
Submitted 23 May 2023
Accepted 11 September 2023
Published 19 October 2023

Corresponding author
Jordan T. Watson, jwat@hawaii.edu

Academic editor
Matteo Zucchetta

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj.16215

Copyright
2023 Watson et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Fishery catch records support machine
learning-based prediction of illegal
fishing off US West Coast
Jordan T. Watson1, Robert Ames2, Brett Holycross2, Jenny Suter2,3,
Kayleigh Somers4, Camille Kohler5 and Brian Corrigan6

1Pacific Islands Ocean Observing System, University of Hawaii at Manoa, Honolulu, HI,
United States of America

2Pacific States Marine Fisheries Commission, Portland, OR, United States of America
3Pacific Islands Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric
Administration, Honolulu, HI, United States of America

4Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric
Administration, Seattle, WA, United States of America

5 neXus Data Solutions, LLC, Anchorage, AK, United States of America
6West Coast Division, Office of Law Enforcement, National Marine Fisheries Service, National Oceanic and
Atmospheric Administration, Seattle, WA, United States of America

ABSTRACT
Illegal, unreported, and unregulated (IUU) fishing is a major problemworldwide, often
made more challenging by a lack of at-sea and shoreside monitoring of commercial
fishery catches. Off the US West Coast, as in many places, a primary concern for
enforcement and management is whether vessels are illegally fishing in locations where
they are not permitted to fish. We explored the use of supervised machine learning
analysis in a partially observed fishery to identify potentially illicit behaviors when
vessels did not have observers on board. We built classification models (random forest
and gradient boosting ensemble tree estimators) using labeled data from nearly 10,000
fishing trips for which we had landing records (i.e., catch data) and observer data. We
identified a set of variables related to catch (e.g., catch weights and species) and delivery
port that could predict, with 97% accuracy, whether vessels fished in state versus federal
waters. Notably, our model performances were robust to inter-annual variability in
the fishery environments during recent anomalously warm years. We applied these
models to nearly 60,000 unobserved landing records and identified more than 500
instances in which vessels may have illegally fished in federal waters. This project was
developed at the request of fisheries enforcement investigators, and now an automated
system analyzes all new unobserved landings records to identify those in need of
additional investigation for potential violations. Similar approaches informed by the
spatial preferences of species landed may support monitoring and enforcement efforts
in any number of partially observed, or even totally unobserved, fisheries globally.

Subjects Fisheries and Fish Science, Coupled Natural and Human Systems, Data Mining and
Machine Learning, Data Science, Natural Resource Management
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INTRODUCTION
Illegal, unreported, and unregulated (IUU) fishing is a growing concern globally (Sumaila
et al., 2020; Long et al., 2020; Hosch & MacFadyen, 2022). The full impacts of IUU fishing
on economies and ecosystems are difficult to quantify, but recent estimates suggest that
millions of metric tons of IUU catches are likely to occur each year, depriving fishers,
communities, and countries of tens of billions of dollars in lost revenue and taxes (Long
et al., 2020; Sumaila et al., 2020). Moreover, the uncertainty in the magnitude of species
removals by IUU fishing (including legal but unreported activities; Song et al., 2020) is
difficult to measure, and impacts on the management and the sustainability of target and
non-target species are challenging to quantify (Sumaila et al., 2020). A common type of
IUU fishing, which has led to large-scale adoption of vessel monitoring systems (VMS)
globally, occurs when fishing is undertaken in prohibited areas or at prohibited times
(Aneiros, 2002). Thus, the ability to resolve spatial and temporal fishing patterns is crucial
to monitoring both legal and IUU fishing.

Commercial fisheries, both legal and illicit, often rely upon the assumption that a
particular species can be persistently harvested from predictable locations. This assumption
is fundamental to spatially-explicit management measures for target and non-target species
(e.g., Hazen et al., 2018;Welch et al., 2020). For example, marine protected areas are ideally
implemented in locations where they are expected to yield the greatest and most persistent
benefit for conservation or restoration of species, biodiversity, or habitats (Pressey et al.,
2007). Similarly, fishers may intentionally avoid areas (or time-area combinations) that are
considered to be hotspots for species with constraining quotas (Abbott, Haynie & Reimer,
2015). While recent work has argued for increasingly dynamic marine spatial planning
for species (Pons et al., 2022), some species, like demersal groundfish species with deeper
habitat preferences (e.g., Jacobson, Brodziak & Rogers, 2001) are likely to exhibit more
persistent home ranges and thus more static fishery distributions.

The predictability of certain species distributions suggests that by examining the
composition of fishers’ catches, researchers can uncover information regarding the
spatially-explicit choices that were made during particular seasons or years. Several
studies have utilized species-specific habitat fidelity to discriminate fishery targeting
strategies or métiers based on catch composition analysis (e.g., Lewy & Vinther, 1994;
He, Bigelow & Boggs, 1997). Langseth and Clover (2021) found that species-specific catches
were sufficiently associated with particular depths in a mixed-species Hawaiian bottomfish
fishery such that, in the absence of depth data, species composition could help to identify
disparate CPUE indices for assessment applications. By extension, the presence of certain
deep water species in a catch could be used to indicate that fishers traveled at least a certain
distance from a particular port (or distance offshore) to reach a preferred habitat or depth.
Thus, the presence of certain species in landing records could be used to infer whether
fishing occurred within management strata or jurisdictions with particular habitat or depth
characteristics.

In the United States, fisheries governance and jurisdictions are typically divided into
two primary spatial strata, federally-managed waters (3 to 200 nmi (∼5.6 km–370.4 km)
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from shore) and waters managed by individual states (within 3 nmi of shore). Off the
US West Coast, some commercial vessels are permitted to target groundfish in either the
farther offshore federal or the nearer shore state waters, while others possess permits to
fish in both state and federal waters. Vessels that fish in federal waters may be required to
have a federal fishing permit and are required to transmit their locations at fixed intervals
via a VMS. Vessels that fish in state waters that do not possess a federal fishing permit
and a VMS are thus prohibited from fishing in the farther offshore federal waters (see
the Supplementary Section for more details on VMS requirements). Because state waters
permits do not require vessels to carry a VMS, it is difficult to assess whether these vessels
are only fishing within the state waters jurisdictions for which they are permitted. While
vessels that are only permitted to fish in state waters typically do not report their vessel
locations, they do report the amounts of each species they catch on any fishing trip. Thus,
if the composition of landed catches could help to identify whether a vessel had fished in
state versus federal waters, it could provide valuable support towards assessing compliance
for spatial fishery regulations.

The motivation for this study was the difficulty of enforcing a VMS regulation that
only applied to a portion of the fishers in this region (ie., those permitted to fish in
federal waters); thus, we sought to determine whether an analytical solution could provide
an alternative to expensive aerial or at-sea monitoring. We tested the hypothesis that
catch data (e.g., species compositions, catch totals, delivery port) reported on groundfish
landing records could predict whether fishing occurred in state versus federal waters. Our
framework relied upon the assumption that certain species would have enough fidelity
to either the shallower nearshore (state waters) habitats or the deeper offshore (federal
waters) habitats that machine learning models could differentiate the catch records from
different locations. We first trained models using labeled data (observed fishing trips) to
discriminate landings records that originated from federal-only versus state-only fishing
trips. Second, we created an operational environment in which newly collected fishing trip
records would be automatically analyzed to predict whether these trips occurred in state
or federal waters. These predictions were delivered to fisheries enforcement investigators
through a customized platform in which flagged fishing records were noted for subsequent
manual review. While the actual operational system is confidential, we describe both the
workflow for the operational system and the conceptual design. These tools could be
generalized and used to identify and investigate potential IUU behaviors in other fisheries
and especially those with partial at-sea monitoring.

MATERIALS AND METHODS
Data
Commercial fishing for groundfish using fixed gear occurs in both state and federal waters
off Oregon and California, and in federal waters off Washington. Retained and sold fish
species are recorded on a state landings record regardless of whether fishing occurred in
federal or state waters. These landing records include information about the vessel that
made the delivery, the weight and price paid for each species/species group, the delivery
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port, the date, and in some cases the general area in which fishing occurred. All of this
information is self-reported by the fishers and dealers. These landings records are required
for all trips; a portion of trips are also documented by on-board fishery observers.

The West Coast Groundfish Observer Program (WCGOP) was established in 2001
and deploys trained field biologists (hereafter called observers) to monitor vessels at-sea
in all commercial fishery sectors that retain or discard groundfish, including the fixed
gear fleets that operate in state and federal waters off Oregon and California, and in
federal waters off Washington. Fixed gear includes, hook and line (e.g., longline, etc.),
pots, traps, pole, and jig gear types. WCGOP selects a stratified, random sample of
fishing trips on which to deploy observers. Observer deployment strata are based on
port groups, with vessels assigned to a port group based on their previous year’s landing
locations (http://www.fisheries.noaa.gov/west-coast/fisheries-observers/overview-observed-
west-coast-fishery-sectors#west-coast-fixed-gear%C2%A0). Annual levels of coverage
range from 3 to 53 percent of landings depending on the fishing method and the year
(e.g., Somers et al., 2021). On-board observers collect and record data including catch
amount and composition, discards, and fishing effort characteristics, such as location and
amount of gear deployment and retrieval.

Data preparation
Landing records, observer data, and other auxiliary fishery-dependent data were
consolidated in the Pacific Fisheries Information Network (PacFIN) centralized data
warehouse. The majority of the data integration, cleaning, and processing was performed
within the PacFIN data warehouse and the analyses were conducted in Python (version
3.9.12), ArcGIS Pro (version 2.5), and ArcMap (version 10.2). We analyzed all landing
records from observed trips between 2002–2019. The records were filtered to include only
landings from fixed gear vessels for which the plurality of the landed weight was groundfish
and to include only species for which the landed weight was greater than 10 kg. This isolated
the landings to the fixed gear fleet and excluded rare species that would not provide value
to the models. The aim was to determine whether the catch composition from landing
records could be used to identify catch from state versus federal waters off Washington,
Oregon, and California.

We used GIS software to identify observed trips where the vessel fished exclusively in
federal waters or exclusively in state waters based on the gear deployment and retrieval
locations. These spatial strata (‘‘federal waters’’ versus ‘‘state waters’’) became the model
labels for each of the landing records linked to observed fishing trips.We excluded observed
trips during which vessels fished in both state and federal waters.

Landing records were pivoted on species/species groups to create a wide dataset which
contained one row for each landing. Thus, each landing record consisted of the label,
weights by species/species groups as columns, and auxiliary information, such as landing
date, delivery port and vessel. Species/species groups not present on a given landing record
were assigned a weight of zero. An additional variable, month-of-year, was extracted from
landing dates to account for potential seasonality or intra-annual drivers of fisher behaviors.
We then split the landing records into training (80%) and testing (20%) datasets for the
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development and evaluation of the models and for variable subset selection. The splits were
stratified by the labels to ensure both the training and testing datasets had the same label
proportions. All numeric variables (e.g., species weights) in the training data were scaled
using min-max normalization and the same transformations were blindly applied to the
testing data to avoid data leakage.

Variable selection and model fitting
We selected random forests and gradient boosting, ensemble tree algorithms, for this study
because they excel at classification tasks (Brieman, 2001) (implemented with the scikit-
learn Python libraries (Buitinck et al., 2013)). Random forests, a bootstrap aggregation
(or bagging) method, emphasizes variance reduction by combining the results of multiple
classifiers trained on different sub-samples of the same dataset (James et al., 2021).Whereas,
gradient boosting tends to reduce both model bias and variance. In boosting, modified
versions of the original data are used to trainmodels sequentially, with eachmodel iteration
attempting to compensate for the failing of its predecessor to minimize training errors
(James et al., 2021). Both model frameworks approach a binary classification problem
by generating a predicted probability. In our case, probabilities of at least 0.5 were
classified as ‘‘Federal waters fishing’’ while probabilities less than 0.5 were classified as
‘‘State waters fishing’’. The proceeding methods are also available in the code supplement
(https://github.com/rames72/ML-to-predict-Illegal-fishing-off-U.S.-west-coast.git).

The two models were first deployed to identify the most relevant variables
(i.e., species/species groups) from the landing records to predict whether fishing occurred
in state or federal waters. The subset of variables was chosen through two strategies,
first using sequential forward selection of the training dataset, and second, a machine
learning technique called ‘‘variable of importances’’ (also known as impurity-based feature
importances), which calculates a score for all the input variables used in the model. The
higher the score, the greater the effect that the variable has on the model predictions. For
this second strategy, we used only the variables that were chosen through the sequential
forward selection process and only data from the training dataset. The stacking of these two
strategies was to reduce the complexity of the models by only using the most consistently
meaningful variables.

Sequential forward selection is a greedy search algorithm that starts with no variables,
and then with each step forward adds one variable at a time until all variables are in the
model (James et al., 2021). At each step, the variable that provides the most improvement
to the classifier performance is added (James et al., 2021). The model accuracies were
evaluated at each step forward using 10-fold cross-validation. After an exhaustive search,
evaluating all the variables within the training dataset, the final selected variables for each
model were those that produced the highest mean accuracy with the lowest standard error
using the fewest number of variables. Selecting the fewest number of meaningful variables
was important for consistent predictions with low variance. The full list of more than 100
candidate variables is included in supplementary code and data.

The variable of importances scoring was performed on the variables chosen by the
sequential forward selection process. The importance of each variable was determined by
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the mean decrease in impurity produced by the variable across all trees in the models.
These scores provide a highly compressed, global insight into the models’ behavior and
reliance on each variable for making predictions (Molnar, 2022). Our goal was to reduce
the selected variables to the most relevant variables for each model, the group of variables
that together provided greater than 98% of the overall score for making predictions. To
calculate the variables of importance scoring, the models were fit to all of the training data,
but only using the variables chosen by the sequential forward selection process.

We again fit both random forests and gradient boosting models to the training dataset to
tune the hyperparameters, using the variables from our subset selection process described
above. This approach used 10-fold cross-validation and a random grid-search to tune
hyperparameters based on the highest mean predictive accuracy score. Models with the
best hyperparameters were fitted one final time to the selected subset of variables from the
training data and then the models were evaluated on the testing data (holdout dataset)
using a confusion matrix, as well as the receiver operating characteristic (ROC) curve and
area under the curve (AUC). A ROC curve illustrates the trade-off between sensitivity and
specificity of a binary classification model. The AUC provides a measure of performance
across all possible classification thresholds and is a numeric measure of model performance
(with an optimal value of 1).

Increasing concerns with fisheries models that rely on species spatial distributions are
range shifts and short-term species responses to extreme environmental conditions, like the
marine heatwaves that occurred off the US West Coast between 2014 and 2019 (e.g., Bond
et al., 2015; Amaya et al., 2020; Weber et al., 2021). To ensure persistence of model efficacy
despite such inter-annual variability, our selected subset of variables was also used to fit
the models whose training data iterated through all but one year, and were tested on the
remaining year. For example, models were trained with data from 2002 - 2018 and tested
on data from 2019, with this procedure repeated for each year as the holdout dataset
(i.e., leave-one-out model validation). As outlined above, training data were scaled using
min-max normalization and the same transformations were blindly applied to the testing
data (individual years). The trained models were fit to each year individually as a holdout.

Operationalization. A recent focus of improved analytical capabilities has emphasized
not onlymethodological and technical improvements, but also the value of operationalizing
data products for greater utility to downstream users (Welch et al., 2019). Such
operationalization delivers automated and accessible data products to less technical
users. Previous work by the PacFIN program created a confidential online management
application that delivers reports to NOAA enforcement investigators through a user-
friendly front end with a PacFIN data warehouse backend. For this project, a new
report was created within the confidential online management application that merged
available information for each of the landing records and appended our model-predicted
probabilities that vessels fished in federal waters without the requisite permits and
mandatory VMS. These model-predicted probabilities were obtained by fitting the trained
models (i.e., pickled models) from the development environment to new unlabeled
(i.e., out-of-sample) landing records in the production environment for years 2017 to
present (Fig. 1). Similar to the model training, the data were first filtered to isolate the
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Figure 1 Conceptual diagram of the Model Development and Operationalized (automated) Project.
Labeled data are used in the development environment to train models, which are saved and used on new
(unlabeled) data in the production environment. Model predictions and outputs from both phases are
combined to support enforcement investigations via an online enforcement application.

Full-size DOI: 10.7717/peerj.16215/fig-1

landings to the fixed gear fleet for which the plurality of the landed weight was groundfish
and to include only species for which the landed weight was greater than 10 kg. Predictive
probabilities of at least 0.5 were classified as federal waters fishing while lower probabilities
were classified as having occurred in state waters. These model-predicted probabilities of
fishing locations could then help enforcement investigators to determine whether records
may require additional manual review.

Enforcement investigators can infer several compliance-related behaviors from our
management application, but the primary focus here is whether vessels without VMS or
federal fishing permits were likely to have fished in federal waters. A record was flagged by
our application if it met two criteria: (1) both of our models predicted that the retained
catch on the landing record originated in federal waters (i.e., probability at least 0.5); and
(2) the random forest and gradient boosting models were in agreement and their predicted
probabilities differed by less than 1.5%. We set this threshold low to force a high degree of
precision among model predictions as an initial condition, but the thresholds for both the
probability of fishing in federal waters (p≥ 0.5) and the agreement between the twomodels
(<1.5%) can be easily adjusted based on input from enforcement analysts. Columns exist
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in the final user report for the predicted probabilities from both models and the difference
between the probabilities for each model. Thus, a user can sort and filter the landing
records based on model predictions and precisions as they see fit.

RESULTS
Variable section and models
There were 9,225 observed trips (26,236 hauls) with 10,630 corresponding landing records
from 2002–2019. These landing records included 113 unique species/species groups as
recorded by the dealers from 703 unique fixed gear vessels in 61 ports along the US West
Coast. We split these landing records into training and testing datasets, resulting in 8,504
(80%) training data with 53% labeled from federal waters and 47% from state waters, and
2,126 (20%) testing data with the same label distributions.

We deployed sequential forward selection that included all the 113 unique species/species
groups found within the training dataset, as well as month-of-year and three engineered
variables. The three engineered variables were, (1) total weight of catches on landing
records, (2) total weight of all species landed per vessel per day, and (3) distance to 202
meter isobath from each delivery port. Through data exploration, we found that the total
weight of catches on landing records were typically greater from federal waters trips than
from state waters trips (Fig. S1). However, data from onboard observers revealed that
vessels sometimes split their catches for a single trip across multiple fish buyers or dealers.
During such split landing records, the individual landing records weights are thus less than
the trip total weight would be, which could make the individual records appear less likely
to have originated from federal waters, especially if none of the dominant species chosen as
model variables were present. To accommodate such complexities, we included a second
engineered variable, the total weight of all species landed per vessel per day (i.e., across
multiple landing records). The distance to 202 m isobath from each delivery port variable
was created because our analysis revealed that sablefish (Anoplopoma fimbria), a deep water
species, was primarily caught in federal waters (96.6% of records with sablefish catches;
Table 1), but there were some exceptions. Along the California coast, there are a few ports
where submarine canyons (e.g., Monterey Canyon) occur in state waters. We estimated
the distance from each port to the nearest sablefish fishing grounds and determined that
95% of observed effort targeting sablefish occurred deeper than 202 m (Fig. S2.). Port
of trip origin was not consistently available, so this new variable, the ‘‘distance from
each delivery port to the 202 m isobath’’, was added to models. This variable controlled
for certain ports to more likely include legal catches of deep water sablefish within state
waters. Month-of-year did not substantially improve model performance, likely because
intra-annual effort distributions were relatively consistent across years (Fig. S3).

The sequential forward selection process produced optimal random forest and gradient
boosting models using a subset of 10 (accuracy score µ= 0.976, SE = 0.000861) and five
(accuracy score µ= 0.973, SE= 0.00129) variables, respectively (Fig. 2). Marginal increases
in accuracy were achieved by adding more variables to the models as seen in Fig. 2, but at
a cost of increasing the complexity of the models.
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Table 1 Numbers of observed landings records within state versus federal waters for the five species identified as most important in our classi-
fication models. Tallies on each row count the number of records with at least 10 kg of a particular species and are independent of other species.

Common name Scientific name Records from
fishing in
federal waters

Records from
fishing in
state waters

Total records
w/presence

Proportion occurring
in federal waters

Black rockfish Sebastes melanops 29 3,235 3,264 0.9%
Cabezon Scorpaenichthys marmoratus 3 1,006 1,009 0.3%
Lingcod Ophiodon elongatus 614 1,851 2,465 24.9%
Sablefish Anoplopoma fimbria 4,723 166 4,889 96.6%
Shortspine thornyhead Sebastolobus alascanus 1,860 133 1,993 93.3%
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Figure 2 Sequential forward selection process for the random forest and gradient boosting models.
The optimal model fit is shown by the vertical dotted lines, 10 and five variables, respectively.

Full-size DOI: 10.7717/peerj.16215/fig-2

We applied the variable of importances strategy to further refine the subset of variables
from the sequential forward selection process to remove any irrelevant variables. This
process yielded a smaller subset of seven variables for the random forest model. Those
seven variables had a combined contribution of 99% of the model predictions. No variables
were removed from the gradient boosting model (Fig. 3).

The fivemost influential variables were the same for bothmodels, though the twomodels
ranked the variable importances in different orders (Fig. 3). The five top variables included
three species, sablefish, shortspine thornyhead (Sebastolobus alascanus), and black rockfish
(Sebastes melanops), and two engineered variables, total weight of all species landed per
vessel per day and distance to 202 m isobath from each delivery port. The three species
had a high degree of fidelity to either state waters or federal waters with little variability,
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Figure 3 Variable of importances plots for the random forest and gradient boosting models based on
the training data.Note that the ranking of variable importances differed between the two models.
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based on a close examination of the observed trips. The gradient boosting model relied
mostly on sablefish, a species primarily caught in deeper federal waters, which accounted
for nearly 70% of the overall importance score, highlighting the model’s reliance on this
species. Meanwhile, the random forest model relied more heavily on a mixture of deep
and shallow water species along with the two engineered variables. Because the two models
ranked these variables in different orders of dependence, suggesting different model fitting
criteria, we retained both models as a method for redundancy and validation.

Initial modeling results yielded higher than expected errors (incorrect attribution of
sablefish catches to federal waters) for eight ports. These eight ports were proximate enough
to deep water that sablefish were more likely to be legally caught within state waters. While
the distance to the 202 m isobath variable likely helped to reduce these errors, it was
insufficient on its own. To adjust for this model bias and mitigate such errors, observed
catches of sablefish in state and federal waters delivered to each of these ports were examined
to determine the distribution of sablefish weights appearing on landing records. From such
distributions, we identified a threshold weight for each port above which it was unlikely for
catches to occur in state waters. As discussed above, the management application flagged
a landing record as a potential violation based on two criteria, except for these eight ports.
In these eight ports, when sablefish were on the landing record, the sablefish weight had
to exceed the threshold value, in addition to the other two criteria, before the landing was
flagged as a potential violation. For example, the port-threshold of sablefish on the landing
record in Moss Landing, California had to exceed 481 kgs (Fig. S4).

The final trained models were evaluated on the testing data. Our diagnostics showed
both models generalized well on the testing data, suggesting the models would also
provide accurate predictions on the unlabeled or out-of-sample data (Table 2, Fig. S5).
The normalized training and testing datasets used for this study are available online
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Table 2 Summary of random forest and gradient boosting classifiers based on the best hyperparame-
ters that were fit to the training data, and generalized to the testing hold- out data.

Model performance Random forest Gradient boosting

Accuracy rate 0.969 0.970
Error rate 0.031 0.030
Precision 0.971 0.971
Recall 0.971 0.973
F1-score 0.971 0.972

Table 3 Summary of the random forest and gradient boosting classifiers based on the subset of chosen variables were fit using a leave-one-out
approach in which all but one year was used to iteratively train models. Rows denote the holdout (test) year for which model performance was
evaluated.

Random forest Gradient boosting

Year Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

2002 0.97 1.00 0.97 0.99 0.97 1.00 0.97 0.99
2003 0.93 0.92 1.00 0.96 0.93 0.92 0.99 0.95
2004 0.95 0.95 0.95 0.95 0.97 0.97 0.96 0.97
2005 0.97 0.98 0.97 0.97 0.97 0.98 0.96 0.97
2006 0.95 0.92 0.95 0.94 0.96 0.93 0.97 0.95
2007 0.96 0.97 0.95 0.96 0.96 0.98 0.95 0.96
2008 0.96 0.96 0.97 0.97 0.96 0.96 0.98 0.97
2009 0.97 0.98 0.97 0.97 0.98 0.98 0.98 0.98
2010 0.97 0.97 0.98 0.98 0.97 0.97 0.99 0.98
2011 0.98 0.98 0.99 0.99 0.98 0.99 0.98 0.99
2012 0.98 0.99 0.96 0.98 0.98 1.00 0.96 0.98
2013 0.96 0.97 0.96 0.96 0.96 0.97 0.96 0.96
2014 0.97 0.97 0.96 0.96 0.97 0.98 0.96 0.97
2015 0.99 0.99 0.98 0.99 0.99 1.00 0.98 0.99
2016 0.98 0.99 0.97 0.98 0.99 1.00 0.98 0.99
2017 0.98 0.98 0.97 0.97 0.98 0.98 0.98 0.98
2018 0.97 0.97 0.98 0.97 0.98 0.97 0.98 0.98
2019 0.96 0.95 0.95 0.95 0.97 0.98 0.94 0.96
Mean 0.97 0.97 0.97 0.97 0.97 0.98 0.97 0.97

(https://github.com/rames72/ML-to-predict-Illegal-fishing-off-U.S.-west-coast.git). Raw
landings records data are confidential and cannot be shared.

Given recent inter-annual environmental variability, such as marine heatwaves, it was
important to ensure thatmodel performance persisted across years. Iterativemodel training
on all but one year demonstrated consistently high model prediction accuracy with each
year (2002–2019) in the hold out (test) dataset (Table 3). The mean accuracy across all
years for random forests and gradient boosting was 0.969 and 0.970, respectively. This
relatively tight distribution of accuracies across years suggests that model performance was
persistent over time, despite variable environmental conditions.
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Ideally, training and test datasets will encompass the same unique feature values (e.g., the
same ports, same fish species) to avoid the potential for biased predictions. Our splitting
of training and test datasets prioritized balancing the numbers of fishing trips for which
we had observed data, and because not all ports had observed trips, not all ports appeared
equally in the training and test datasets. This resulted in 10 unique ports that appeared
only in the training data, three ports that appeared only in the test data, and 48 ports
that appeared in both the training and the test data. Notably however, the port ID itself
was not a model feature; individual port characteristics were incorporated into models
based on their distance to the 202 m isobath. Those distances from port to the 202 m
isobath that were exclusively within either the training or test datasets fell within the range
of distances that were encompassed by values in both data sets. The robustness of our
predictions indicate that any perceived imbalance did not impact model performance.
Our annual leave-one-out model comparisons (Table 3) revealed consistent performance
despite inter-annual variability in training and test data distributions. Additionally, 88%
of records flagged for potential violations were for ports appearing in both the training
and test datasets but there were also flagged records for ports that appeared in only the
test data, suggesting that the model still encapsulated characteristics outside of the unique
records within its training domain and mitigating some concerns for bias.

Operationalization & reporting
Both trained models (random forest and gradient boosting) were applied to 57,401
unobserved (i.e., out-of-sample) landing records from 1,557 unique vessels delivering to
92 ports and 748 dealers in years 2017 to 2023. Similar to model development, only fixed
gear landing records where the plurality of the landed weight was groundfish were used,
and minor species under 10 kgs were excluded. The models agreed on the location of
fishing for 96.6% of the landing records, and the models and post processing yielded 564
potential violations from 143 vessels. Three vessels contributed to 172 (31%) of the 564
potential violations. After accounting for those three vessels, the distribution of flagged
records across vessel sizes was consistent with the distribution of vessel sizes in the fleet.
The mean potential violations (±SD) per vessel was 3.9 (9.38) with a median of 2, and
flagged records were approximately uniformly distributed across months. Approximately
75% of flagged records occurred for ports with deep water (202 m isobath) within about
20 km, though importantly this distinction does not necessarily mean 20 km offshore (e.g.,
deep water could occur in state waters but 20 km along shore from port). After controlling
for the three vessels described above, flagged records were spread broadly across ports.

The records flagged as potentially fishing in federal waters represented substantially
greater revenues than typical state waters fishing trips. Confidentiality rules prohibit
in-depth details about the flagged records and vessels but we provide high level summaries
here. The flagged records (N = 564) accounted for slightly more than $2M in revenue (an
average of about $4,000 per trip) while 39,921 state waters records that were not flagged as
potential violations landed about $26M (an average of $658 per trip). Among the flagged
records, sablefish accounted for about 82% of the landed value whereas for the non-flagged
records, sablefish accounted for only 5.3% of landed value. In fact, the total value of
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sablefish in the flagged records exceeded $1.9M whereas the landed value of sablefish in
the nearly 40,000 non-flagged state waters records was only $1.4M. Overall, these flagged
records account for only 1.4% of the number of non-flagged trips but are equivalent to
nearly 9% of the revenue for those trips, demonstrating the disproportionate impact that
the flagged trips could have on the perceived value of the state waters fishery.

While our specific enforcement application is confidential, and thus cannot be shared,
we illustrate the process by which our pickled (saved) models are stored and applied to
new data as they are obtained by PacFIN and entered into the database (Fig. 1). As per
the needs from end users (enforcement investigators), our model routine is automatically
applied to newly submitted landings records once per month, and these data are merged
with vessel attributes and fisher permits. All landings records with a potential violation
are flagged and subsequently appear in a custom web application dashboard for manual
inspection and further investigation by enforcement investigators (Fig. S6).

DISCUSSION
Recent advances in fishery monitoring through technologies like VMS and Automatic
Identification Systems (AIS) have improved the ability to track spatial fishing behaviors
(e.g., Kroodsma et al., 2018), but integrated data approaches are often still necessary to
enforce fishing regulations (Park et al., 2020; Suter et al., 2022) especially as efforts to evade
surveillance are also on the rise (Welch et al., 2022). Even fisheries with complete vessel
surveillance must be monitored to determine compliance with vessel tracking regulations
and some fleets are only partially monitored by vessel tracking systems, just as observer
coverage is often limited to only portions of a fleet’s effort. Such data gaps are often
greatest for smaller vessels or those targeting nearshore species and the approach presented
here could identify bad actors more readily or it may provide smaller vessels with an
opportunity to demonstrate their compliance without additional regulations or onerous
monitoring (Song et al., 2020). In this study, we used a supervised machine learning
approach to analyze data from a group of vessels with partial VMS and partial observer
coverage. We predicted, with consistently greater than 95% accuracy, whether vessels
fished in offshore federal waters or nearshore state waters. Both of our classifier algorithms
(random forests and gradient boosted ensemble tree classifiers) identified sablefish as
the most important variable, followed by total catch weights and the weights of certain
deep or shallow water species. The two models ranked variables in different orders of
importance, leading to a multi-model approach that produces two predictions for each
landing record. We successfully migrated our multi-model spatial-jurisdiction approach
into an operational framework that analyzes new fishing records and appends model
outputs to them, automatically flagging potential violations and expediting the review
of large volumes of new fishery landings by enforcement analysts through a confidential
online reporting tool.

Model interpretation
Machine learning models often lack interpretability (Rudin, 2019). We have thus tried to
explain our model inference via two relatively simple illustrations (Figs. 2 and 3). The
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former of these two figures illustrates the interplay between predictive accuracy and the
number of variables required to minimize prediction errors (note the relative stabilizations
of accuracy and errors in Fig. 2). This approach enabled us to highlight that the prediction
errors stabilized once the top seven variables were included in amodel. Thus, while sablefish
may have been the most important variable in both models (Fig. 3), additional variables
were still necessary to achieve our optimization of prediction accuracies and standard
errors.

Our application of these models to predict state versus federal waters fishing revealed
intuitive variables of importance that are consistent with operational fishing characteristics
and species distributions, though also driven by some inevitably complex interactions. The
five species whose presence drove model performance were caught almost exclusively in
either federal or state waters (Table 1). For example, out of 4,889 landing records with
sablefish from observed trips that were designated as either federal or state waters, 96.6%
fished only in federal waters. Meanwhile, thousands of landing records from observed trips
in federal waters revealed that only 1% (at most) had black rockfish or cabezon. While
simple data explorations may have revealed such persistent habitat or depth preferences for
some species,more complex interactions between certain species distributions and trip-level
catches or the bathymetry around certain ports may have been more difficult to identify
manually or with traditional statistical methods. This is evidenced by the improvements
that the 202 m isobath feature had on model accuracy, especially around certain ports.
These interactions are further evidenced by the two different classification algorithms
ranking variables differently but achieving similar levels of accuracy. Variable importance
plots are not generally as interpretable as coefficient values in traditional statistical models,
but the selection of the same variables across our classification frameworks emphasizes the
ecological significance of our selected variables. Finally, while certain species may be caught
almost exclusively in federal or state waters, it does not necessarily mean that species is
present on all landings records from that region. Thus, it is not surprising that our models
selected multiple species to inform their predictions, even if certain species, like sablefish,
drove the models more than others.

Species catches and weights were not the only important variables selected by the
models. For example, state waters are periodically quite deep (e.g., in Monterey Bay) but
total catch weights in state waters tend to be less than in federal waters. Thus, additional
variables like ‘‘distance to the 202 m isobath’’ and ‘‘total catch weight’’ helped to control for
some port-specific model interactions that might otherwise bias model predictions (e.g.,
if sablefish were legally caught in state waters). Through the operationalized routines we
present here, more complicated species distributions in some ports may lead enforcement
investigators to choose different model prediction thresholds or to place greater scrutiny
on potential violations that are flagged for certain ports, like those with access to deeper
waters nearshore.

Models that seek to characterize fishery spatial distributions in the current era must also
consider how environmental variability may affect species distributions and subsequently,
the fishing activities that target those species. If changes in the environment lead fish
and fishers to occupy different space (Rogers et al., 2019), jurisdictional boundaries may

Watson et al. (2023), PeerJ, DOI 10.7717/peerj.16215 14/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.16215


be increasingly crossed by fleets, fishers may be motivated to fish in new or different
areas (legally or illegally) (Pinsky et al., 2018), and the efficacy of model predictions may
change or diminish. Our study area included a region that has experienced unprecedented
extreme marine heatwave events in recent years (e.g., Jacox et al., 2018) that have driven
species redistributions (Welch et al., 2023). For some deep water demersal species like
sablefish, such extreme events may be less likely to affect the behaviors of adult fish in
ways that alter fishing locations in the short term, but these dynamic conditions may
impact recruitment for some species (e.g., Tolimieri et al., 2018) and subsequently, lead
to longer term impacts on species distributions (Shotwell et al., 2022). Meanwhile, for
nearshore species (e.g., those found primarily in state waters), temperature-mediated
shifts to deeper waters (typically farther offshore) have been documented (Dulvy et al.,
2008), though the interactions among temperature, oxygen, stratification, and other
oceanographic factors may complicate species- and region-specific responses (Keller et
al., 2015). Given such concerns, we tested our models to determine whether years with
anomalous environmental conditions impacted our prediction of state versus federal waters
fishing with each of 18 years used as individual holdout (test) datasets. Cross-validation
results were remarkably consistent (Table 3), with average accuracies around 97%. Despite
our robust model performance, our framework for both training and operationalizing
these models is straightforward so future years can be easily tested with newly observed
fishing trips and model performance can be continually evaluated to assess shifts in fisher
behavior or model accuracy.

Application for enforcement
Initial use of our operational system by enforcement investigators revealed important
distinctions around the types of potential violations in this fishery. It is easy to assume
that fishery violations result from intentionally illicit behavior but the majority of the
investigations prompted by our system thus far have revealed simple and easily correctable
situations. For example, trips were out of compliance when a vessel had a VMS that was not
turned on, that was malfunctioning, or that was not transmitting at the prescribed interval,
resulting in federal waters trips without VMS data. These cases often occurred by vessels
whose trips were usually in compliance, suggesting that the violation was unintentional.
Additional cases emerged where a vessel was transmitting VMS data but their fishing permit
had expired and our system correctly flagged their landings records for fishing in federal
waters without a permit. Thus, while an important additional field of study is themotivation
that leads fishers to intentionally break the rules, such illicit behavior may prove to be in the
minority of violations in this fishery. Our system is setup to evaluate compliance based on
clearly established, objective criteria and to infermanagement actions that might alter fisher
motivations is beyond the scope of our study. Nonetheless, because our study revealed
that many violations were readily corrected through relatively mechanical aspects of VMS
systems or their data transmissions, it may benefit NOAA to assess whether an investment
in the VMS programmay bolster compliance and free enforcement investigators to explore
the less common but inevitably more complicated cases of intentional violations.
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There has been increasing attention on how seemingly objective criteria applied to
model outputs or biases implicit within machine learning models themselves may lead to
harmful, inequitable, or unintended outcomes (O’Neil, 2017). Drawing from the literature
on terrestrial law enforcement or criminal justice more broadly, where algorithmic
approaches have a longer history, numerous studies have sought to explore concerns
around transparency (e.g., Mittelstadt et al., 2016), bias, and harm reduction (e.g., Altman,
Wood & Vayena, 2018). Llinares (2020) presents a philosophical exploration of predictive
policing and ultimately recommends a ‘‘critical and informed’’ view of such algorithmic
approaches over a technophobic view. Importantly, Llinares (2020) stresses the use of
empirical data to inform one’s perspective while also understanding any biases that might
be associated with those empirical data. This resonates with the harm-reduction framework
proposed by Altman, Wood & Vayena (2018) that emphasizes trying to understand how
an algorithm may disproportionately affect one group more than another. In fisheries,
labeled training datasets are often small because the field is characterized by rare events
(e.g., catches of certain bycatch species) or difficult behaviors to capture, highlighting a
potential source of bias. For example, McDonald et al. (2021) demonstrated the noble use
of AIS data to identify vessels suspected of human rights abuses at sea, but Swartz et al.
(2021) expressed concerns over the small number of relevant AIS profiles for the proposed
vessel group and an imbalance in labeled data. In our own study, we scrutinized potential
sources of bias and intentionally omitted any vessel characteristics (e.g., size) or previous
interactions with law enforcement that might unfairly flag certain vessels, permit holders,
ports or other groups. Our model indirectly includes the fishing port (port distance to the
202 m isobath) and despite having about 10,000 labeled trips in our model, not every port
was included in our training data because not every port had observed trips. This imbalance
in our data could potentially lead to a bias in our models, though the distances to the 202
m isobath for the missing ports fall within the range of ports distances for which we have
labeled training data. Thus, while we considered potential biases in our approach, it may be
impossible to completely avoid them and due diligence is important in considering where
inequities might occur and how they might affect particular groups (e.g., certain vessel sizes
or vessels fishing from a certain port).

The models we developed and operationalized for enforcement provide a tool that
supports a greatly expedited first review of large amounts of data. For example, out
of nearly 60,000 landings records, our models identified 564 records (i.e., potential
violations) for which further review was suggested. The manual review of even 564 records
could be labor intensive, but 60,000 records would be simply unrealistic. Furthermore,
since our analyses revealed that three vessels accounted for a third of potential violations,
enforcement investigatorsmay use this information tomore intently scrutinize these vessels
or to identify additional controlling factors that could be introduced into our models to
exempt certain behaviors (i.e., removing bias if those vessels seem inappropriately flagged).
This approach is similar conceptually to the use of deep learning algorithms in review of
electronic monitoring footage in some fisheries, where algorithms first reduce the amount
of video requiring further review by identifying frames during which fishing events are
occurring (Qiao et al., 2021). In our case, we have built models that are connected to
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an application behind a confidential firewall that allows authorized data users to more
efficiently identify suspect records from the entire dataset rather than a random subset
of the records. Importantly, our approach does not lead to an algorithm issuing citations
to fishers but simply identifies records that warrant a more detailed review by human
investigators.

CONCLUSIONS AND FUTURE WORK
Our analyses relied on a supervised machine learning approach with more than 10,000
labeled landing records (i.e., observed as state versus federal waters fishing), but an
unsupervised machine learning approach may also be applicable for similar efforts to
stratify fishing activities based on catch compositions. In particular, because we observed
such strong fidelity of certain species to either nearshore (e.g., cabezon, black rockfish)
or offshore (e.g., sablefish, shortspine thornyhead) habitats, future work or work in other
regions may find models capable of clustering many landing records into groups based
on landings information without having to use labeled data. For example, Brownscombe
et al. (2020) obtained similar results when comparing supervised random forests with
unsupervised fuzzy k-means clustering algorithms to characterize spawning sites for a
marine fish species. Thus, while many studies have focused on identifying IUU fishing
primarily through vessel tracking systems like VMS or AIS, machine learning-based
analysis of landings records may offer substantial promise in some cases with scarce or
no at-sea data. However, as the previous section highlighted, caution should be used with
unsupervised approaches to ensure that a lack of validation data does not unfairly bias
inference against certain groups or individuals.

Several common data challenges in fisheries management are linked to limited coverage
by observers or vessel tracking systems, as well as the disconnect between research-level
analysis of fishery-dependent data and near real-time needs for analytical products by end-
users (e.g., managers and enforcement investigators). This study developed a valuable and
novel analytical product while also building the data infrastructure to serve the outputs
to its end users. Further, this work relied on an innovative and explicit collaboration
among researchers, data scientists, and enforcement officers and analysts. This end-to-end
approachmergedmultiple unwieldy datasets to connect a discreet analytical and operational
need. With the proliferation of machine learning approaches, improved data management
systems, and more collaborative frameworks, some of the traditional limitations of partial
monitoring coverage and big data may become increasingly surmountable for more
sustainable fisheries management.
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