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Fossil identification is an essential and fundamental task for conducting palaeontological
research. However, the artificial identification of fossils requires extensive experience and
is time-consuming. The process is complex, tedious, and susceptible to subjective factors.
In this study, an automatic identification model was established for bivalve and brachiopod
fossils using deep learning. We built an available bivalve and brachiopod fossil image
dataset (containing > 16,000 "image-label" data pairs) and completed the taxonomic
determination to facilitate other researchers. We achieved > 80% identification accuracy
at 22 genera and ~64% accuracy at 343 species using EfficientNetV2s architecture. We
extracted the intermediate output of the model as fossil features and downscaled them to
demonstrate the morphological feature space of fossils using t-distributed stochastic
neighbor embedding (t-SNE). We found a distinctive boundary between the morphological
feature points of bivalves and brachiopods. This study provides a possible method for
studying the morphology evolution of fossil clades using computer vision in the future.
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20 Abstract

21 Fossil identification is an essential and fundamental task for conducting palaeontological research. 

22 However, the artificial identification of fossils requires extensive experience and is time-

23 consuming. The process is complex, tedious, and susceptible to subjective factors. In this study, 

24 an automatic identification model was established for bivalve and brachiopod fossils using deep 

25 learning. We built an available bivalve and brachiopod fossil image dataset (containing > 16,000 

26 "image-label" data pairs) and completed the taxonomic determination to facilitate other 

27 researchers. We achieved > 80% identification accuracy at 22 genera and ~64% accuracy at 343 

28 species using EfficientNetV2s architecture. We extracted the intermediate output of the model as 

29 fossil features and downscaled them to demonstrate the morphological feature space of fossils 

30 using t-distributed stochastic neighbor embedding (t-SNE). We found a distinctive boundary 

31 between the morphological feature points of bivalves and brachiopods. This study provides a 

32 possible method for studying the morphology evolution of fossil clades using computer vision in 

33 the future.

34

35 Key words: 

36 Fossil identification; Machine learning; Invertebrate; Morphology; Convolutional neural network.

37

38 Introduction

39 Fossil identification is a fundamental task in palaeontological research and has a wide range 
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40 of applications, including stratigraphic dating (Yin et al. 2001; Gradstein et al. 2012), biological 

41 evolution (Alroy et al. 2008; Fan et al. 2020; Song et al. 2021), palaeoenvironmental 

42 reconstruction (Flügel and Munnecke 2010; Scotese et al. 2021), and palaeoelevational estimation 

43 (Su et al. 2019). Because taxonomic identification requires a large amount of prior knowledge as 

44 a foundation, researchers need several years of training to accumulate enough experience to ensure 

45 the reliability of identification. However, the actual identification process still takes considerable 

46 time and is susceptible to subjective factors. The identification accuracy of some genera is even 

47 lower than 80% (Hsiang et al. 2019). In many fields of palaeontology, deep convolutional neural 

48 network (DCNN) has a significant advantage over humans, such as the identification of cut and 

49 trampling marks on bones (Byeon et al. 2019). To reduce the workload and work difficulty for 

50 researchers, automatic fossil identification methods relying on machine learning have been 

51 proposed extensively in recent years, among which models using convolutional neural networks 

52 (CNNs) [e.g., VGG-16 (Simonyan and Zisserman 2014), Inception-ResNet (Szegedy et al. 2017), 

53 GoogLeNet (Szegedy et al. 2015), etc.] have achieved good results (Dionisio et al. 2020; Niu and 

54 Xu 2022; Wang et al. 2022; Liu et al. 2022; Liu and Song 2020). This method can assist 

55 researchers in fossil identification, reduce the work stress of non-palaeontologists, and enable 

56 better identification and application of fossil materials in research. Furthermore, for identifying 

57 poorly preserved fossils, neural networks still maintain high identification accuracy (Bourel et al. 

58 2020). Neural network in fossil identification is still at an early stage of development and cannot 

59 yet fully reach the identification level of professional palaeontologists. Neural network can provide 

60 a useful aid to manual identification rather than replace it, at least for now. It is still worth studying, 
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61 and as the level of the model improves and more training data are available, its accuracy will 

62 become higher.

63 The training of automatic taxonomy identification models (ATIM) requires a large dataset of 

64 labelled  fossil images, which is still insufficient compared to general machine-learning datasets 

65 containing millions of items (Liu, et al. 2022). The lack of high-resolution (genus-level) fossil 

66 labels in the field of palaeontology is mainly due to the tedious and time-consuming process of 

67 dataset building.  Machine learning has now achieved good results in fossil identification (above 

68 the genus level). Liu and Song (2020) achieved 95% accuracy for 22 fossil and abiotic grain groups 

69 during carbonate microfacies analysis. While 90% accuracy was achieved in the automatic 

70 identification of 50 fossil clades relying on web crawlers (Liu et al. 2022), genus- and species-

71 level automatic identification focused mainly on a few taxa (mostly < 10). Dionisio et al. (2020) 

72 performed automatic identification of 9 radiolarian genera, obtaining 91.85% accuracy. Wang et 

73 al. (2022) used a Transpose Convolutional Neural Network to achieve 97% accuracy for 5 

74 brachiopod species and was based on a small dataset. Niu and Xu (2022) performed automatic 

75 identification of fossils covering 113 graptolite species or subspecies. However, similar studies 

76 targeting a large number of taxa are less common. In addition, these studies all focus on the same 

77 fossil clade (e.g., radiolarians, brachiopods, etc.), and it is unclear whether mixed categories and 

78 large numbers of taxa can achieve automatic fossil identification.

79 Brachiopods and bivalves are the two most common invertebrate clades in the Phanerozoic 

80 (Sepkoski 1981; Clapham et al. 2006; Benton and Harper 2020). The similarities and differences 

81 between them in morphology and physiological mechanisms have long attracted the attention of 
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82 palaeontologists (Ballanti et al. 2012; Payne et al. 2014); however, the similar morphological 

83 features between them have caused problems for researchers to identify them accurately. 

84 Automatic identification of brachiopods has been carried out previously. Wang, et al. (2022) used 

85 the transposed convolutional neural network to realize the automatic identification of fossils with 

86 a relatively small dataset and they achieved 97% identification accuracy of five brachiopod species 

87 based on 630 training images. In this study, we built a �Bivalve and Brachiopod Fossil Image 

88 Dataset� (BBFID) (16,596 labelled fossil images covering 870 genera and 2033 species) for the 

89 first time by collecting and sorting a large amount of published literature. We built ATIMs using 

90 transfer learning in VGG-16 (Simonyan and Zisserman 2014), Inception-ResNet-v2 (Szegedy, et 

91 al. 2017), and EfficientNetV2s (Tan and Le 2021) architectures, which have performed well in 

92 general identifications. Furthermore, we extracted the process outputs of the model as fossil 

93 features and downscaled them to two-dimensional data using t-SNE (Van der Maaten and Hinton 

94 2008). Plotting them in a two-dimensional space is an effective way to compare morphological 

95 differences between bivalves and brachiopods.

96 Materials and Data

97 The BBFID used for training ATIMs contains bivalve-part (BBFID-1) and brachiopod-part 

98 (BBFID-2), all collected from published literature and monographs (see Appendix). Detailed data 

99 on the number of each taxon are given in the Appendix (Table S1, S2).

100 We used Adobe Acrobat Pro DC to capture accurately named bivalve and brachiopod fossil 

101 images (mainly Permian and Triassic) from the collected literature and saved them as bmp, jpg, or 
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102 png images to minimize the quality loss of the images. Those that could not be saved due to the 

103 encryption of PDF files in the literature were screenshotted as png files using Snipaste. The 

104 majority of images collected from plates are single animal images, and the effect of plate 

105 numbering was avoided as much as possible.

106 We obtained more than 16,000 fossil images from 188 publications and performed data 

107 cleaning. During the data collection stage, we collected as many fossil images as possible. These 

108 images were taken at any viewpoint and in any orientation. Different views of the same specimen 

109 were treated as different instances and labelled separately. To ensure the reliability of the dataset, 

110 we checked the bivalve and brachiopod images and corresponding labels. Because the taxonomic 

111 system of bivalves and brachiopods is continuously improved (Konopleva et al. 2017; Sulser et al. 

112 2010), we categorized the genera whose taxonomic names and positions had been changed in the 

113 literature. Additionally, we removed poorly preserved fossil images. This contains two cases. The 

114 first case is images with uncertain taxonomic names. The other discarded images are obtained from 

115 scanned published documents (mostly monographs published in the last century) that are poorly 

116 pixelated and difficult to identify even for palaeontologists. In both cases, the ambiguous images 

117 are discarded based on whether the experts can distinguish the fossils or not. There is no filtering 

118 based on deep learning preference, so this operation does not affect the utility of the deep learning 

119 method.

120 Our dataset was divided into the training set (60%), validation set (20%), and test set (20%) 

121 randomly to train, tune, and test the model. Because the validation set is used as a reference for 

122 the tuning process, the identification accuracy of this part may have artificial bias and is not 
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123 universally meaningful. Thus, the final accuracy was calculated using a separate test set to evaluate 

124 model performance. 

125 The final BBFID contains 870 genera, with 16,596 sets of �image-label� data pairs. All images 

126 have genus labels, with the 14,185 items having higher-resolution species labels. BBFID-1 

127 contains 379 genera and 889 species, with 8,144 sets of image-label data pairs. BBFID-2 contains 

128 491 genera and 1,144 species, with 8,452 sets of data pairs. Genus distributions of BBFID and 

129 examples of common categories are shown in Figure 1. 

130 To meet the requirements of machine learning, each taxon should have at least three items. 

131 Therefore, we chose the categories with > 2 items of BBFID to perform the model training, which 

132 contains 16,389 sets of �image-label� data pairs. 

133 Methods

134 Convolutional Neural Network

135 Convolutional neural networks (CNNs) perform well in general recognition and have been 

136 used in the automatic identification of palaeontological fossils (Dionisio, et al. 2020; Niu and Xu 

137 2022; Wang, et al. 2022; Liu, et al. 2022; Liu and Song 2020; Kiel 2021). In this study, three pre-

138 trained models of convolutional neural networks with good classification performance on the 

139 ImageNet dataset (Deng et al. 2009) namely VGG-16 (Simonyan and Zisserman 2014), Inception-

140 ResNet-v2 (Szegedy, et al. 2017), and EfficientNetV2s (Tan and Le 2021) were selected and 

141 suitably modified (Fig. 2). VGG-16 and Inception-ResNet-v2 have been proven to automatically 
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142 identify fossils and perform well (Hsiang, et al. 2019; Liu, et al. 2022). We retained their main 

143 architecture, removed the top softmax layer and/or fully connected layer depending on fossil 

144 categories, and added a fully connected layer (with 256 output and Relu activation function), batch 

145 normalization layer (Ioffe and Szegedy 2015), dropout layer (with rate = 0.2), and fully connected 

146 layer (with output as fossil categories) (Fig. 2).

147 In fossil identification, CNNs first decode the fossil images to obtain the tensor that can be 

148 operated, and the model operates on these values to establish the correspondence between the 

149 image data and the fossil name. CNNs use convolutional operations to process image data and 

150 gradient descent to minimize the loss function to train the model (LeCun et al. 1998). The neural 

151 network can be divided into multiple network layers. More specifically, the convolutional, pooling, 

152 and fully connected layers play a crucial role in the automatic identification process. The 

153 convolutional layer reduces the data size and extracts high-dimensional information by operating 

154 on the image matrix with a certain size of the convolutional kernels. The pooling layer reduces the 

155 amount of computation, making the model easier to train (Giusti et al. 2013). The fully connected 

156 layer and activation function (Relu) fit the correspondence between fossils and labels (Nair and 

157 Hinton 2010) and output the predicted labels and probabilities we need at the top layer. 

158 VGG-16 is a classic DCNN proposed by Simonyan and Zisserman (2014), which uses 16 

159 layers and 3 × 3 convolutional kernels (convolution filters) to achieve good performance. And 

160 then, He et al. (2016) proposed a new residual connectivity method and applied it to Inception-

161 ResNet-v2, which makes the network easier to optimize and allows the use of the deeper network 

162 to improve performance. EfficientNetV2 is currently a more advanced open-source image 
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163 classification model using the training-aware neural architecture search and scaling method to 

164 improve training speed and parameter efficiency (Tan and Le 2021).

165 Data preprocess

166 Deep learning models have requirements for input data size. However, images in our dataset 

167 were of different sizes and the labels were also inappropriate to model training. Thus, data needed 

168 to be preprocessed. To match the model's requirement, all images were resized to a uniform size 

169 (slightly different depending on the model in Fig. 2). To improve their generalization ability and 

170 make the model easier to train, we randomly adjusted the image (training set and validation set) 

171 brightness (within ± 0.5) and contrast (within 0 to + 10) to reduce the effect of noise. In addition, 

172 the images were normalized and standardized. We conducted the discrete one-hot coding for image 

173 labels. Finally, a one-to-one correspondence between the images and the labels was established, 

174 and we obtained the processed machine-learning dataset.

175 Training Methodology

176 Achieving high accuracy in multiclass fossil identification using neural networks requires a 

177 large dataset as a basis. Although we built the bivalve and brachiopod dataset manually, it was still 

178 insufficient to train a model with random initialization of parameters to converge and achieve the 

179 best results. Therefore, we applied transfer learning in the model training process, an effective way 

180 to train a model on a small dataset (Tan et al. 2018; Brodzicki et al. 2020; Koeshidayatullah et al. 

181 2020). Transfer learning uses parameters trained by general identification tasks for initialization 
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182 to accelerate the convergence of the new model. It is feasible to use this to reuse the general 

183 identification model parameters for palaeontological fossil identifications (Pires de Lima et al. 

184 2020). This is why we only envision applying this method to the automatic identification of 

185 common fossils, while fossils with too few specimens will still need to rely on palaeontologists.

186 In this study, each model was loaded with pre-trained parameters that were originally trained 

187 on ImageNet. This method greatly reduces the amount of data required for automatic identification, 

188 greatly expanding their application scenarios.

189 We coded in Python and relied on the Tensorflow scientific computing library (Abadi et al. 

190 2016) to train the model. The training process was performed using the Adam optimizer (Kingma 

191 and Ba 2014). The loss function uses the categorical cross-entropy loss function (Botev et al. 

192 2013), and the accuracy is used as an evaluation metric. To facilitate training, the learning rate is 

193 adjusted with validation loss in training. Also, to prevent overfitting, EarlyStopping was set to 

194 ensure the good performance of the model in the test set. During the training process, the model 

195 saves architecture and parameters with the highest accuracy in the validation set in real-time for 

196 rapid deployment in subsequent applications. Because BBFID contains both the genus tags and 

197 species tags, we set the model to the genus mode (only read the genus tag) and species mode (read 

198 both genus tag and species tag) during model training and testing. Because of dataset size, model�s 

199 architecture and hyperparameters significantly affect its performance; thus, we trained models and 

200 compared their performance under different scenarios (Table 1).

201 We chose the different sizes of the datasets to train models according to the taxonomic levels. 

202 At the genus-level, we set three scales to explore model performance using different volumes of 
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203 datasets. These three scales are the number of each genus > 100 images (scale A), > 50 images 

204 (scale B), and > 10 images (scale C) (Table 2). Among them, scale B/C contains all genera with 

205 more than 50/10 pictures, the same for other scales. The numbers of taxa in BBFID-1 are 13 (scale 

206 A), 34 (scale B), and 156 (scale C), respectively, whereas the numbers of items in BBFID-2 are 9 

207 (scale A), 32 (scale B), and 223 (scale C). They display a clear gradient to match our research 

208 needs. For the selection of data adequacy (i.e., data scale) of the species-level, we selected scale B 

209 (number of each species > 50 images) and scale C (number of each species > 10 images) for 

210 training and testing, according to the performance of the genus mode. Furthermore, we also tried 

211 two larger scales: scale D (number of each species > 8 images) and scale E (number of each species 

212 > 6 images). There are four gradients in total to find the range that covers more genera with 

213 guaranteed accuracy. In addition, for BBFID, we added two larger scales (the number of each 

214 taxon > 4 images and > 2 images) to explore the model performance in small data sets. As 

215 mentioned earlier, all data (scales A, B, C, D, and E) were randomly divided into the training set, 

216 validation set, and test set in the ratios of 60%, 20%, and 20%, which is the ideal situation. In order 

217 to try a larger data scale, we discarded the requirement that the validation set cover all species. 

218 Therefore, the number of single-taxon images > 2 was the maximum data size we could try, 

219 because all taxonomic units shall be covered in the training set and test set.

220 Model architecture plays a pivotal role in models. Thus, we used BBFID-1 (scale A) to test 

221 model identification accuracy at the genus level under three different model architectures (i.e., 

222 VGG-16, Inception-ResNet-v2, and EfficientNetV2s). Subsequently, the best architecture was 

223 selected to build ATIM, trained and tested using different scales of BBFID-1, BBFID-2, and 
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224 BBFID, respectively, to obtain the corresponding model performance (Table 2).

225 Dimensionality reduction method

226 In this study, we employed a downscaling method of t-SNE that uses a probability measure of 

227 similarity and expresses probabilities as spatial distances (Van der Maaten and Hinton 2008). To 

228 compare fossil morphology, we extracted the output of the last maximum pooling layer as fossil 

229 features and downscaled the high-dimensional data of fossil features to a two-dimensional plane 

230 using t-SNE. Next, we visualized that to analyze easily the morphological differences and 

231 similarities between bivalves and brachiopods. The model training and downscaled visualization 

232 codes were referenced from some open-source projects.

233 Results

234 Model performance between different architectures and hyperparameters

235 Different architectures perform differently using BBFID-1 (scale A, genus level), with the 

236 best performance of 83.02% obtained with the EfficientNetV2s architecture and the 

237 corresponding hyperparameters (Table 1). The results of confusion matrix for this identification 

238 task are shown in Figures 3, 4, and 5. The identification recalls were > 79% for all categories 

239 except the genera Pteria (0.71), Bakevellia (0.72), and Halobia (0.72), where the accuracies of 

240 Quemocuomegalodon, and Monotis exceeded 90%.

PeerJ reviewing PDF | (2023:02:82981:0:1:NEW 3 Mar 2023)

Manuscript to be reviewed

kennethdebaets
Cross-Out

kennethdebaets
Inserted Text
whereas



241 Model performance using different data scale

242 We used EfficientNetV2s architecture that performed well on BBFID-1 and corresponding 

243 hyperparameters to build other models (genus mode), which performed as expected under different 

244 datasets (Table 2). The accuracy of BBFID-1 (scale A) was 82.10%, whereas those of scales B and 

245 C were 71.73% and 58.34% respectively, with the loss increasing by decreasing accuracy for all 

246 three. The accuracy of BBFID-2 was 85.43%, 71.35%, and 50.04% for the three dataset scales, 

247 whereas the identification accuracy of scale A exceeded 85%. Furthermore, in four categories, 

248 more than 90% of images were identified correctly (Fig. 4). The accuracy of model training by 

249 BBFID was 81.45%, 70.66%, and 53.71% at the three scales, and the performance of each scale 

250 was similar to the performance of the corresponding bivalve and brachiopod individual 

251 identifications. In species mode, the models also performed similarly (Table 2), with the accuracy 

252 of BBFID at scale C (148 categories for bivalves, 195 categories for brachiopods) of more than 

253 60% (see Appendix S1 for confusion matrix and evaluation metrics). The accuracies of Scale D 

254 (bivalve 179 categories, brachiopod 265 categories) and scale E (bivalve 241 categories, 

255 brachiopod 396 categories) ranged from 51% to 59%.

256 Discussion

257 Identification accuracy

258 The ranking of automatic identification performance among three architectures trained by 

259 BBFID-1 (Table 1) is comparable to general task results (Simonyan and Zisserman 2014; Szegedy, 
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260 et al. 2017; Tan and Le 2021), indicating that the principle of fossil auto-identification is similar 

261 to that of general image classification. That corroborates the rationality of using transfer learning. 

262 The identification accuracy (> 80%) on genus mode is similar to the previous study (Romero et al. 

263 2020).

264 All these models in EfficientNetV2s architecture met the early stopping condition and 

265 terminated training before 50 epochs, and the training set accuracy was close to 100% at this point. 

266 That indicates that the models completed fitting to the training set. The training process of BBFID 

267 (scale A) shows that the model basically converged about 20 epochs (Fig. 6), and its training set 

268 accuracy finally reached ~100%, while the maximum validation accuracy was over 80% (Table 

269 2). The fossil images used in this study contain pictures of the whole shells and detailed pictures, 

270 such as structures of fossils. The identification accuracy was adversely affected by this factor. 

271 Thus, it is feasible to apply pre-trained parameters of the general model to the ATIM in the field 

272 of palaeontology using transfer learning. For the accuracy of different parts of the dataset, the 

273 accuracy of the validation set was comparable to that of the test set, but lower compared with the 

274 training set. Because the model was trained using the training set, the identification performance 

275 was better in this part. However, the data from the validation and test sets were not used to train 

276 models. Accordingly, the results were slightly worse compared with the training set. Furthermore, 

277 the validation set was purposefully optimized in the conditioning. Accordingly, the real 

278 performance of the ATIM is shown by the test set result, rather than that of the validation set.

279 The accuracy of the model using selected architecture and parameters (Table 1, Order 11) on 

280 genus mode exceeded 80% using BBFID-1 (scale A). In contrast, the accuracy decreases between 
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281 scale B and scale C stems from the single taxon images decrease and confusion caused by the 

282 categories increase. Nevertheless, the identification accuracy of scale C (156 categories) was still 

283 close to 60%. In addition, the model based on BBFID-2 achieved similar accuracy to the model 

284 based on BBFID-1 at all scales. The identification accuracy at scale A exceeded 80%, which is 

285 close to or even exceeds the identification level of palaeontologists (Hsiang, et al. 2019). Hsiang 

286 et al. (2019) collected the accuracy of foraminiferal identification by palaeontologists and found 

287 that human accuracy is only 71.4%, which is lower than automatic identification (87.4%). Another 

288 study of planktonic foraminifera covering 300 specimens reported an average identification 

289 accuracy of <78% for 21 experts (Al-Sabouni et al. 2018). In an automatic identification of 

290 dinoflagellates, the expert�s accuracy was also only 72% (Culverhouse et al. 2003). Austen et al. 

291 (2016) found that the accuracy of experts in bumblebees was even lower than 60%.

292 As mentioned previously, this study achieved automatic identification of fossils including 22 

293 genera of bivalves and brachiopods, with a test set accuracy > 80%. The obtained model performed 

294 relatively well considering the volume of categories and datasets in this task. Dionisio, et al. (2020) 

295 also trained a model for identifying radiolarian fossils (containing only nine genera with 929 

296 photographs) automatically. The accuracy of the CNN model is 91.85%, higher than ours. The 

297 average number of images per genus used in this study was comparable to ours; however, they 

298 used SEM photographs from the same source. Fewer extraneous factors and fewer categories 

299 might have contributed to slightly higher accuracy. Models for the automatic identification of 

300 pollen from 16 genera were also proposed with accuracies between 83% and 90%, also using 

301 microscopic images (Romero, et al. 2020).

PeerJ reviewing PDF | (2023:02:82981:0:1:NEW 3 Mar 2023)

Manuscript to be reviewed

kennethdebaets
Cross-Out

kennethdebaets
Inserted Text
modern dinoflagellates

kennethdebaets
Highlight
It would also be crucial to point out that that it might no be comparable as also soft parts / cells are included here.  

kennethdebaets
Highlight
ok but in the latter study, high-resolution microscopy was used on palynomorphs 



302 Moreover, models based on BBFID performed similarly to the models based on the 

303 corresponding scale of BBFID-1 or BBFID-2, which indicates that the ATIM is not easily affected 

304 by the similar morphology between bivalves and brachiopods with sufficient data volume (as 

305 further demonstrated by the confusion matrix). The models are highly reliable in bivalves and 

306 brachiopods identification at the genus level, which provides a basis for our subsequent 

307 comparison of their morphology. Moreover, the identification accuracy of BBFID (scale C, 

308 including 379 taxa) was 53.71%, which is understandable considering the large taxonomic unit 

309 number with the relatively limited training set. Large-scale automatic fossil identification based 

310 on a small dataset is feasible. However, it must be noted that the categories with fewer figures are 

311 more concentrated in the literature, which might have led to the similarity between the test set and 

312 the training set. Thus, these accuracies cannot objectively generalize the performance and ability 

313 of models.

314 Regarding species-level automatic identification performance, we achieved an accuracy of 

315 82.83% for 16 species identification, with several species attributed to the same genus with 

316 relatively similar morphology. Although Kong et al. (2016) automatically identified three pollen 

317 species of the same genus in a confusing species classification task with 86.13% accuracy, it must 

318 be noted that their pollen task relied more on confusing information such as a texture for 

319 identification. Importantly, the identification accuracy of mixed data scale C in the species mode 

320 is similar to, or even slightly higher than, that in the genus mode. This implies that the number of 

321 taxonomic categories can have a greater impact on automatic identification performance relative 

322 to the differences between taxonomic units.
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323 Although we independently built a dataset containing >16,000 images, it is still small for 

324 machine learning. Most studies in automatic fossil identification have focused on a few categories 

325 and large sample sizes (Liu, et al. 2022; Niu and Xu 2022; Wang, et al. 2022; Liu and Song 2020), 

326 which undoubtedly helps improve performance. Niu and Xu (2022) used a dataset of 34,000 

327 graptolites to perform an automatic identification study of 41 genera, which resulted in 86% 

328 accuracy. In contrast, the identification accuracy of 47 genera in this study was 76.26%, which 

329 demonstrates the importance of larger data sets.

330 Analysis of identification results

331 We tested models in genus mode using BBFID-1, BBFID-2, and BBFID (scale A) and 

332 obtained a confusion matrix (Figs. 3, 4, 5), which truly reflects the model performance and 

333 misidentification. Example images of all 22 genera in this scenario are shown in the Appendix S2 

334 for a better comparison of morphological differences. In the confusion matrix, the vertical axis 

335 represents the �true� genus name, whereas the horizontal axis represents the "predicted" genus 

336 name. The numbers in the matrix represent the proportion of "true" genera identified as "predicted" 

337 genera, and the larger the proportion, the darker the squares. The model performed well in the 

338 automatic identification of bivalves and brachiopods respectively, and misidentification was 

339 maintained at a low level.

340 In the hybrid auto-identification model (i.e., model based on BBFID), the overall performance 

341 was good although the accuracy (81.90%) decreased slightly compared to the separate auto-

342 identification accuracies of bivalves and brachiopods (i.e., accuracies testing by BBFID-1 or 
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343 BBFID-2). Genus Quemocuomegalodon maintained a high identification recall (1.00) in the 

344 bivalve categories, whereas the recall of Proyalina increased from 0.88 to 0.92. Other categories 

345 decreased slightly. Most of the brachiopod categories showed significant or stable increases, 

346 whereas only two genera exhibited recall decreases (Araxathris from 0.76 to 0.68 and Paryphella 

347 from 0.77 to 0.72). The change in the recall may be related to the change in the distribution of the 

348 training set. Among these misidentified categories, two cases were distinctive, each exceeding 

349 0.20 of their respective categories in the test set. The bivalve Pteria was misidentified as Bakevellia 

350 (0.25) and the brachiopod Paryphella was misidentified as Fusichonetes (0.24), with 

351 morphological similarity being the main reason for misidentification. For example, the shells of 

352 both Pteria and Bakevellia have similar outline and are anteriorly oblique. The posterior ear is 

353 larger than the anterior ear. Distinctive concentric rings are visible on the shell surface. All these 

354 features are very similar.

355 Importantly, the vast majority of misidentifications in the hybrid auto-identification model 

356 occurred within categories (i.e., bivalves were misidentified as other bivalves and brachiopods 

357 were misidentified as other brachiopods), whereas misidentifications between broad categories 

358 were relatively rare. For example, only 0.04 of the brachiopod Araxathris were misidentified as 

359 bivalve Daonella and 0.04 as bivalve Eumorphotis, which indicates that bivalves and brachiopods 

360 have considerable morphological differences. 

361 The above are all cases where the input fossil taxon is included in the training set, but in 

362 reality, there are quite some fossil taxa that are not included in the training set. To deal with this 

363 exception, we propose a new "Applicability Model" (AM) to identify such cases. We divide the 
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364 entire BBFID into "applicable" and "unapplicable", and perform binary classification training 

365 based on the Inception-ResNet-v2. The accuracy of AM (suitable for Order 22) is 85.54%. When 

366 the training is completed, the user can use the AM to verify whether the taxon of the input images 

367 is included in the training set and the usability of the genus/species identification model. If the 

368 result is �applicable�, the fossil will be identified automatically. If the result is �unapplicable�, the 

369 identification model will give the name of the fossil taxon that is most similar to it, and the user 

370 can continue the manual identification based on that taxon.

371 Morphological analysis of fossils

372 Fossils have complex and variable high-dimensional morphological features, which are 

373 difficult to visualize and analyze. Deep learning can extract features, downscale dimensions of 

374 data, and exclude the influence of human bias to fully reflect the fossil features. Neural networks 

375 can extract features more efficiently than manually selected features (Keceli et al. 2017). The 

376 accuracy of supervised classification of ammonoids using human-selected geometric features was 

377 only 70.4%-78.1% in 11 species (Foxon 2021), lower than the accuracy of > 80% for 22 species 

378 identifications in this study.

379 Machine learning can quantify morphological features and compare differences. Therefore, 

380 we extracted the process output from the ATIM (Order 22) and summed the same point data in 

381 each dimension to draw a feature map (Fig. 7). We can observe the identification features used by 

382 the convolutional neural network. However, the supervised deep learning used in this paper is a 

383 "result reason" approach that cannot verify the correctness of the taxonomic practice. Models may 
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384 use some features not used by experts to identify, which does not mean that the taxonomic practice 

385 is wrong. A possible scenario is that there are multiple differences between the two taxa, with 

386 experts and models choosing different perspectives. The model establishes a relationship between 

387 the input (fossil image, i.e., morphological features) and the output (taxon), and its ability to 

388 accurately identify fossil taxa indicates that taxonomic practice is well correlated with fossil 

389 morphology. Input-output relationships are established by feature extraction through convolutional 

390 neural networks. Automatic identification relies on these features that are similar with the working 

391 process of experts. The features extracted by the model are diverse, such as the umbilicus, ribs, 

392 and inner whorl of the ammonoid, spires and apices of gastropod, and growth lines and radial ribs 

393 of bivalve and brachiopod (Liu et al. 2022). For the identification results, there is no difference 

394 between the model's identification using images (actually fossil morphology) and the expert's 

395 identification using characterization. This is essentially determined by the prior knowledge, which 

396 is obtained by taxonomic practice. In the future, unsupervised learning may be able to provide 

397 unique insights to evaluate taxonomic practice.

398 We used the output of the top maximum pooling layer (this model is available at 

399 https://github.com/Jiarui-Sun/Automatic-fossil-identification) as fossil features and then used t-

400 SNE (Van der Maaten and Hinton 2008) for dimension reduction, which achieved good results of 

401 morphology clustering and comparison (Fig. 8). The classification of each taxon in Figure 8 is 

402 clear, and the t-SNE results are similar between the training set (Fig. 8A) and the validation set 

403 and test set (Fig. 8B). However, the individual clusters obtained from the training set are more 

404 concentrated and the boundaries between different categories are clearer than the latter due to the 
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405 training process (Fig. 8).

406 In the downscaled visualization of this model for the validation and test sets, the brachiopods 

407 and bivalves are clearly demarcated, but a few points are still mixed (Fig. 8B). A clear boundary 

408 means that the brachiopod and bivalve fossils are sufficiently morphologically distinct, so that the 

409 model can extract the differences well and represent them quantitatively. This demonstrates the 

410 unique potential of deep learning models for fossil feature extraction. Without inputting any prior 

411 knowledge other than the genus name (e.g., the model does not know which genus belongs to 

412 bivalve or brachiopod), the model computationally obtains information on the morphological 

413 differences between bivalve and brachiopod, which is compatible with the expert's classification. 

414 In the future, it may be possible to use this feature to find similar classification boundaries relying 

415 on models to perceive more detailed information about fossils (e.g., ornamental features), which 

416 in turn could allow for quantitative differentiation of gradual features. That could not only provide 

417 new possible perspectives for exploring fossil classification and biomorphological evolution, but 

418 also try to explore whether there are important features that have been overlooked by experts. In 

419 terms of the distribution area, the distribution of bivalve points is more extensive than that of 

420 brachiopods, indicating that bivalves have greater morphological variability compared to 

421 brachiopods in our dataset (but the effect of image context is not excluded here). Overall, the fossil 

422 features extracted by CNNs can reflect the morphological characteristics of organisms to some 

423 extent. 

424 CNNs can complement existing methods for morphological studies such as morphological 

425 matrix (Dai et al. 2021), landmark (Bazzi et al. 2018), and ornamentation index (Miao et al. 2022), 
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426 and provide new perspectives for studying the morphological evolution of fossils in the future. 

427 Geometric morphometry requires the extraction of fossil features by labelling manually and 

428 performing descending operations (e.g., principal component analysis), which has proven to be 

429 very effective (Topper et al. 2017; Aguirre et al. 2016). In this method, fossil features are selected 

430 by experts, with biological significance and better interpretation. However, it is also influenced by 

431 human factors, and some features may be missed (Villier and Korn 2004, Dai et al. 2021). Artificial 

432 intelligence differs in that it can obtain the information displayed in fossil images (not just a few 

433 dozen points). These obtained features are then downscaled (e.g., t-SNE used in this paper) to get 

434 the final fossil features. However, due to the black-box character of deep learning, the features 

435 obtained are poorly interpretable, and whether they are biologically meaningful needs further study 

436 in the future. Therefore, the advantage of artificial intelligence mainly lies in the feature extraction, 

437 which reduces the subjective influence and the time cost of manual marking. On the other hand, 

438 manual feature extraction is difficult to orient to a large number of specimens and is based only on 

439 some specific species. However, deep learning is capable of obtaining information from more 

440 specimens at the scale of big data, such as intraspecific differences, spatial and temporal 

441 differences, etc., due to its ability to automate the extraction of fossil features. Moreover, 

442 combining 3D information of fossils for palaeontological studies is also promising (Hou et al. 

443 2020).

444 Conclusions

445 In this study, we used machine learning to automate fossil identification based on the practical 
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446 needs of palaeontological research. We built a bivalve and brachiopod fossil dataset by collecting 

447 open literature, with > 16,000 "image-label" data pairs. Using these data, we compared the 

448 performance of several convolutional neural network models based on VGG-16, Inception-

449 ResNet-v2, and EfficientNetV2s, which are commonly used in the field of image classification 

450 and fossil identification. For this identification task, we found that EfficientNetV2s has the best 

451 performance.

452 We finally achieved automatic fossil identification including 22 fossil genera (genus mode, 

453 based on BBFID) and 16 fossil species (species mode, based on BBFID), both with > 80% 

454 accuracy. Furthermore, we conducted a study on the multiple categories� automatic fossil 

455 identification at the species level, and the test accuracy was ~64% based on BBFID (scale C, 

456 containing 343 bivalves and brachiopods). Models performed well in the automatic identification 

457 of multiple categories with a small dataset. These models can be deployed to a web platform 

458 [www.ai-fossil.com, (Liu, et al. 2022)] in the future to make them accessible more easily and 

459 usable by researchers. For the present, automatic fossil identification must be based on expert 

460 consensus, which is precisely why we emphasize the use of this model primarily for common fossil 

461 categories to aid in identification. With more taxa be included, we can use the output from deep 

462 learning models to accelerate the systematic palaeontology work during research rather than 

463 replace it. So, the researchers can focus on most challenging and ambiguous identification cases. 

464 When a new taxon is found, the AM output �unapplicable� and experts can perform further 

465 taxonomic studies on it. When experts decide to establish a new species, the fossil differences 

466 given by the algorithm can assist them in making determinations, which is what the model excels 
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467 at. But ultimately the establishment of new species still depends on how taxonomists apply the 

468 results of deep learning. We believe that there will be many palaeontologists working on fossil 

469 taxonomy and creating a steady stream of a priori knowledge to promote the interdisciplinary 

470 relationship between palaeontology and computer science together with AI researchers.

471 However, it must be noted that the model is an exploratory experiment and can currently serve 

472 as a useful assist to manual identification, not a complete replacement for it, at least for now. The 

473 current model still relies on a manually created taxonomy and uses it as a priori knowledge for 

474 model training. Current models are not able to combine all biological features (now only use 

475 morphological data) to build the taxonomy by themselves. However, when experts have completed 

476 the taxonomic criteria, researchers can use AI to identify fossils based on those criteria, reducing 

477 repetitive identification work and allowing palaeontologists to have more time and energy for more 

478 creative research work.

479 We also used machine learning to extract high-dimensional data of fossil morphology and 

480 downscaled them to obtain fossil morphological feature distribution maps, which present the 

481 similarity of fossil morphology in a visual way. It was found that the bivalve and brachiopod 

482 distribution regions have distinctive boundaries, and the morphological differences between the 

483 two are obvious enough from the neural network perspective. In this process, models based on 

484 deep learning are not absolutely objective. On the contrary, palaeontologists play a crucial role. 

485 This is precisely why we chose researcher consensus as a priori knowledge. Furthermore, we 

486 downscaled the fossil features to cast the map and observe their morphological distribution. 

487 Compared with the manually selected features, features based on the models are more objective 
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488 and can better reflect the morphological characteristics of fossils, which are still derived based on 

489 the consensus of researchers on fossil taxonomy to a certain extent. In the future, this can be used 

490 as a basis to quantify morphological information, analyze their morphological spatial distribution, 

491 and provide a new perspective for exploring biological evolution.

492

493 Data Availability Statement

494 BBFID is available from the Zenodo digital repository: https://doi.org/10.5281/zenodo.7248780. 

495 The main code and models of this study can be found at https://github.com/Jiarui-Sun/Automatic-

496 fossil-identification. 
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680 FIG. 1. Number of samples for each taxon at the genus level in (A) BBFID-1 and (B) BBFID-2 

681 (scale B) and the distribution in subsets. The fossil images in the figure show examples of several 

682 of the most common genera of the two datasets. Fossil images are from fourteen publications 

683 (Komatsu and Huyen 2007; Silberling et al. 1997; Chen et al. 2009; McRoberts 2010; Vörös and 

684 Budai 2003; Geyer et al. 2005; Chen and Stiller 2010; Hofmann et al. 2014; Gradinaru and Gaetani 

685 2019; Wu et al. 2018; Xu and Grant 1994; Wu et al. 2019; Feng and Jiang 1978; Dagys 1965). 

686 Fossil images are not to scale. 

687

688 FIG. 2. DCNN architectures used in this study. Automatic identification model architectures of A, B, C are 

689 modified from VGG-16 (Simonyan and Zisserman 2014), Inception-ResNet-v2 (Szegedy, et al. 2017), 

690 and EfficientNetV2s (Tan and Le 2021) respectively.

691

692 FIG. 3. Confusion matrix and evaluation metrics of models trained by BBFID-1 (scale A) on genus 

693 mode. The horizontal axis is the predicted label, and the vertical axis is the true label. Colors and 

694 values represent the proportion of the corresponding taxon identified as the predicted label taxon. 

695

696 FIG. 4. Confusion matrix and evaluation metrics of models trained by BBFID-2 (scale A) on genus 

697 mode. Colors and values represent the proportion of the corresponding taxon identified as the 

698 predicted label taxon.

699

700 FIG. 5. Confusion matrix and evaluation metrics of models trained by BBFID (scale A) on genus 
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701 mode. Colors and values represent the proportion of the corresponding taxon identified as the 

702 predicted label taxon.  The underlined categories are brachiopods, and the others are bivalves.

703

704 FIG. 6. The training process of ATIM on genus mode using BBFID (scale A) (Order 22).

705

706 FIG. 7. Feature maps of the most bivalve (Claraia) and brachiopod (Piarorhynchella) fossils in 

707 BBFID, plotted by extracting model (Order 22) intermediate output. Fossil images are from  

708 Song (2018), and Popov and Zakharov (2017).

709

710 FIG. 8. Fossil morphological feature distribution maps. (A) Training set data and (B) validation 

711 set and test set data were fitted simultaneously using t-SNE. The accuracy of the original 

712 identification model is 81.01%. The horizontal and vertical coordinates in the figure are the two 

713 dimensions obtained by t-SNE (n_components=2, perplexity=10, init='pca', learning_rate=1, 

714 n_iter= 6000, n_iter_without_progress=6000). The numbers represent different genera, where the 

715 orange numbers represent the bivalves and the blue numbers represent the brachiopods. The 

716 detailed correspondence is 0: Pseudospiriferina, 1: Quemocuomegalodon, 2: Burmirhynchia, 3: 

717 Promyalina, 4: Araxathyris, 5: Spiriferina, 6: Costatoria, 7: Fusichonetes, 8: Pteria, 9: Paryphella, 

718 10: Neoschizodus, 11: Prelissorhynchia, 12: Juxathyris, 13: Piarorhynchella, 14: Leptochondria, 

719 15: Daonella, 16: Unionites, 17: Bakevellia, 18: Halobia, 19: Eumorphotis, 20: Monotis, 21: 

720 Claraia.

721
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722 TABLE 1. Identification accuracy training on BBFID-1 (scale A) at the genus level with different 

723 model architectures and hyperparameters. Architectures in this table are shown in Fig. 2. 

724 �Trainable layers of functional layers� represents the size of the parameters that can be trained. 

725 �None� means that all layers of the backbone are frozen and the parameters involved in these 

726 layers cannot be trained. These parameters maintain the values at the time of model initialization. 

727 �Half layers� means that half of the backbone layer parameters are frozen, while �All layers� 

728 means that all parameters of this model are not frozen and can be updated during the training 

729 process. This setting has an impact on both the model training process and the model performance. 

730

731 TABLE 2. Model performance using BBFID-1, BBFID-2 and BBFID in EfficientNetV2s 
732 architecture. Learning rate starts from 1e-4 and the epoch is limited to less than 51. Test accuracy 
733 / Test loss means the accuracy / loss of the saved model.

734
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Figure 1
Number of samples for each taxon at the genus level in (A) BBFID-1 and (B) BBFID-2
(scale B) and the distribution in subsets.

The fossil images in the figure show examples of several of the most common genera of the
two datasets. Fossil images are from fourteen publications (Komatsu and Huyen 2007;
Silberling et al. 1997; Chen et al. 2009; McRoberts 2010; Vörös and Budai 2003; Geyer et al.
2005; Chen and Stiller 2010; Hofmann et al. 2014; Gradinaru and Gaetani 2019; Wu et al.
2018; Xu and Grant 1994; Wu et al. 2019; Feng and Jiang 1978; Dagys 1965). Fossil images
are not to scale.
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Figure 2
DCNN architectures used in this study.

Automatic identification model architectures of A, B, C are modified from VGG-16 (Simonyan
and Zisserman 2014), Inception-ResNet-v2 (Szegedy, et al. 2017), and EfficientNetV2s (Tan
and Le 2021) respectively.
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Figure 3
Confusion matrix and evaluation metrics of models trained by BBFID-1 (scale A) on
genus mode.

The horizontal axis is the predicted label, and the vertical axis is the true label. Colors and
values represent the proportion of the corresponding taxon identified as the predicted label
taxon.
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Figure 4
Confusion matrix and evaluation metrics of models trained by BBFID-2 (scale A) on
genus mode.

Colors and values represent the proportion of the corresponding taxon identified as the
predicted label taxon.
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Figure 5
Confusion matrix and evaluation metrics of models trained by BBFID (scale A) on genus
mode.

Colors and values represent the proportion of the corresponding taxon identified as the
predicted label taxon. The underlined categories are brachiopods, and the others are
bivalves.
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Figure 6
The training process of ATIM on genus mode using BBFID (scale A) (Order 22).
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Figure 7
Feature maps of the most bivalve (Claraia) and brachiopod (Piarorhynchella) fossils in
BBFID, plotted by extracting model (Order 22) intermediate output.

Fossil images are from Song (2018), and Popov and Zakharov (2017).
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Figure 8
Fossil morphological feature distribution maps.

(A) Training set data and (B) validation set and test set data were fitted simultaneously using
t-SNE. The accuracy of the original identification model is 81.01%. The horizontal and vertical
coordinates in the figure are the two dimensions obtained by t-SNE (n_components=2,
perplexity=10, init='pca', learning_rate=1, n_iter= 6000, n_iter_without_progress=6000).
The numbers represent different genera, where the orange numbers represent the bivalves
and the blue numbers represent the brachiopods. The detailed correspondence is 0:
Pseudospiriferina, 1: Quemocuomegalodon, 2: Burmirhynchia, 3: Promyalina, 4: Araxathyris,
5: Spiriferina, 6: Costatoria, 7: Fusichonetes, 8: Pteria, 9: Paryphella, 10: Neoschizodus, 11:
Prelissorhynchia, 12: Juxathyris, 13: Piarorhynchella, 14: Leptochondria, 15: Daonella, 16:
Unionites, 17: Bakevellia, 18: Halobia, 19: Eumorphotis, 20: Monotis, 21: Claraia.

PeerJ reviewing PDF | (2023:02:82981:0:1:NEW 3 Mar 2023)

Manuscript to be reviewed



PeerJ reviewing PDF | (2023:02:82981:0:1:NEW 3 Mar 2023)

Manuscript to be reviewed



Table 1(on next page)

Identification accuracy training on BBFID-1 (scale A) at the genus level with different
model architectures and hyperparameters.

Architectures in this table are shown in Fig. 2. “Trainable layers of functional layers”
represents the size of the parameters that can be trained. “None” means that all layers of
the backbone are frozen and the parameters involved in these layers cannot be trained.
These parameters maintain the values at the time of model initialization. “Half layers” means
that half of the backbone layer parameters are frozen, while “All layers” means that all
parameters of this model are not frozen and can be updated during the training process. This
setting has an impact on both the model training process and the model performance.
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1 TABLE 1. Identification accuracy training on BBFID-1 (scale A) at the genus level with different model architectures and hyperparameters. Architectures 

2 in this table are shown in Fig. 2. �Trainable layers of functional layers� represents the size of the parameters that can be trained. �None� means that all 

3 layers of the backbone are frozen and the parameters involved in these layers cannot be trained. These parameters maintain the values at the time of model 

4 initialization. �Half layers� means that half of the backbone layer parameters are frozen, while �All layers� means that all parameters of this model are not 

5 frozen and can be updated during the training process. This setting has an impact on both the model training process and the model performance. 

Order Backbone

Batch 

size

Trainable layers 

of functional 

layers

Reduce 

LR on 

plateau

Epochs

Max. 

training 

accuracy

Min. 

training 

loss

Max. 

validation 

accuracy

Min. 

validation 

loss

Test 

accuracy

Test 

loss

1 VGG-16 32 None Yes 50 0.8648 0.4212 0.6444 1.1440 0.6281 1.2512

2 VGG-16 32 Half layers Yes 40 0.9959 0.0181 0.7515 0.9126 0.7330 0.8444

3 VGG-16 32 All layers Yes 50 0.7670 0.6080 0.5698 1.3465 0.5386 1.4802

4 VGG-16 32 All layers No 36 0.3609 1.8002 0.3338 2.0523 0.0957 3.0871

5 Inception-ResNet-v2 8 None Yes 50 0.3236 1.9945 0.3385 2.0345 0.3225 2.1000

6 Inception-ResNet-v2 8 Half layers Yes 50 0.7363 0.7163 0.5263 1.4931 0.4877 1.5584

7 Inception-ResNet-v2 8 All layers Yes 46 0.9959 0.0216 0.7934 1.2041 0.7778 2.5044

8 Inception-ResNet-v2 8 All layers No 46 0.9805 0.0602 0.7981 0.8178 0.6590 1.2590

9 EfficientNetV2s 8 None Yes 50 0.5693 1.2799 0.5419 1.4210 0.4923 1.5424

10 EfficientNetV2s 8 Half layers Yes 50 0.9708 0.1013 0.7624 0.8314 0.7515 0.8633

11 EfficientNetV2s 8 All layers Yes 44 0.9959 0.0139 0.8338 0.6130 0.8302 0.6807

12 EfficientNetV2s 8 All layers No 37 0.9825 0.0578 0.8136 0.7905 0.7886 0.8122

6
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Table 2(on next page)

Model performance using BBFID-1, BBFID-2 and BBFID in EfficientNetV2s architecture.

Learning rate starts from 1e-4 and the epoch is limited to less than 51. Test accuracy / Test
loss means the accuracy / loss of the saved model.
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1 TABLE 2. Model performance using BBFID-1, BBFID-2 and BBFID in EfficientNetV2s architecture. Learning rate starts from 1e-4 and the epoch is 

2 limited to less than 51. Test accuracy / Test loss means the accuracy / loss of the saved model.

3

Order MODE Dataset Scale

> x 
images 

each 
taxon

Number of 
categories

Learning rate 
in the end

Epoch
s

Max. 
training 
accuracy

Min. 
training 

loss

Max. 
validation 
accuracy

Min. 
validation 

loss

Last 
epoch 
test 

accuracy

Last 
epoch 
test 
loss

Test 
accuracy

Test 
loss

13 Genus BBFID-1 C 10 156 1.25E-05 49 0.9972 0.0080 0.5990 1.8758 0.5848 1.9234 0.5834 1.9320
14 Genus BBFID-1 B 50 34 1.25E-05 34 0.9939 0.0281 0.7185 1.1308 0.6916 1.1420 0.7173 1.1142
15 Genus BBFID-1 A 100 13 5.00E-05 29 0.9866 0.0446 0.8090 0.6661 0.8256 0.6719 0.8210 0.6650
16 Genus BBFID-2 C 10 223 1.00E-04 22 0.9908 0.0848 0.5320 2.1067 0.4919 2.2493 0.5004 2.2021
17 Genus BBFID-2 B 50 32 5.00E-05 21 0.9929 0.0483 0.7370 0.9765 0.7170 1.0273 0.7135 1.0625
18 Genus BBFID-2 A 100 9 5.00E-05 25 0.9878 0.0486 0.8636 0.5007 0.8259 0.5409 0.8543 0.4904
19 Genus BBFID C 10 379 2.50E-05 35 0.9974 0.0134 0.5567 2.0772 0.5353 2.2279 0.5371 2.2333
20 Genus BBFID B 50 66 2.50E-05 27 0.9933 0.0299 0.7335 1.1080 0.7192 1.1866 0.7066 1.2000
21 Genus BBFID / 60 47 1.25E-05 34 0.9961 0.0177 0.7538 1.0721 0.7742 0.8506 0.7626 0.8921
22 Genus BBFID A 100 22 5.00E-05 26 0.9907 0.0335 0.8261 0.6590 0.8190 0.6615 0.8145 0.6759
23 Species BBFID-1 E 6 241 5.00E-05 31 0.9949 0.0345 0.6117 1.8168 0.5971 1.9054 0.6080 1.9233
24 Species BBFID-1 D 8 179 1.00E-04 28 0.9938 0.0645 0.6251 1.6484 0.5810 1.8759 0.6299 1.6987
25 Species BBFID-1 C 10 148 2.50E-05 32 0.9975 0.0289 0.6629 1.4035 0.6642 1.4147 0.6790 1.4161
26 Species BBFID-1 B 50 8 5.00E-05 27 0.9871 0.0789 0.7460 0.7560 0.7984 0.7489 0.8140 0.6747
27 Species BBFID-2 E 6 396 1.00E-04 23 0.9950 0.0726 0.5128 2.3015 0.4677 2.5728 0.4813 2.5160
28 Species BBFID-2 D 8 265 1.00E-04 28 0.9983 0.0492 0.5590 1.9957 0.5411 2.0768 0.5349 2.1075
29 Species BBFID-2 C 10 195 1.00E-04 25 0.9969 0.0647 0.6162 1.6714 0.5540 1.9768 0.5791 1.8711
30 Species BBFID-2 B 50 8 5.00E-05 24 0.9968 0.0472 0.9494 0.1308 0.9615 0.1806 0.9519 0.1610
31 Species BBFID / 2 1436 5.00E-05 41 0.9956 0.0271 0.4975 2.4540 0.4274 2.8980 0.4330 2.9233
32 Species BBFID / 4 914 1.00E-04 28 0.9920 0.0758 0.4958 2.4228 0.4707 2.5650 0.4899 2.5005
33 Species BBFID E 6 637 1.00E-04 25 0.9934 0.0677 0.5521 2.0340 0.5067 2.3438 0.5142 2.2276
34 Species BBFID D 8 444 5.00E-05 26 0.9975 0.0291 0.6148 1.6785 0.5752 1.8458 0.5957 1.8470
35 Species BBFID C 10 343 2.50E-05 34 0.9991 0.0143 0.6472 1.5119 0.6476 1.4888 0.6397 1.5602
36 Species BBFID B 50 16 1.00E-04 23 0.9787 0.1037 0.8399 0.5760 0.8283 0.5472 0.8283 0.5487
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