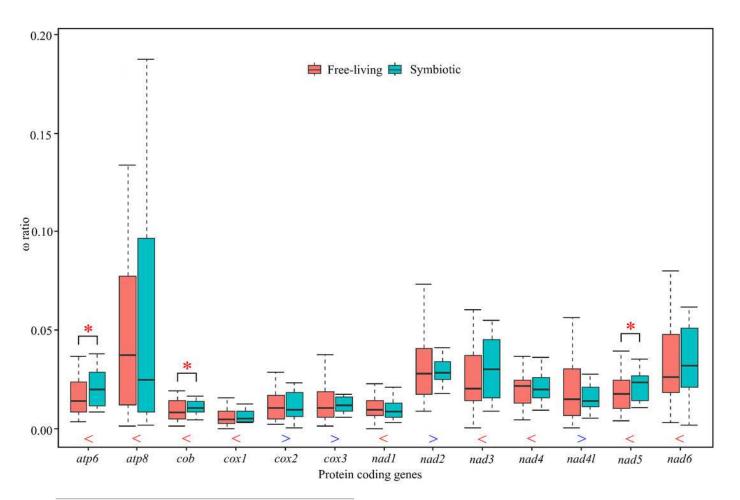
Opecarcinushypostegus; (C) Troglocarcinus corallicola; and (D) Hapalocarcinus marsupialis
s.l. Thenames of the mitochondrial transfer RNA genes can be found in Table S2.



Phylogenetic tree with mitochondrial gene order information and lifestyle of each species.

Maximum likelihood (ML) tree based on concatenated genes including 13 PCGs and two rRNA genes. The branch support values are displayed for the major nodes. Values at the branches refer to Bootstrap (BP) values of ML and Posterior Probability (PP) of BI. The stars on either side of the slash indicate that branch support values are under 95 and 80 respectively (one star represents BP and two stars represent PP). Terminal tips link mitochondrial gene rearrangement patterns (detailed patterns can be found in Figure 3) detected by CREx. The leftmost column of an array of coloured boxes refers to ancestral mitochondrial gene order of Brachyura, and the remaining columns refer to detailed rearrangement events for each terminal species. TDRL is the abbreviation for tandem-duplication-random-loss.




Mitochondrial gene order patterns detected by CREx for gall crabs, pea crabs, two varunids and free-living thoracotreme crabs.

Mitochondrial gene order patterns detected by CREx for gall crabs, pea crabs, symbiotic varunids and free-living thoracotreme crabs. The solid, coloured circles refer to the number and type of gene rearrangement events. The names of mitochondrial transfer RNA genes can be found in Table S2.

Comparison of average ω ratios for 13 individual protein coding genes generated by free-ratio model using CodeML application in PAML between symbiotic and free-living crabs within Thoracotremata.

Comparison of average ω ratios for 13 individual protein coding genes generated by the free-ratio model using CodeML application in PAML between symbiotic and free-living crabs within Thoracotremata. Red stars indicate that the ω ratio in symbiotic species is significantly higher than the one in free-living species (p<0.05). The blue greater-than sign indicates that the average ω ratio in free-living lineages is higher than that in symbiotic lineages, whereas the red less-than sign indicates a lower than average ω ratio. The outliers are hidden for better visualisation.

