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ABSTRACT
Sumoylation is a reversible post-translational modification that regulates certain
significant biochemical functions in proteins. The protein alterations caused by
sumoylation are associated with the incidence of some human diseases. Therefore,
identifying the sites of sumoylation in proteins may provide a direction for mechanistic
research and drug development. Here, we propose a new computational approach for
identifying sumoylation sites using an encoding method based on topological data
analysis. The features of our model captured the key physical and biological properties
of proteins at multiple scales. In a 10-fold cross validation, the outcomes of our model
showed 96.45% of sensitivity (Sn), 94.65% of accuracy (Acc), 0.8946 of Matthew’s
correlation coefficient (MCC), and 0.99 of area under curve (AUC). The proposed
predictor with only topological features achieves the bestMCC andAUC in comparison
to the other released methods. Our results suggest that topological information is an
additional parameter that can assist in the prediction of sumoylation sites and provide
a novel perspective for further research in protein sumoylation.

Subjects Biochemistry, Computational Biology, Mathematical Biology, Computational Science,
Data Science
Keywords Topological data analysis, Sumoylation, Persistent homology, Feature extraction

INTRODUCTION
Proteins typically require varying degrees of chemical modifications to perform functions
after translation; these are called post-translational modifications (PTMs) (Zhao et al.,
2014; Beauclair et al., 2015; Xu et al., 2016). PTMs increase the complexity of protein
function in multiple ways, such as with the covalent addition of biochemical functional
groups or proteins, the proteolytic cleavage of subunits, or the degradation of the whole
protein (Chang et al., 2018). Sumoylation, an essential PTM, is done by the small ubiquitin-
related modifiers (SUMOs). An increasing number of sumoylated proteins have been
found in various eukaryotic cells in the past 20 years. Sumoylation is a reversible multi-step
enzymatic reaction. To start this modification, the SUMO precursor is first cleaved into
its mature form with the help of a family of SENP enzymes known as sentrin/SUMO-
specific proteases. Based on the energy provided by the hydrolysis of ATP, mature SUMO
forms a thioester bond with SUMO activating enzyme (E1). Then, activated SUMO is
passed from E1 to SUMO conjugating enzyme (E2) to form a SUMO-E2 intermediate.
Under the catalytic action of E3 ligase, the terminal glycine of SUMO is covalently
linked to the free ε-amino group of a lysine in the substrate protein to be modified.
SUMO can be deconjugated from the substrate protein with the help of SENPs, and
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Figure 1 The SUMO cycle.
Full-size DOI: 10.7717/peerj.16204/fig-1

then re-enters a new round of SUMO cycle. The schematic diagram of sumoylation and
de-sumoylation is shown in Fig. 1. Various biological functions of protein are associated
with sumoylation, such as nucleocytoplasmic transport, subcellular location, transcription,
signal transduction, and the antagonism of ubiquitination (Seeler & Dejean, 2003; Hay,
2005; Kroetz, 2005). Sumoylation has a close connection with the development of human
diseases, including congenital heart defeats (Wang et al., 2011), diabetes (Zhao, 2007),
cancers (Seeler et al., 2007), and neurodegenerative diseases (Lee et al., 2013). Hence, the
identification of sumoylation sites carries important implications for research on diseases
and biomechanisms (Xu et al., 2016; Chang et al., 2018).

Several biochemical approaches have been introduced using purification strategies to
identify sumoylation sites by employing epitope-tagged SUMOs or SUMO antibodies
(Hendriks & Vertegaal, 2016; Hendriks et al., 2018). The problems with these approaches
are that they are laborious and time consuming. Computational approaches are expected
to provide economical, efficient, and accurate alternative to sumoylation experiments. In
general, computational approaches can be clustered into sequence-based and structure-
based groups. Structure-based methods incorporate learning algorithms with sequence
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features derived from BLOSUM62 (Xu et al., 2016; Zhu et al., 2022), pseudo amino acid
composition (PseAAC) (Jia et al., 2016), position relative incidence matrix (PRIM) (Khan
et al., 2021), etc. Structure-based methods integrate learning algorithms with physical
features retrieved from local geometric information, such as half-sphere exposure (HSE)
(Sharma et al., 2019), backbone torsion angles, accessible surface area (ASA) (Lopez et al.,
2020), and contact number (CN) (Dehzangi et al., 2018).

Although the structure-based methods have assisted in the identification of sumoylation
sites, they are often riddled with too much structural detail to be put into practice.
Topological data analysis (TDA) offers a different strategy to characterize protein structures.
Using a simplified topological model that is independent on metrics and coordinates, TDA
can capture both local and global structural information of proteins. Persistent homology
(PH), one of the key components of TDA, is a tool for data simplification and dimension
reduction. The geometric information of an underlying space may be characterized by
the persistence time of topological invariants through a process of filtration. Recently,
PH-based methods have delivered some of the best results in computational biology,
including the analysis and prediction of mutation-induced protein stability (Cang & Wei,
2017); protein thermal fluctuation and B-factor (Bramer & Wei, 2020); RNA data (Xia,
Liu & Wee, 2023); RNA flexibility (Pun, Yong & Xia, 2020); protein secondary structure
(Hassanpour, Izadkhah & Isazadeh, 2021); protein binding affinity (Nguyen et al., 2019);
and chromosome packing, flexibility, and dynamics (Gong et al., 2022). These research
findings indicate that TDA can effectively characterize biomolecular data and reflect
biological and chemical properties, as well as others.

Our goal was to explore the utility and interpretability of the features constructed from
TDA for identifying sumoylation sites. We constructed features that were able to describe
the unique and meaningful properties of protein fragments, ranging from a local atom
arrangement to its global architecture. In a 10-fold cross validation, the outcomes of our
predictor had 92.78% of specificity (Sp), 96.45% of Sn, 94.65% of Acc, 0.8946 of MCC, and
0.99 of AUC, respectively. Our results suggest that topological information as an additional
parameter may help to predict sumoylation sites. We further confirmed that sumoylation
sites are closely related to the structure of proteins (Mann & Jensen, 2003; Sharma et al.,
2019) from a topological standpoint.

MATERIALS AND METHODS
The following procedures were used to build a topology-based predictor that could
effectively discriminate between sumoylation and non-sumoylation sites: (i) retrieve
and preprocess datasets to train and test models; (ii) characterize each data sample with
meaningful and distinguishable features constructed from TDA; (iii) train predictors based
on machine learning algorithms; and (iv) evaluate the performance of predictors. The
flowchart of our proposed methodology is shown in Fig. 2.

Dataset description
In this study, we considered two sumoylation site datasets. One was retrieved from GPS-
SUMO (Zhao et al., 2014) and consisted of 510 proteins with 912 annotated sumoylation
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Figure 2 Flowchart of the proposed methodology.
Full-size DOI: 10.7717/peerj.16204/fig-2

sites; this dataset was named dataset1. This dataset was designed to explore the utility and
interpretability of the features constructed from TDA for identifying sumoylation sites. The
other dataset, named dataset2, was obtained from iSumok-PseAAC (Khan et al., 2021) with
4,987 annotated sumoylation sites from 1,311 proteins. The applicability of our proposed
model was validated using dataset2. As not all complete atomic coordinates of every protein
were accessible, 471 proteins (Data S1) and 1,288 proteins (Data S2) with their complete
coordinates and sequence information, were retained in dataset1 and dataset2, respectively.
Relevant information is available on the AlphaFold database (Varadi et al., 2022) and the
UniProt database (Wang et al., 2021).

The preprocessing procedures for each dataset were as follows. First, each lysine K from
a protein was characterized by a peptide, P , whose length was selected based on the work of
Khan et al. (2021). P was composed of 20 upstream and downstream residues, respectively,
with K as the center. Missing residues were added dummy code X . The peptide, P , was
considered to be a positive sample if its center, K , was experimentally annotated as a
sumoylation site; otherwise, it was considered to be a negative sample. Further, we mixed
the positive and negative samples and computed the pairwise sequence identity to avoid
the bias of homology. If the sequence identity between two given samples was more than
40%, only one of them was retained while the other was ignored. Ultimately, the samples
that were not redundant were divided into a positive subset or a negative subset according
to the category to which they belonged. After going through these steps, we obtained 775
positive samples (Data S3) and 17,807 negative samples (Data S4) from dataset1, and 4,493
positive samples (Data S5) and 24,456 negative samples (Data S6) from dataset2.
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Figure 3 All-atommodels of fragments of O00429.
Full-size DOI: 10.7717/peerj.16204/fig-3

Preparations
The features constructed from TDA for identifying sumoylation sites were obtained as
follows. First, the original protein data was represented in an all-atom model. Then,
simplicial complexes were constructed according to the represented data. Afterwards, the
PH analysis was conducted to reveal the topological information of the proteins. Finally,
features were extracted from persistence barcodes (PBs), which could visualize the results
of the PH analysis. Additional information on TDA and PH can be found in Edelsbrunner,
Letscher & Zomorodian (2000), Zomorodian & Carlsson (2004),Munkres (2018), andWang,
Cang & Wei (2020).

Representation of protein data
We used an all-atom model when dealing with the protein fragments. An all-atom model
includes various types of atoms, such as O, C, N, S, and P, which are all of equal importance.
Note that the hydrogen atoms were ignored during the PH analysis, as they created
redundant barcodes that did not contribute much to feature construction. Figure 3 shows
two protein fragments of O00429 (UniProt Entry) and their corresponding all-atom
models. The central lysine of each fragment is K532 (sumoylation site) and K92 (non-
sumoylation site), respectively.

Simplicial complexes
Figure 3 illustrates that the represented protein fragments are essentially the point cloud
data of dimension 3. The Vietoris-Rips (VR) complex and Alpha complex were considered
to characterize the point cloud data in this work. The following definitions also can be seen
in Pun, Lee & Xia (2022).

Let X be a finite point set in Euclidean space Rn. The VR complex of X with parameter
ε is the set of all σ ⊆X , such that any pairwise distance of its points is at most 2ε.
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To introduce the Alpha complex, we need some related concepts. Given a good cover
U of X , i.e., X ⊆∪i∈IUi. The nerve of U is defined as:

N (U )={J ⊆ I |∩j∈J Uj 6= ∅}∪∅. (1)

A closed ball in Rn with center, x , and radius, δ, is denoted as B(x,δ). The union of closed
balls with center points in X forms a cover of X , and the corresponding nerve creates a
simplicial complex named the Čech complex,

C(X ,δ)={σ ⊆X |∩x∈σ B(x,δ) 6= ∅}. (2)

Given a point, x ∈X , the Voronoi cell of x is defined as:

Vx ={y ∈Rn
||y−x| ≤ |y−x

′

|,∀x
′

∈X}. (3)

The Voronoi diagram is the collection of all Voronoi cells. The dual graph of the Voronoi
diagram forms a simplicial complex called the Delaunay complex. Let R(x,δ) be the
intersection of the Voronoi cell, Vx , with the ball, B(x,δ), that is, R(x,δ)=Vx ∩B(x,δ).
The Alpha complex of X is defined as the nerve of cover ∪x∈XR(x,δ), i.e.:

A(X ,δ)={σ ⊆X |∩x∈σ R(x,δ) 6= ∅}. (4)

Intuitively, the Alpha complex is a subcomplex of the Delaunay complex.
To illustrate the theory of simplicial complexes, we consider the example showing a set

of points, S, of dimension 2 (Fig. 4A). With the increasing radius, the simplices contained
in the two complexes have distinct differences. The VR complex is entirely determined
by its 1-simplices, that is, if all the 1-faces of a simplex are in the VR complex, then so is
the simplex. However, the Alpha complex is only suitable for subjects in Euclidean spaces,
and its construction is more complicated. Based on the same dataset, diverse simplicial
complexes can be constructed according to different rules. Therefore, it may be of value
to combine these complexes for the PH analysis, as they may reveal different information
about the same protein data.

(Element specific) persistent homology analysis
Typically in PH, a nested sequence of subcomplexes is constructed based on a filtration
parameter. After analyzing the homology of each subcomplex, the topological information
is characterized by different persistence time of homological generators with respect to the
filtration parameter.

Given a simplicial complex, K , the filtration of K is a nested sequence of subcomplexes
of K , i.e.:

∅=K0⊆K1⊆ ···⊆Kn=K . (5)

The p-persistent k-th homology group at filtration time i can be represented as:

H i,p
k =Z i

k/(B
i+p
k ∩Z

i
k), (6)

where Z i
k is the k-th cycle group of Ki and Bi+pk is the k-th boundary group of Ki+p. The

rank of H i,p
k is called the p-persistent k-th Betti number of Ki, denoted as β i,p

k .
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Figure 4 The comparison of simplicial complexes. (A) Point set S in R2. (B) The simplicial complex is
constructed from S by giving each ball a small radius. The VR complex is the same as the Alpha complex,
which only has six 0-simplices. (C and D) The VR complex and Alpha complex constructed from S by giv-
ing each point a large radius, respectively. Each convex region in (D) divided by the dotted lines contains a
point in S, and represents the Voronoi cell of that point. (Black, red, green, and blue colors denote the 0-,
1-, 2-, and 3-simplices, respectively.)

Full-size DOI: 10.7717/peerj.16204/fig-4

In the PH results, each topological generator is characterized by a pair of values that
record when it appears and dies, named birth time (BT) and death time (DT), respectively.
The PH results can be visualized as PBs using the endpoints of a bar to represent the BT and
DT of each generator, respectively. Figure 5 shows the PBs of dimension 0, 1, and 2 of K532
and K92 from the filtration of the VR complex, respectively. With the increasing filtration
values, atoms are pairwise connected according to different interactions of the protein.
These connections induce the death of generators of dimension 0. More connections
indicate a greater occurence of simplices of higher dimensions, which are related to the 1-
and 2-bars. There is a clear difference between the 0-bars in [1.25, 1.5] Å of Figs. 5A and
5B that reflects the different interaction patterns of these fragments. Moreover, more types
of 1- and 2-bars can be found in the lower right panels, indicating that K92 has a more
complicated spatial structure, which is consistent with Fig. 3.

We adopted the element specific persistent homology (ESPH) analysis to reveal
additional information about the biochemical and physical properties of the proteins.
ESPH analyzes biomolecular data by specifying one or more types of elements, followed
by the PH analysis (Meng et al., 2020). Distinguishing element types enables us to reduce
biomolecular complexity and retain critical properties of the studied data (Cang & Wei,
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Figure 5 Persistence barcodes. (A) The 0-, 1-, and 2-bars of K532. (B) The 0-, 1-, and 2-bars of K92.
Full-size DOI: 10.7717/peerj.16204/fig-5

2018). In this work, element C and N were considered for ESPH, and the software package
GUDHI (Project, 2021) was used for the (ES) PH analysis.

Feature extraction
PBs cannot be used as direct input to learning algorithms, therefore, it must be converted
into feature vectors to train a predictor. Additionally, the features extracted from PBs
should reflect meaningful and distinguishable information. In this work, two common
vectorization methods were considered.

The binning approach (BA), which discretizes the filtration domain into various sizes
of bins, was used. Bins of dimension 1, i.e., [xi,xi+1],i =0 ,1,...,n−1, with x0 = 0 and
xn= rf (rf denotes the ending value of filtration), were used to vectorize PBs. The number
of bars of a given dimension, whose death time are within a given bin, serves as an entry
of a feature vector. This method allows for the detection of different protein interactions
with a wide range of scales, such as a hydrogen bond, van der Waals, and hydrophilic and
hydrophobic reactions (Cang & Wei, 2017).

Barcode statistics (BS) were also used. Thismethod summarizes the statistics of barcodes.
The maximum, minimum, mean, summation, and standard deviation of BTs, DTs, and
bar lengths (BLs) were considered here. These statistics were used to vectorize 0-, 1-, and
2-bars from the filtration of the VR or Alpha complexes.

Features based on topology
For a peptide sample, P , the features of P were divided into four categories according to
different vectorization methods and filtrations as follows:

- TF1: features based on the 0-, 1-, and 2-bars of P from the filtration of the VR complex.
- TF2: features based on the 1- and 2-bars of P from the filtration of the Alpha complex.
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- TF3: features based on each residue of P (excluding the central lysine K ) from the
filtration of the VR complex.

- TF4: features based on the local region of P from the filtration of the VR complex.

In TF1, 1-bins (unit: Å) were used to vectorize 0-, 1-, and 2-bars. The endpoints of the
bars were taken from two consecutive values in the specific list for different dimensions.
These lists were set to [1.2, 1.3, 1.4, 1.5, 1.6, 2.0], [1.5, 2.7, 3.5, 4.5, 5, 6.7], and [2.4, 2.9,
5.5, 6.7], respectively. For example, (1.2, 1.3) Å was used as a bin to vectorize 0-bars of
P . Moreover, TF1 included the second and third longest bar lengths of dimension 0, the
sum and mean of bar lengths of dimension 0, the onset value of the longest 1-bar, and
the barcode statistics of 1- and 2-bars. Therefore, TF1 contained 48 features. The barcode
statistics of 1- and 2-bars from the filtration of the Alpha complex resulted in 30 features
in TF2.

In TF3, for each residue of P , the (1.25, 1.5] Å and (1.5, 1.75] Å bins were used. TF3
also contained the number of 0-bars, and the summation of bar lengths of dimension 0,
1, and 2. Note that each feature of the dummy code X was set to 0. Hence, the number of
features in TF3 was equal to 240.

In TF4, the local region of P refered to the peptide fragment from the 2-th upside residue
to the 2-th downside residue, according to the central lysine K . For the PH analysis, 1-bins
were taken from the (1.2, 1.6) Å split by the fixed bin size 0.1 Å, and the barcode statistics
were used to vectorize the 1-bars. For the ESPH analysis of element type C, 1-bins were
taken from the (1.5, 3) Å split by the fixed bin size 0.5 Å, and the barcode statistics were
used to vectorize the 1-bars; for the ESPH analysis of element type N, the number of 0-bars
whose death times were less than 10 Å was considered. TF4 contained 38 features. All of
these four categories gave rise to a total of 356 features for P .

Model training and validation
There was an imbalance of the sample size of positive and negative classes for each
dataset, which may affect the learning process. To address this issue, an undersampling
method named NearMiss (Lopez et al., 2020) was used. The ‘‘imbalanced-learn’’ package
(Lemaître, Nogueira & Aridas, 2017) of Python was employed to balance each dataset. After
undersampling, 775 and 4,493 negative samples were selected from dataset1 and dataset2,
(Data S7 and S8), respectively.

The features constructed from TDA were fed into various binary classifiers, including
the gradient boosting classifier (GBC), random forest classifier (RFC), and support vector
classifier (SVC). GBC uses a boosting algorithm to make up for the shortcomings of the
original model by building a weak learner at each step of the iteration. RF is an ensemble
learning method based on the bagging algorithm, which independently integrates different
decision trees during training. SVC is a classifier based on the support vector machine
algorithm whose decision boundary is the maximum-margin hyperplane solved for the
learning samples. All of these classifiers were implemented here with the ‘‘scikit-learn’’
package (Pedregosa et al., 2011) of Python. The ‘‘n_estimators’’ parameter was set to 370
and 500 for RFC andGBC, respectively.Moreover, for RFC, the ‘‘oob_score’’ parameter was
‘‘True’’, and the ‘‘max_features’’ parameter was chosen as ‘‘sqrt’’; for SVC, the ‘‘gamma’’
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parameter was set to ‘‘auto’’, and the ‘‘probability’’ parameter was ‘‘True’’. All other
parameters used their default values.

The K -fold cross validation and independent set test were adopted to evaluate the
model performance here. The K -fold cross validation splits the original dataset into K
disjoint subsets. Each subset is selected in turns for testing, while the rest of parts are used
for training. Note that each data participates in training in the K -fold cross validation.
However, the independent set test divides the original dataset into training and testing
subsets at a given dividing ratio, where samples in the testing subset are not participants in
model training.

Evaluation metrics
To evaluate the performance of predictors from different perspectives, we adoptedmultiple
evaluation metrics as follows:

Sp=
TN

TN+FP
, (7)

Sn=
TP

TP+FN
, (8)

Acc=
TP+TN

TP+TN+FP+FN
, (9)

MCC=
(TP×TN)− (FP×FN)

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

, (10)

where ‘‘T’’ and ‘‘F’’ denote the true and false cases of prediction, ‘‘P’’ and ‘‘N’’ denote
the positive and negative classes, respectively. Specifically, TP (true positive) counts the
correctly predicted sumoylation sites, and TN (true negative), FP (false positive), and FN
(false negative) are defined similarly.

The performance of predictor was also measured using the area under the receiver
operating characteristic (ROC) curve. Different pairs of true positive rate (TPR, also
known as Sn) and false positive rate (FPR, defined as follows) can be obtained by adjusting
the classification threshold of a given classifier, which are the data points of ROC. The
AUC of ROC refers to the probability that a classifier outputs a higher probability for the
given positive sample being positive than for the given negative sample being positive,
when randomly given a positive and a negative sample. It reflects the sorting ability of a
classifier. A higher AUC implies a better classifier.

FPR=
FP

FP+TN
. (11)

In addition to evaluating model performance, we sought to determine the topological
features that contributed to the prediction of sumoylation sites. The F-score value (Xu et
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Figure 6 The index feature score curve.
Full-size DOI: 10.7717/peerj.16204/fig-6

al., 2016) measures the ability of features to distinguish among two classes. The F-score
value of the ith feature is defined as:

Fi=
(ϕi+−ϕi)2+ (ϕi−−ϕi)2

1
n+−1

∑n+
k=1(ϕ

+

k,i−ϕi
+)2+ 1

n−−1
∑n−

k=1(ϕ
−

k,i−ϕi
−)2

(i= 1,2,...,�), (12)

where ϕ+k,i and ϕ
−

k,i are the ith feature value of the k-th positive sample and k-th negative
sample, respectively. ϕi+ is the mean of all ϕ+k,i, i.e., ϕi

+
=

1
n+

∑n+
k=1ϕ

+

k,i.ϕi
− can be

obtained similarly. ϕi denotes the mean of the ith feature values of all samples, that is,
ϕi=

1
n++n−

(
∑n+

k=1ϕk,i+
∑n−

l=1ϕl,i). The higher F-score valuemeans the greater contribution
to the classification. The codes of our work are available on the GitHub repository using
the link: https://github.com/Xiaoxi-Lin/SUMO_TOP.git.

RESULTS
We first explored the utility of the features constructed from TDA on dataset1. The F-score
values of all 356 features were calculated and sorted from high to low (Table S1). We
then added features one at a time to generate different feature sets according to the sorted
F-score values. For each feature set, we trained and evaluated the predictor by employing
GBC and 10-fold cross validation, respectively. Figure 6 shows the MCC values based on
different feature sets, where MCC gets the maximal value 0.8946 when the top 352 features
are used. Finally, these 352 features were selected as optimal features for our subsequent
analysis of the interpretability of features.

The proposed GBC predictor with the features constructed from TDA was called
SUMO_TOP in this work. In a 10-fold cross validation on dataset1, the outcomes of
our predictor were 92.78%, 96.45%, 94.65%, 0.8946, and 0.99 of Sp, Sn, Acc, MCC, and
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Table 1 The evaluation indicators of SUMO_TOP and other existing methods. The best results are in-
dicated in bold.

Methods Sp (%) Sn (%) Acc (%) MCC AUC

SUMO_TOP 92.78 96.45 94.65 0.8946 0.99
iSumok-PseAAC 94.51 94.24 94.79 0.8903 0.96
pSUMO_CD 99.21 82.01 97.88 0.8460 –
GPS_SUMO-L 66.80 81.00 73.90 0.7780 0.87
HseSUMO 87.2 90.4 88.8 0.776 –
SUMO_LDA 84.51 98.71 86.92 0.6845 –
SUMO_sp2.0-H 60.8 87.3 74.0 0.498 0.73
JASSA 65.4 80.8 77.3 0.467 0.73

AUC, respectively. Compared with existing methods, including SUMO_sp2.0-H (Ren et
al., 2009), GPS_SUMO-L (Zhao et al., 2014), JASSA (Beauclair et al., 2015), SUMO_LDA
(Xu et al., 2016), pSUMO_CD (Jia et al., 2016), HseSUMO (Sharma et al., 2019), and
iSumok-PseAAC (Khan et al., 2021), SUMO_TOP delivers a comparable performance.
The results of these predictors are shown in Table 1. The performance metrics, Sp and Sn,
are dependent on each other (Chou, 1993). Additionally, a higher Sp (Sn) but lower Sn
(Sp) may result in a higher Acc. Therefore, a meaningful comparison should consider the
rate of their combination, that is, the score of MCC (Jia et al., 2016). SUMO_TOP is shown
to have the maximal MCC and AUC values (see Fig. 7A), which reflects its usefulness in
practical applications. It also indicates that the proposed predictor can effectively classify
sumoylation and non-sumoylation sites.

In contrast to other methods with hybrid types of sequence or structural features, the
present work only used the features of peptides constructed from TDA. This information
characterizes sumoylation sites from a topological view. Results obtained on dataset1
preliminarily verify the utility of the features constructed from TDA for predicting
sumoylation sites. The features constructed from TDA may be further employed to
improve the performance of other methods listed in Table 1. The topological information
may be combined with other established features, such as AAindex, PseAAC, and HSE, to
capture the structural and biochemical properties of sumoyaltion sites from a more holistic
perspective. A more efficient and accurate model may be constructed for identifying
sumoylation sites using these features.

We also adopted different binary classifiers and validation strategies to varify our
results. Table 2 records the means and standard deviations of the evaluation indicators
of SUMO_TOP obtained by 50 independent set tests with different test-sizes. The
corresponding AUC values are shown in Fig. 7B. The results of other predictors in 5-
and 10-fold cross validations are given in Table S2. These similar results reflect that the
feature construction based on TDA is a stable and robust encoding method for predicting
sumoylation sites.

To further explore the applicability of our proposed model, we applyed SUMO_TOP
to dataset2. In this research, the 70:30 ratio was used for training (Data S9) and testing
(Data S10), and measured the highest MCC value which is given in Table 3. SUMO_TOP

Lin et al. (2023), PeerJ, DOI 10.7717/peerj.16204 12/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.16204#supp-2
http://dx.doi.org/10.7717/peerj.16204#supp-12
http://dx.doi.org/10.7717/peerj.16204#supp-13
http://dx.doi.org/10.7717/peerj.16204


Figure 7 ROC curves and AUC values. (A) The ROC curves of SUMO_TOP with 10-fold cross valida-
tion on dataset1. (B) The AUC values of SUMO_TOP with 50 independent set tests on dataset1. (C) The
ROC curves of predictors with the independent set test on dataset2. (D) The AUC values of predictors
with 5- and 10-fold cross validations on dataset2.

Full-size DOI: 10.7717/peerj.16204/fig-7

Table 2 The results of 50 independent set tests of SUMO_TOP.

Test-size Sp Sn Acc MCC

0.2 0.966 (±0.014) 0.916 (±0.024) 0.941 (±0.014) 0.883 (±0.026)
0.25 0.965 (±0.012) 0.915 (±0.018) 0.940 (±0.010) 0.882 (±0.019)
0.3 0.966 (±0.012) 0.914 (±0.017) 0.940 (±0.010) 0.881 (±0.020)

also achieved comparable results. It further verifies that the utility of the features constructed
from TDA for predicting sumoylation sites. Results of different predictors under the
independent set test are shown in Table 4 and Fig. 7C. Table S3 records the performance
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Table 3 Comparison of the independent set test. The best results are indicated in bold.

Methods Sp (%) Sn (%) Acc (%) MCC AUC

Sumo_TOP 91.24 85.51 88.35 0.7685 0.95
iSumok-PseAAC 89.29 88.16 88.60 0.7651 0.94

Table 4 Independent set test of various predictors with topological features.

Predictors Sp (%) Sn (%) Acc (%) MCC AUC

SVC 91.77 77.43 84.53 0.6985 0.91
RFC 89.52 80.22 84.83 0.7000 0.92
GBC 91.24 85.51 88.35 0.7685 0.95

Figure 8 Distributions of features. (A) The distribution shows the ratio of each category in the optimal
feature set. (B) The number of features selected as optimal features in each category.

Full-size DOI: 10.7717/peerj.16204/fig-8

indicators of other predictors on dataset2 in 5- and 10-cross validations, and Fig. 7D shows
the related AUC values. Based on the results on the two datasets, we suggest that topological
information as an additional parameter could assist in predicting sumoylation sites.

DISCUSSION
In the optimal feature set, each category had 47, 30, 237, and 38 features, respectively.
The distribution of each category is shown in Fig. 8A. The large proportion of the third
category is attributed to the largest number of features in TF3. Figure 8B shows the number
of features selected as optimal features in each category, and the ratio is 0.98, 1, 0.99, and
1, respectively.

The features of TF1 revealed abstract pairwise atomic interaction patterns. Features in
TF2 were capable of identifying the geometric information of protein fragments, such as
voids and cycles. Features based on residues were able to capture local structural properties
of amino acids (AAs), such as the pentagonal ring or hexagonal ring, and to further identify
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Table 5 Features with the top ten F -score values.

Index# Category# Betti# Complex Features

1 4 1 VR mean of DTs of atom C
2 1 2 VR mean of BLs
3 4 1 VR mean of BTs of atom C
4 1 2 VR min of BLs
5 1 2 VR standard deviation of BTs
6 1 1 VR standard deviation of BTs
7 1 2 VR standard deviation of DTs
8 1 2 VR max of BLs
9 4 1 VR standard deviation of BTs of atom C
10 4 1 VR sum of BLs

the types of AAs. Features in TF4 were related to the properties of the local region of
protein fragments, such as charge and hydrophobicity (Cang & Wei, 2017). Almost all of
the features belonging to TF1 and TF2 were selected into the optimal feature set, which
illustrates that the structural features of proteins may be used to predict sumoylation sites
(Sharma et al., 2019). The characteristics of AAs in the protein fragment were shown to
be an important parameter with which to predict sumoylation sites (Khan et al., 2021)
according to the large proportion of TF3. All of the features in TF4 were part of the optimal
feature set, indicating that the features of the local region of peptide play a critical role in
the recognition of sumoylation sites (Zhu et al., 2022).

Table 5 lists the top ten features of SUMO_TOP according to the reverse-sorted
F-score values. Features 2, 4, 5, 6, 7, and 8 are derived from TF1. TF1 characterized the
biomolecular structures of protein fragments, which were capable to capture important
biological properties. It could also detect the secondary structure of protein fragments
to some extent (Hassanpour, Izadkhah & Isazadeh, 2021; Pun, Lee & Xia, 2022), which
implies that the secondary structure of protein may provide important information on
the interactions of AAs along the protein sequence (Dehzangi et al., 2018). Features 1, 3, 9,
and 10 belong to the fourth category; the first three are the results of the ESPH analysis of
element C. It could effectively capture the hydrophobic reactions and changes in the local
region of peptides (Cang & Wei, 2017). Hydrophobicity was also shown to be useful to the
prediction of sumoylation sites (Chen et al., 2012) from a topological view.

CONCLUSIONS
PH is a tool for exploring topological characteristics by studying the sequence of
nested simplicial subcomplexes. The PH analysis in our work was capable of capturing
the structural information of proteins from multiple angles and scales. Based on the
understanding of protein interactions at different scales (Xia & Wei, 2015), we attempted
to apply the features constructed fromTDA to predict sumoylation sites. To our knowledge,
it is the first time that TDA has been used to predict PTM sites.

The proposed tool was used to predict protein sumoylation sites. We retrieved two
datasets, where each peptide sample was formulated into 356 features constructed from
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TDA. Our predictor shows comparable performance with other existing methods. It is
worth noting that only features constructed from TDA were used in our predictor, instead
of hybrid types of existing features. Moreover, our proposed model yields similar results
under various validation strategies, which illustrates that the feature construction based
on TDA is a stable and robust encoding method for predicting sumoylation sites. As a
new application of TDA, our work suggests that topological information as an additional
parameter could assist in the prediction of sumoylation sites. It further indicates that
computational topology combined with machine learning might create a novel perspective
for biomolecular study.

Our work examined the utility, efficiency, and interpretability of the features constructed
from TDA for predicting sumoylation sites. As such, only topological information was
employed. There are various strategies to improve our method. For instance, the features
constructed from TDA may be combined with other established features, such as sequence
and physical features, and a combination of these features may provide better results in the
prediction of sumoylation sites.
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