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As important regulators of alternative splicing (AS) events, serine/arginine (SR)-rich
proteins play indispensable roles in the growth and development of organisms. Till now,
the study of SR genes is still lacking in plants. In the current study, we performed genome-
wide analysis of the SR gene family in rice. A total of 24 OsSR genes were phylogenetically
classified into seven groups, corresponding to 7 subfamilies: SCL, SC, SR45, RS2Z, RSZ, RS
and SR. The OsSR genes’ structures, distribution of conserved domains and protein tertiary
structure of OsSR were conserved within each subfamily. The synteny analysis revealed
that there were six pairs of segmental duplicated genes (12 OsSR genes), suggesting that
segmental duplication events were critical for the expansion of the OSSR gene family.
Besides, interspecific synteny revealed the distribution of orthologous SR gene pairs
between rice and Arabidopsis, sorghum, wheat, and maize, inferring these genes may
originate from the same ancestor. Among all the OsSR genes, 14 genes exhibited NAGNAG
acceptors and only four OsSR genes had AS events on the NAGNAG acceptors.
Furthermore, OsSR genes showed distinct tissue-specific expression patterns, indicating
that different OsSR genes may function in different developmental stages in rice. The RT-
PCR experiments confirmed that OsSR genes underwent AS. The AS patterns on the same
OsSR gene were variable among the root, stem, leaf, and grains at different filling stages,
and some isoforms could only be detected in one or few of tested tissues. Meanwhile, our
results showed that the expression of some OsSR genes changed dramatically under ABA,
GA, salt, drought, cold or heat treatment , which were related to the wide distribution of
corresponding cis-elements in their promoter regions, suggesting their specific roles in
stress and hormone response. This research facilitates our understanding of SR gene family
in rice and provides clues for further exploring of the function of OsSR genes.
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Abstract

As important regulators of alternative splicing (AS) events, serine/arginine (SR)-rich proteins
play indispensable roles in the growth and development of organisms. Till now, the study of SR
genes is still lacking in plants. In the current study, we performed genome-wide analysis of the SR
gene family in rice. A total of 24 OsSR genes were phylogenetically classified into seven groups,
corresponding to 7 subfamilies: SCL, SC, SR45, RS2Z, RSZ, RS and SR. The OsSR genes’
structures, distribution of conserved domains and protein tertiary structure of OsSR were
conserved within each subfamily. The synteny analysis revealed that there were six pairs of
segmental duplicated genes (12 OsSR genes), suggesting that segmental duplication events were
critical for the expansion of OsSR gene family. Besides, interspecific synteny revealed the
distribution of orthologous SR gene pairs between rice and Arabidopsis, sorghum, wheat, na ze,
inferring these genes may originate from the same ancestor. Among all OsSR genes, 14 genes
exhibited NAGNAG acceptors and only four OsSR genes had AS events on the NAGNAG
acceptors. Furthermore, OsSR genes showed distinct tissue-specific expression patterns, indicating
that different OsSR genes may function in different developmental stages in rice. The RT-PCR
experiments confirmed that OsSR genes underwent AS. The AS patterns on the same OsSR gene
were variable among the root, stem, leaf, and grains at different filling stages, and some isoforms

could only be detected in one or few of tested tissues. Meanwhile, our results showed that the
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expression of some OsSR genes changed dramatically under ABA, GA, salt, drought, cold or heat
treatment, which were related to the wide distribution of corresponding cis-elements in their
promoter regions, suggesting their specific roles in stress and hormone response. This research
facilitates our understanding of SR gene family in rice and provides clues for further exploring of

the function of OsSR genes.
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1. Introduction

Splicing of pre-mRNA is an important post-transcriptional regulatory mechanism in eukaryotes,
apre-mRNA can produce different transcripts by splicing at different splicing sites. It was reported
that more than 40% genes in plants undergo AS (Chen et al., 2019a). The serine/arginine (SR)
proteins are well-known splicing factors that play important roles in both the assembly of
spliceosomes and the regulation of alternative splicing (AS) (Long & Caceres, 2009). After
transcription, the splicing of pre-mRNA is crucial to the production of mature mRNA, which takes
place in the spliceosome. The core of the spliceosome was composed of five small nuclear
ribonucleoproteins (U1, U2, U4, U5, and U6 snRNPs) and numerous non-snRNP preteins. SR
proteins were important non-snRNPsproteins that regulate splicing of pre-mRNA (Long &
Caceres, 2009; Wang & Brendel, 2004).

The serine/arginine (SR) proteins were characterized by the presence of RNA recognition motif
(RRM) and the consecutive serine and arginine dipeptides repeats and RNA recognition motif
(RRM) (Barta et al., 2010). The consecutive serine and arginine dipeptides repeat functioned as a
protein-interaction domain and the RRM provided RNA-binding specificity for SR proteins.
Besides, some SR proteins had specific domains which were less well understood, like Zn-

knuckles and RGG box (Jin, 2022). The results of plant SR proteins sequence comparison and
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phylogenetic analysis showed that plant SR proteins were classified into 7 different subfamilies,
SR, SR45,RSZ, SC, SCL, RS2Z and RS, and the last three of these subfamilies were plant-specific
which had unique domains, while the other four subfamilies had orthologs in animals (Reddy &
Shad Ali, 2011; Richardson et al., 2011). SR proteins in SCL subfamily had an RRM with a
charged extension at the N-terminus. The members of SCL subfamily included dicotyledons,
monocotyledons, mosses and green algae. The RS2Z subfamily was found in dicotyledons and
monocotyledons, and two Zn-knuckles domains and an extra SP-rich region were present on the
proteins in this subfamily. The members of RS subfamily in plants contained two RRMs and the
RS domains which were rich in RS dipeptides. The RS subfamily was mainly composed of
photosynthetic eukaryotes (Xie et al., 2022).

The SR gene itself undergoes extensive AS. It was shown that 18 SR genes in Arabidopsis
thaliana could produce more than 90 transcripts, and the precursor mRNA from rice SR gene also
underwent extensive AS (Reddy & Shad Ali, 2011). Alternative splicing (AS) events that occurred
at the NAGNAG acceptor were termed the AS-NAGNAG events, which would cause NAG
insertion-deletions in transcripts (Iida et al., 2008). In the NAGNAG motif, the first AG is termed
the E-acceptor and the second AG was termed I-acceptor (Hiller et al., 2004). AS-NAGNAG
events were widespread in mammals and plants, which contributes to the diversity of transcriptome
and proteome in different species. It has been reported that AS-NAGNAG acceptors were
overrepresented in genes which coded RRM-containing proteins. Genes coding for RNA binding
proteins were preferentially equipped with NAGNAG acceptors in human (Akerman & Mandel-
Gutfrennd, 2006; Iida et al., 2008). In Arabidopsis thaliana, NAGNAG acceptors were frequently
found genome, particularly in the A£SR genes (Schindler et al., 2008; Shi et al., 2014).

Because of the indispensable role played by SR proteins in both constitutive splicing and
alternative splicing of precursor mRNA, it is likely that they will be instrumental in modulating
the expression of genes which are essential for plants in different developmental stages. Until now,
some studies have revealed that members of the SR gene family played important roles in various

biological processes in different species, such as the hormone signal transduction and response to
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stress. In Arabidopsis, 19 AtSR genes have been identified (Barta et al., 2010). The function of
SR45 has been extensively studied in Arabidopsis thaliana. Studies have shown that SR45
negatively regulated glucose-induced growth by inhibiting abscisic acid (ABA) accumulation and
signaling, thereby inhibiting seedling establishment under adverse conditions (Ali et al., 2007;
Carvalho et al., 2010). AtSR45a was detected to undergo AS and produced two alternative splicing
variants, AtSR45a-1a and AtSR45a-1b. AtSR45a could regulated the response to salt stress in
Arabidopsis thaliana by increasing the expression these two variants and interacting with the cap-
binding complex (Li et al., 2021). AtRS40, AtRS41 and AtSCL30 participated in response to ABA
and salt stress in Arabidopsis (Chen et al., 2013; Cruz et al., 2014). And A£SR genes including
AtRS40, AtSR34a, AtRSZ22 and AtSR45a etc. were reported to participate in response to heat
stress, they underwent specific AS and produced specific mRNA variants under high temperature
stress (Filichkin et al., 2010; Ling et al., 2021; Ling et al., 2018).

In rice, 24 SR genes have been identified (Barta et al., 2010). The OsRSp29, OsRSZp23 and
OsSCL26 played roles in stimulating pre-mRNA splicing and promoting splicing efficiencies of
downstream genes (Isshiki et al., 2006). The OsSR45 functioned in regulating the response to
various stresses, including temperature stress and reactive oxygen species stress at the post
transcriptional level by interacting with OsFKBP20-1b which belonged to jmmunophilin family
in rice (Park et al., 2020). OsSR40, OsSCL57 and OsSCL25 played crucial roles in regulating
mineral element absorption and homeostasis in rice by participating in alternative splicing of
related-genes’ pre-mRNA, (Dong et al., 2018).

Although SR genes have been identified in rice, there is still lacking ef further study about their
biological function. A comprehensive analysis of SR genes in rice was performed in the present
study. The genetic relationship among OsSR genes was analyzed firstly—and then we analyzed
swuctures of OsSR proteins, collinear relationship, as well as the promoter region—sequence,
NAGNAG acceptors, expression and alternative splicing patterns in both vegetative ergans and
reproductive organs of OsSR genes, and their responses to hormones and abiotic stresses. This

study addressed a better understanding and established the foundation for further functions
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elucidation of OsSR genes.

2. Materials and methods

2.1 Identification and acquisition of information of OsSR genes

According to the accession provided in Jin's article (Jin, 2022), we extracted the sequences of
OsSR genes and the corresponding protein sequence of each gene from Rice Genome Annotation

Project Database (https://rapdb.dna.affrc.go.jp/) (Kawahara et al., 2013; Sakai et al., 2013).

2.2 Bioinformatics analysis of SR gene family genes

2.2.1 Phylogenetic analysis, conserved motifs, gene structure, tertiary structure prediction

Based on the results of the multiple amino acid sequence alignment done by Clustal W, MEGA
7.0 was used in this study to perform the phylogenetic analysis efwith maximum-likelihood (ML)
method and 1,000 bootstrap replicates (Kumar et al., 2016). Exon and intron positions in OsSR
genes were mapped and gene structures were deduced using the Gene Structure Display Server

(GSDS) (http://gsds.cbi.pku.edu.cn/) (Hu et al., 2015). Conserved motifs of OsSR proteins were

analyzed using SMART (Simple Modular Architecture Research Tool) online tool (http://meme-

suite.org/tools/meme) (Letunic & Bork, 2018), and then visualized using the TBtools (Chen et al.,

2020a). The tertiary structures of OsSR proteins were predicted by SWISS-MODEL

(https://swissmodel.expasy.org/) (Waterhouse et al., 2018).

2.2.2 Physicochemical properties and subcellular localizations

The physicochemical properties and subcellular localizations of OsSR proteins were predicted

using ExPASy Protparam online tool (https://web.expasy.org/protparam/) and BUSCA

(http://busca.biocomp.unibo.it) (Savojardo et al., 2018), respectively. The NetPhos3.1 service was

used to predict the OsSR proteins’ phosphorylation sites
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(https://services.healthtech.dtu.dk/service.php?NetPhos-3.1) (Blom et al., 1999).

2.2.3 Syntenic relationships

From the Ensembl plants database the genomic information for rice, Arabidopsis, sorghum,

maize, soybean, and wheat was retrieved (http://plants.ensembl.org/index.html). Furthermore,

segment duplication events of OsSR genes and synteny relationship of between rice and other
specie were analyzed by the MCScanX program, and the results were visualized using TBtools

(Chen et al., 2020a; Wang et al., 2012).

2.2.4 Cis-acting elements

The key promoter regions (2000 bp sequences upstream of the translation start codons) of the

OsSR genes were retrieved from RAP-DB (https://rapdb.dna.affrc.go.jp/) and submitted to the

PlantCARE online software (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) to

predict and analyze the regulatory cis-acting elements in promoter regions (Lescot et al., 2002).

2.3 Plant materials and growth conditions

Rice (Oryza sativa L. spp. Japonica, var Nipponbare) plants were used in this study. The seeds
were sterilized with 20% NaClO solution, soaked with sterile water and incubated at 37°C for
germination. Then aportion of them were transferred to the field with normal water and fertilizer
management to continue growing until maturity. Meanwhile, the other part—of-seeds were
transplanted to the 96-well PCR plates with the bottom removed, and then-grew in the Hoagland
solution (CaNO;3-4H,0 945 mg/L, KNO; 506 mg/L, NH4;NO 380 mg/L, KH,PO, 136 mg/L,
MgSO,-7H,0 493 mg/L, iron salt solution 2.5 mL/L (2.78 g FeSO,-7H,0, 500 mL distilled water,
3.73 g EDTA-2Na pH 5.5), microelement SmL/L (KI 0.83mg/L, H3BO3 6.2mg/L, MnSO, 22.3
mg/L, ZnSO, 8.6 mg/L, Na,MoO, 0.25mg/L, CuSO, 0.025mg/L, CoCl, 0.025mg/L), pH 6.0) in
the greenhouse with a photoperiod of 14/10 h at 28 °C/26 °C (day/night) and relative humidity of

65%. The Hoagland solution was renewed every 2 days.
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For tissue-specific expression analysis, the different tissues of rice planted in the field were
sampled from vegetative organs and spikelets at different filling stages. For the salt, drought and
phytohormone treatment, the seedlings at 4-leaf stage were subjected to Hoagland solution with
200 mM NaCl, 20% PEG6000, 100 uM gibberellin (GA) (100 uM) or abscisic acid (ABA),
respectively. For cold or heat stress, the seedlings at 4-leaf stage were moved to incubator with the
temperature keeping at 4 °C and 37 °C, respectively. And the 2rd and 3rd leaves from the seedlings

were dissected as samples at different time points under various treatments.

2.4 RNA isolation, RT-PCR and ¢RT-PCR

Total RNA from different samples was extracted by Total RNA Extractor (Trizol) (Sangon

Biotech) and reverse transcribed into cDNA using Hifair® Il Reverse Transcriptase (YEASEN)

according to the instruction book. The cDNA was used for following PCR amplification.

Semi-quantitative RT-PCR was performed using PrimerSTAR MaxDNA Polymerase (TaKaRa,
Japan).-Choosing the appropriate annealing temperature for PCR amplification according to the
property of primer pairs for different genes. The number of amplification reaction cycles in this
study was 30. The PCR products were determined using electrophoresis on the 1% agarose gels.
Specific primers of different OsSR genes and control gene OsActin used for RT-PCR were listed
in Table S6.

For gRT-PCR experiment, SYBR Green qPCR Master Mix (TOROIVD) was used, and the
experiment was conducted on LightCycler 480 II (Roche). The data was analyzed as previously
described using OsActin as the internal standard (Livak & Schmittgen, 2001). The gRT-PCR
experiment was carried out using 3 biological replicates, and 3 technical replicates were performed
for each biological replicate. The gRT-PCR data was calculated using 2-*A¢T method and Student's

t-test. The primer sequences for gRT-PCR were listed in Table S5.
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3. Results

3.1 Identification of OsSR genes and their characteristics

Until now, SR proteins in SR gene family have been identified in rice (Jin, 2022). Here, we
performed the prediction and analysis of the physicochemical properties of the OsSR proteins
(Table 1). The results revealed that OsSR proteins ranged in length from 185 amino acids
(OsRSZ21a and OsRSZ21) to 502 amino acids (OsSCL57), while the molecular weight varied
from 21.02 kDa (OsRSZ21) to 56.83 kDa (OsSCL57). Notably, all of the rice SR proteins were
alkaline proteins with the isoelectric point ranging from 8.67 (OsSR40) to 12.37 (OsSR45) (Table
1).

According to the BUSCA prediction analysis, except for OsSR45, which was predicted to
localize in the chloroplast, the remaining 23 OsSR proteins were localized in nucleus. By-the
experiments;-OsSR45 was observed to co-express and physically interact with OsFKBP20-1b in
the nucleus and cytoplasm in vivo (Park et al., 2020). There was experiment proved th2t OsSCL30,
which was the SR protein in rice, was visible only in the nucleus (Zhang et al., 2022). The results
indicated that different OsSR proteins together with their interaction proteins could function in
different intracellular partitions.

According to previous research, the mobility of SR proteins was regulated by phosphorylation
in Arabidopsis (Tillemans et al., 2006). In OsSR proteins, we found a number of phosphorylation
sites (Table 1), which varied considerably among the OsSR proteins, ranging from 25 (OsSC25)
to 86 (OsSR45a). The results inferred that OsSR proteins could be regulated by phosphorylation
as well. The difference in physicochemical properties is suggestive of functional differences

among the OsSR proteins.

3.2 Phylogenetic, motif composition, structure of OsSR proteins and gene structure analysis

of OsSR genes

~analyze evolutionary relationships among the SR families in rice, < 11aximum-likelihood
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phylogenetic tree was-constructed using amino acid sequences of 24 OsSR proteins 2. 1). A
total of 24 OsSR genes could be classified into 7 distinct subgroups based on the evolutionary
relationships, and the results were consistent with the reported 7 subfamilies: SCL, SC, SR45,
RS2Z, RSZ, RS, and SR, indicating their conservation within the subfamilies during their
evolution. These 7 subgroups contained 6, 3, 2, 4, 3, 2, and 4 members, respectively. Among them,
SR, RSZ, and SC subfamily are common between plants and animal, the remaining subfamilies
are plant-specific (Reddy & Shad Ali, 2011), indicating the SR proteins diverged along with the
speciation.

Conserved domains usually have important functions and are closely related to the completion
of physiological functions of proteins. Analysis of the conserved domain of OsSR proteins showed
that the OsSR proteins within the same subfamily were highly conserved in the type and
distribution of conserved domains. (Fig. 1b). The members of SCL and SC subfamily contained
only one RRM domain near the N-terminal, while a consecutive serine and arginine dipeptides
repeats (SR domain) located on the C-terminal of the proteins (Jin, 2022). Besides, the OsSR
proteins in the SCL subfamily also had a domain which could be diverse at the N-terminal. As for
two members of SR45 subfamily, both of them contained one RRM domain and SR domains which
existed in both the N- and C-terminus of the proteins. Unlike OsSR proteins in other subfamily,
two and one ZnF C2HC motif were contained in members of RS2Z and RSZ subfamily besides
RRM and SR domains, respectively. The members in RS subfamily contained two RRMs and the
RS domain. Similarly, the four proteins of the SR subfamily also contained two RRM domains,
but unlike the RS subfamily, the C-terminal of these proteins was 12 domain.

Furthermore, we—performed the prediction of the tertiary structure of these proteins using
SWISS-MODEL online server

that OsSR proteins were mainly composed of a-helices, B-folds and random coils (Fig. S1 and
Table S1). It was speculated that proteins with different tertiary structures may determine the
diversity functions of OsSR genes. We noticed that OsSR protein structures showed differences

among different subfamilies, especially among RS subfamily, SR subfamily and other subfamilies
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(Fig. S1). While in most cases, the OsSR proteins in the same subfamily had similar tertiary
structures (Fig. S1). For example, OsSCL30a, OsSCL30, OsSCL57, OsSCL28 and OsSCL25 had
identical structures, indicating that they have similar function.

Gene structural variety might function as a form of evolution for numerous genes (Fedorov et
al., 2002). And the conservation of gene structure is related to the number of introns in eukaryotes
(Rogozin et al., 2003). In—ordertofurther explore structural difference and conserved
relationship among these OsSR genes, the genetic structure of 24 OsSR genes was analyzed using
GSDS online tool. Notably, the OsSR genes differed in nucleotide sequence, but they contained
the similar number of exons and introns in the same subfamily except for the genes in SCL
subfamily. The number of introns ranged from 3 to 13 (Fig. 1c). The genes, containing the most
introns and exons and fewest introns and exons, were OsRSZ23 and OsSR33a, belonging to RSZ
and the SR subfamily, respectively. The OsSR genes in SC subfamily usually contained 6 or 7
introns, while the members of SR45 subfamily contained 10 or 11 introns. All the members of
RS2Z and RS subfamily contained 5 and 4 introns, respectively. The number of introns of OsSR
genes in the RSZ subfamily is 4 or 3. The intron number in SR subfamily was up to 12 or 13.

The analysis of domain and protein structural characteristics laid the foundation for further
understanding the function of OsSR. Meanwhile, OsSR genes with closer evolutionary relationship
were similar in protein domain distribution, protein structure and gene structure, thus we

speculated that OsSR genes belonging to the same subfamily would have similar function.

3.3 Segment duplication analysis of OsSR genes

Segmental duplication is considered as one of the main factors driving expanding of gene
families during evolution in plants (Cannon et al., 2004). As shown in Fig. 2, 12 genes (6 pairs),
including OsRS2Z37 and OsRS2Z39, OsSR40 and OsSR33a, OsSR45 and OsSR45a, OsRSZ21 and
OsRSZ21a, OsSR32 and OsSR33, OsSCL57 and OsSCL30, were implicated in segmental
duplication events. Totally, 50% members of OsSR genes showed collinear relationships,

indicating that segmental duplication was primarily responsible for the expansions of the SR gene
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family in rice. The ratio of Ka/Ks that exists between gene duplication pairs provides insight into
whether or not there is selection pressure existing on protein-coding genes (Hurst, 2002).
Additionally, we found that the Ka/Ks ratios of all OsSR gene duplication pairs were less than 1.0

(Table S2), suggesting that these six duplication pairs underwent purifying selection.

3.4 Synteny and orthologous gene pairs of SR genes

Synteny refers to the distribution or arrangement of homologous genes within one specie or
among different species (McCouch, 2001). The syntenic relationship of the SR genes between rice
and five plant species (Sorghum bicolor, Arabidopsis thaliana, Zea mays, Triticum aestivum and
Glycine max) was examined in this study. There were no orthologous genes between rice and
soybean (Fig. S2). And only four pairs of orthologous genes were identified between rice and
Arabidopsis (OsSR33a and AtSR34, OsSR33 and AtSR34, OsRS27Z36 and AtRS2Z33, OsRS2Z36
and AtRS2732) (Fig. 3). This might ‘u: to the distant evolutionary genetic relationship between
dicotyledon and monocotyledon. In addition, a total of 20, 40, 64 orthologous SR gene pairs were
identified between rice and sorghum, maize, wheat, respectively (Fig. 3 and Table S3). These
orthologous SR genes in different species may have similar functions that involved in constitutive

and alternative pre-mRNA splicing, and post-splicing activities.

3.5 NAGNAG acceptors in OsSR genes

NAGNAG splicing produces two distinct isoforms that are distinguished by three nucleotides
(NAG,N=A, C, G, T). NAGNAG acceptors were termed based on the existence of a NAGNAG
acceptor motif, and alternative splicing at NAGNAG acceptors was widespread in the genome of
animals and plants (Akerman & Mandel-Gutfreund, 2006).

A scan of OsSR gene products from the information on the RAP-DB wascarriedout for
signatures associated with NAGNAG acceptors. It showed 1ot 14 out of 24 OsSR genes exhibited
NAGNAG acceptors. Among these 14 genes, OsSCL26, OsRS2Z36, OsRSZ21a and OsRSZ21

contained 2, 2, 3, 2 NAGNAG acceptors, respectively, and the other 10 genes contained only one
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(Table 3). Furthermore, we focused on whether alternative splicing occurred on these NAGNAG
acceptors. We found that only four OsSR genes, including OsSCL26, OsSC25, OsSR45a and
OsSR45, had AS-NAGNAG event on the NAGNAG acceptor, which led to the deletion of a single

amino acid at the protein level (Table S7).

3.6 The prediction of cis-acting elements on OsSR genes’ promoters

Inducing or inhibiting the binding of transcription factors to the corresponding cis-acting sites
in the gene promoter region to regulate the expression of downstream gene is an important
mechanism to response (o :nvironmental changes (Riechmann et al., 2000). The identification of
cis-elements might provide c!l1es for determining gene expression patterns under different kinds
of stresses. Weperformed the analysis on the promoter regions of OsSR genes. Then, 6 types cis-
regulatory elements were-identified, including promoter/enhancer elements and elements related
to light responsiveness, stress, hormone response, development/tissue specificity or circadian
control (Fig. 4 and Table S4). The proportion of cis-acting elements in each of these categories
was 9.1%, 45.5%, 9.1%, 18.2%, 16.4%, and 1.8%, respectively.

The cis-acting elements in ‘promoter/enhancer element’ category, which ensure the correct
location and start of transcription, were ubiquitously identified in all OsSR genes’ promoters,
including CAAT-box and TATA-box (Fig. 4). The ARE and MBS in ‘stress’ category, which are
involved in anaerobic induction and drought responsiveness, respectively, were harbored in most
of OsSR genes’ promoters. In ‘hormone response’ category, the cis-acting elements respond to
ABA, auxin, GA, MeJA and salicylic acid were identified. The ABA, salicylic acid and MeJA
responsiveness elements, including ABA responsive element (ABRE), TCA-motif, TGACG-motif
and CGTCA-motif, widely presented-in OsSR genes’ promoters | otably, ABRE was the most
widely distributed hormone-responsive element, which presented in almost all the promoters of
the 24 OsSR genes. Moreover, among these hormone-responsive elements, GA responsive
elements were the most abundant. We found that 3 out of 9 identified hormone-responsive

elements were GA response elements (Fig. 4 and Table S4), including P-box, TATC-box and
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GARE-motif. As for the ‘development/tissue specificity’ category, GCN4 motif, RY-element and
AACA_ motif were identified which were seed and endosperm development-related (Fig. 4 and
Table S4). In addition, only OsSCL30a and OsRS29 contained circadian control related elements
in their promoters. Based on these findings, it indicates that OsSR genes may have roles in respond

differently to different hormones and environmental stresses.

3.7 Expression patterns and AS of OsSR genes

The identification of cis-acting elements revealed that OsSR genes may play roles in growth and
development, as well as response to abiotic and hormone in plants. We examined the expression
profiles and AS patterns of OsSR genes in several tissues or under abiotic conditions (drought, salt,

cold, and heat) and hormone treatments (GA and ABA) in this section.

3.7.1 Tissue expression profiles of the OsSR genes

To further characterize the potential biological function, gRT-PCR was used to conduct issue-
specific expression analyses of OsSR genes. Totally, we detected all 24 OsSR genes in 8 tissues
and organs including root, stem, leaf and spikelets before fertilization, at flowering and 5, 10 and
20 days after fertilization (Table S8). Our results showed that the expression of the OsSR genes
was tissue-specific and development phase-dependent (Fig. 5 and Fig. S3). The genes in SCL
subfamily mainly expressed in stems, leaves and young panicles, and showed a lower expression
in grains after 5 days of pollination. Notably, the expression of OsSC32 and OsSC34 in SC
subfamily showed leaf preferential expression, whereas the expression of OSC25 was very low in
the tested tissues. The OsSR45a and OsSR45 in SR45 subfamily were specifically higher expressed
in panicles at DBF, DF and 5 DAF. As for the genes in RS2Z subfamily, the expression of
OsRS27Z39 was almost failed to be detected in both vegetative and reproductive organs, indicating
that this gene might be luxury gene. The rest 3 genes mainly expressed in stem and leaves, while
OsRS27Z36 was also highly detected in panicles at DF. The ubiquitous expression of three genes in

the RSZ subfamily was observed in 8 tissues with relatively high levels, especially in stems, leaves
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and grains after 10 days of fertilization. Furthermore, 2 RS subfamily genes highly expressed in
panicles at different developmental stages. And high expression in leaves and panicles at DBF

were observed for 4 genes in SR subfamily.

3.7.2 Alternative splicing of OsSR genes in different tissues

It has been reported that the pre-mRNA of the SR gene which encoded the splicing regulator in
different species would undergo extensive AS themselves (Chen et al., 2019b; Isshiki et al., 2006).
Although alternative splicing of OsSR genes has been reported, the alternative splicing pattern of
SR gene and the expression pattern of corresponding transcripts in different tissues at different
development stages are still poorly understood. We summarized the alternative splicing of all 24
OsSR genes according to the information on the RAP-DB (Table S7), and the schematic diagrams
of alternatively spliced transcripts of the OsSR genes mentioned in the following experiment were
drawn according to the sequence information provided by the database.

To analyze the expression patterns of different transcripts produced by the alternative splicing
of OsSR genes, we performed the semi-quantitative RT-PCR using the primers which were specific
to the target genes (Table 2 and Table S6). For 11 selected OsSR genes, RT-PCR analysis was
conducted in roots, stems, leaves, panicles at different development stages. The results showed
except OsSCL25 and OsRS2Z36, the remaining 9 genes exhibited AS (Fig. 6).

The OsSCL30a belonging to SCL subfamily produced four transcripts, but the expression of the
isoform 1 was dominant compared with other transcripts. The expression of isoform 1 could be
observed in various tissues, while isoform 2, isoform 3 and isoform 4 accumulated only in the
vegetative tissues including root, stem and leaf. (Fig. 6). OsSC34 from SC subfamily produced
three transcripts, among which the expression of the isoform 1 was much more abundant than the
other transcripts, which were mainly accumulated in the leaf and stem (Fig. 6). As for three genes
in RS2Z subfamily, OsRS2Z36 produced only one transcript (Fig. 6). OsRS2Z38 produced two
transcripts and the isoform 2 was predominantly accumulated in all tissues. There were four

different transcripts that produced by OsRS2Z37, the isoforms 1 and 2 were observed in all the
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tissues while the isoform 3 and isoform 4 were detected in different tissues except the root.
Moreover, compared to the other two isoforms, the isoform 1 and isoform 2 of OsRS2Z37 were
more abundant in all tissues. The AS pattern of OsRSZ21 belonging to RSZ subfamily in different
tissues was analyzed (Fig. 6). Two transcripts of OsRSZ21 were observed, and the isoform 1
expressed more abundant. The AS expression pattern of two SR genes belonging to RS subfamily
in rice was detected in various tissues (Fig. 6). The isoform 1 and isoform 2 generated by OsRS29
were more abundant in all tested tissues. OsRS33 generated four transcripts which could be
detected in different tissues except the root, and the isoform 1 expressed more abundant than the
others. In the SR subfamily, OsSR32 mainly produced isoform 1 and 2 in various tissues (Fig. 6).
It was observed that the two variants generated by OsSR33a had equivalent expression levels in
the stem, leaf and spikelet at 5 days after flowering, while isoform 1 was much more abundant in
other tissues.

Taken together, the alternative splicing patterns of OsSR genes were tissue-specific, which
means the expression levels of different transcripts produced by the same OsSR genes varied

greatly in different tissues, but most OsSR genes mainly express one transcript in each tissue.

3.7.3 Expression of OsSR genes in response to abiotic stresses

The analysis of cis-acting elements suggesting that OsSR genes may have roles in response to
abiotic stress in rice (Fig. 4). Here, the response of 24 OsSR genes to different environmental stress
were examined (Table S9-S13).

OsSR genes exhibited different expression patterns in response to the salt stress. OsSCL28,
OsSC32, OsSR45a, OsRS2Z37 and OsRSZ21 displayed similar response patterns to salt stress (Fig.
7a). After being exposed to salt stress for 1 h to 2 days, the expression of these five genes was
significantly down-regulated compared to the control the mock treatment. The expression levels
of OsRS27Z38, OsRS2Z21a, OsRSZ23, OsRS29, OsRS33 and OsSR32 were significantly induced
by salt treatment, having a stably elevated expression level after 1 h treatment. The response of

OsSCL26 to salt stress appeared after 9 hours of treatment, the expression of OsSCL26 was down-
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regulated dramatically. The significant and steady induction or inhibition of expression levels were
not observed in other OsSR genes, which had the similar expression patterns to the mock treatment
(Fig. S4).

Under drought stress (Fig. 7b), there was the evident increase in the expression level of
OsSCL28, OsSCL26, OsSR45a, and OsRSZ21a after treatment for 1h to 2 days. Different OsSR
genes were responsive to drought with various degrees. The expression levels of OsSC25, OsSR435,
OsRSZ21 and OsRS33 were considerably up-regulated from 2 h, 9 h, 9 h and 4 h after treatment,
respectively, while OsSCL30a was up-regulated within 4 h of treatment and the suppressed
expression of OsSCL30a was observed after drought treatment for 9 h. Other OsSR genes exhibited
no obvious patterns in response to drought stress (Fig. S5).

The expression of OsSC25, OsSR45a, OsRSZ21a and OsSR33 were induced by the cold
treatment (Fig. 8a). The induced expression of OsSC25 peaked at 6 h after treatment. Moreover,
the induction of OsSR45a was strong, the expression level of OsSR45a increased by more than 10
times compared to the control within 1 hour to 9 hours after treatment. Under cold stress (Fig. 8a),
the expression levels of OsSCL30, OsSCL28, OsSCL26 and OsRSZ23 were remarkably decreased.
The OsRSZ23 showed an exaggerated response to the cold treatment, its expression was almost
completely suppressed under low temperature. Furthermore, the expression levels of other OsSR
genes fluctuated, but the changes were slight between treatment and control (Fig. S6).

OsSR genes were responsive to high temperature with various patterns and degrees (Fig. 8b and
Fig. S7). Heat treatment induced the significant down-regulation of OsSCL30a, OsSCL30,
OsSCL26, OsRS2Z37, OsRSZ23 and OsRS33 (Fig. 8b). Notably, the expression of OsSCL26 gene
was almost completely suppressed under heat stress. The results showed that heat treatment
significantly upregulated the expression of OsSCL25 and OsSC32 for 1 h to 2 days (Fig. 8b). After
exposure to heat stress within 6 h, the expression of OsSR45a was remarkably induced, and it was
observed to be down-regulated after 9 h of treatment. The expression of OsRS29 was up-regulated
within 1 day of heat treatment and began to decrease after 1 day. The response of OsRSZ21 and

OsSR33 to heat stress appeared after 9 hours of treatment, showing a significant down-regulation
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(Fig. 8b).
In summary, the results above indicated that response patterns to abiotic stresses of OsSR genes

were time-dependent and varied among different genes.

3.7.4 Expression of OsSR genes in response to hormones

According to the above analysis, the promoter regions of OsSR genes contained abundant cis-
elements that related to hormones (Fig. 4), especially ABA-responsive and GA-responsive
elements. Thus, we focused on two hormones, ABA and GA, which are essential for plant growth
and development. The expression patterns of OsSR genes under different phytohormone treatments
were investigated by gRT-PCR (Fig. 9, Fig. S8, Fig. S9, Table S9 and Table S14-S15). OsSCL25,
OsRSZ21 and OsSR33a were significantly induced by GA. OsSCL28, OsSR45a, OsSR32 and
OsSR33 were induced by GA after treatment for 1 h to 12 h (Fig. 9a), the induced peak values
appeared at about 9 h. After being treated with GA for approximately 5 h, there was a considerable
decrease in the expression level of OsRS2Z38, then the level gradually increased from 24 h time
point and recovered to the similar level compared to the control at 48 h time point (Fig. 9a).

Only a few OsSR genes showed obvious response patterns under exogenous ABA treatment. As
compared with the expression under mock treatment, the ABA treatment resulted in a significant
increase in that of OsSCL25 and OsSR45a, while the change in expression of OsRS2Z36 was found

to be inverse, which was shown to be suppressed by ABA treatment (Fig. 9b).

4. Discussion

SR proteins which working as the splicing regulator play indispensable role in splicing of
especially in AS on pre-mRNA. The SR gene family has been identified in many plant species,
such as Arabidopsis, rice, wheat, maize, cotton and longan (Chen et al., 2019b; Chen et al., 2020b;
Jin, 2022; Wei et al., 2022). In this study, we focused on the 24 SR genes in rice, including their
classification, gene and protein structure, chromosomal location, evolution, cis-elements,

expression profiles, and response to abiotic stress and hormone.
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4.1 Domains and physicochemical properties of OsSR proteins

The SR proteins were evolutionarily conserved at the structural level. Previous studies have
shown that these conserved domains are essential for the protein function properly in plants. In
Arabidopsis, N- or C-RS domains were necessary for the accurate nuclear localization for atSR30
and atSR45a (Mori et al., 2012). It has been reported that RSZp22, which was the member of the
RSZ subfamily in Arabidopsis, displayed speckle-like distribution and localization in puclear, and
the realization of this accurate localization was inseparable from the presence of RRM and zinc-
knuckle in the protein sequence of RSZp22 (Rausin et al., 2010). We found that the OsSR proteins
in the same subfamily showed similar motif arrangements and considerable variation among
different subfamilies (Fig. 1b). All OsSR proteins were found to have the RRM domain, and the
Zn_C,HC domain was contained in the OsSR proteins belonging to RSZ and RS2Z subfamilies
(Fig. 1). In addition, the distribution of domains in OsSR proteins were significantly different
among different subfamily, which may be related to the functional differentiation of OsSR
proteins. However, there are few studies on the effect of conservative domains on the properly
function of OsSR proteins. Further research could be conducted by targeted editing of regions
encoding RRM, SR or Zn C2HC domain OsSR genes with gene editing technology and analysis
the corresponding transgenic materials.

The SR proteins are essential nuclear localized proteins that function as splicing factors in
splicing of precursor mRNA (Misteli et al., 1997). In the current study, subcellular localization of
most of OsSR proteins was in nucleus (Table 1), indicating the OsSR proteins could function as
splicing factors as those in other species. Intriguingly, SR proteins were also involved in post-
splicing activities, which were achieved through continuous shuttle between the nucleus and the
cytoplasm (Huang & Steitz, 2001; Michlewski et al., 2008; Swartz et al., 2007). The state of
phosphorylation and dephosphorylation was the key factor affecting the dynamic subcellular
localization of SR proteins (Jin, 2022; Mori et al., 2012). For example, studies have proved that
RSZp22 in Arabidopsis thaliana was a nucleocyto-plasmic shuttling protein, and the

nucleocytoplasmic shuttling properties of RSZp22 have been analyzed in detail (Rausin et al.,
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2010; Tillemans et al., 2006). Nevertheless, there is a lack of research on the determinants of SR
protein dynamic regulation especially in plants. The results of this study showed that OsSR
proteins contained different amounts of phosphorylation sites (Table 1). Further research is needed
on dynamic distribution of OsSR proteins and how this process affects post-splicing activities

including mRNA export.

4.2 The orthologous SR gene pairs between rice and other species provide insights into the

evolution and function of the OsSR genes

Collinearity analysis in this study revealed the distribution of orthologous genes of SR genes
between rice and other species, which helped us further understand the origin of the OsSR genes.
Compared to a larger number of orthologous SR gene pairs identified between rice and other
monocotyledonous plants, 10.ind only 4 orthologs of OsSR genes were found in soybean and
Arabidopsis, respectively (Fig. S1, Fig. 3 and Table S3), suggesting that the development of
orthologous SR pairs was more probable to occur after the divergence of dicots and monocots.
Evidently, multiple 7aSR genes were identified as orthologs of one single OsSR gene. For instance,
TaSR4D, TaSR7A, TaSR6B, TaSR7D and TaSRI14D were the orthologs of OsSR33 (Table S3),
indicating the expansion of OsSR genes may occur before that of wheat.

The orthologous genes in different species may originated-from a common ancestor, the
sequencings of orthologous genes are conserved, indicating the conservation of function of these
genes (Tang et al., 2008). Understanding the function of these orthologous genes is helpful to
reveal and explore the function of OsSR genes. Among the orthologous SR genes identified in
other species in this study, there have been some reports on their gene functions. A£SR34 in

Arabidopsis, the orthologous gene of rice OsSR33a and OsSR33 has been reported to be related to

heat stress response (Ling et al., 2018). S
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4.3 AS-NAGNAG events were not frequent on OsSR genes

, However, AS-NAGNAG events were

only observed at the location of the 3 acceptors. Notably, the different tissues and the change of
environmental conditions could affect the alternative splicing rate occurring at the NAGNAG
acceptor in Arabidopsis, which suggested that the differential splicing of NAGNAG acceptor in
Arabidopsis may mediated by the organ and condition specific differences of composed of the
spliceosome (Schindler et al., 2008). However, the factors affecting NAGNAG alternative splicing

in OsSR genes are remaining to be evaluated.

4.4 The AS pattern of OsSR genes varied with different tissues

The SR genes themselves undergo extensive alternative splicing (Reddy & Shad Ali, 2011).
This study investigated the alternative splicing pattern as well as the expression of different
transcripts produced by the OsSR genes in both vegetative and reproductive tissues (Fig. 6).
Previous study performed the investigation of all splicing variants of SR genes in Arabidopsis.
Notably, the majority of these alternative splicing occurred within the coding region of SR genes,
and the AS type on SR genes in Arabidopsis was mainly intron retention (Palusa et al., 2007).
Interestingly, we found in most cases, AS events of OsSR genes occurred in the 3' or 5' untranslated
regions, which would not cause the corresponding genes to generate new protein coding sequences
(Fig. 6 and Table S7). We speculated that such splicing may have an impact on the expression and
stability of precursor mRNA (Jin, 2022). Nevertheless, Some OsSR genes such as OsSCL30a,
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OsRS2737, OsRS2Z38, etc., could undergo alternative splicing in the coding region and generated
transcripts with different CDS, which means they could encode different proteins (Fig. 6 and Table
S7). Moreover, these different transcripts produced by the same OsSR gene had tissue expression
specificity, and some transcripts could only be detected in specific tissues. For example, isoform
3 and isoform 4 produced by OsRS29 was only detected in stem, leaf and spikelets at 10 days after
flowering (Fig. 6), indicating that the proteins encoded by these transcripts only expressed in
specific tissues. Studies have shown that different transcripts of one gene produced by alternative
splicing may perform distinct functions. The SR gene SR45 in Arabidopsis could produce two
transcripts, and SR45.1 played a role in flower development, while SR45.2 was involved in
regulating root growth and development (Zhang & Mount, 2009). Whether there are functional
differences between different transcripts produced by the same OsSR gene in rice needs further

exploration and research.

4.5 OsSR genes may function on plant growth, response to hormones and abiotic stresses

In the current study, we have found most of OsSR genes extensively expressed with high level
in the stem, leaf or spikelet. The expression patterns of different OsSR genes were tissue and
development stage dependent, indicating their specific functions. Based on the detection results of
gene tissue-specific expression (Fig. 5), we speculated that SCL, SC, and RS2Z subfamily genes
may be involved in regulating the development of vegetative organs in rice, while the OsSR genes
in SR45, RSZ, and RS subfamily were more likely to participate in regulating the formation and
filling of grains in rice.

The growth of plants could be profoundly influenced by a variety of environmental conditions.
The transcription levels of related genes could be induced, repressed or regulated by various stress
(Palusa et al., 2007). However, the expression profiles of OsSR genes under various stresses have
not been detected till now. The promoter analysis in this study suggested that OsSR genes played
important roles in various stress responses in rice. In the promoter region of OsSR genes, different

types of cis-acting elements were discovered, including 10 hormone-responsive and 5 stress-
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responsive elements (Fig. 4 and Table S4), and our results showed the expression of some of OsSR
genes were changed after abiotic or hormone treatment (Fig. 7, Fig. 8 and Fig. 9), indicating that
they modulated the response to stresses in rice. These results lay a foundation for further
understanding the function of OsSR genes. For example, our experiment showed that under salt
treatment, the expression of OsRS33 was significantly upregulated (Fig. 7), which was consistent
with the previous study that OsRS33 gene knockout lines were more sensitive to salt stress
compared with the wild type (Butt et al.,, 2022). We found OsSCL30 was obviously and
continuously suppressed by the cold treatment, and in fact, OsSCL30 was related to cold tolerance
in rice, overexpression of OsSCL30 reduced the tolerance of rice seedlings to low temperature
(Zhang et al., 2022).

Besides, we observed that some OsSR genes respond to a variety of stresses simultaneously.
OsSCL30, OsSCL26 and OsRSZ23 responded to both cold and heat stress, suggesting that the
expression of these genes was affected by ambient temperature (Fig. 8). Moreover, the expression
of OsSC25 and OsRSZ2la genes were affected by both drought and cold stress, while the
expression of OsSC32 and OsRSZ23 were affected by both salt and temperature stress (Fig. 7 and
Fig. 8). However, no OsSR gene was found to respond to GA and ABA simultaneously (Fig. 9).
In Arabidopsis, SR45a responded to ABA and abiotic stresses (Cruz et al., 2014; Ling et al., 2021).
Consistently, we found that OsSR45a, a member in SR45 subfamily, could also respond to multiple
stresses simultaneously. The results showed that ABA, GA, salt, drought and temperature stress
significantly affected the expression level of OsSR45a (Fig. 7, Fig. 8 and Fig. 9), indicating that
expression pattern of OsSR45a were stress-dependent. Altogether, these results strongly suggest
that OsSR genes are critical in response to environmental signals in rice, and the function and

mechanism of OsSR genes could be further studied based on the results in this study.

5. Conclusions

In this study, the comprehensive analysis on OsSR genes gave some insights on their

characteristic and function. It showed that 24 OsSR genes were distributed in 7 different
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subfamilies based on the phylogenetic analysis. Gene structures of OsSR genes, distribution of
domains and protein structure of OsSR were conserved within each subfamily. There were 6
segmental duplicated OsSR gene pairs (50%) in rice genome, indicating segmental duplication
played an overwhelming role in the expansion of SR gene family in rice. Most of OsSR genes
would undergo AS and the AS patterns varied with different tissues. The majority of OsSR genes
would express in different tissues, while their expression level varied substantially among different
organs, suggesting their extensive functions in vegetative growth or spikelet development in rice.
Furthermore, the different expression patterns of OsSR genes displayed between abiotic stress or
hormone treatment and mock treatment indicating that OsSR genes may participate in rice
hormone/abiotic stress signaling pathway. The current results will be helpful for better

understanding and further study of OsSR genes.
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Figure 1

Schematic representation of the phylogenetic relationship, gene structures and
conserved motifs in OSSR genes.

(@). Maximum-likelihood (ML) phylogenetic tree of OsSR proteins. (b). Distribution of
conserved motifs in OsSR proteins. (c). Exon/introns and untranslated regions (UTRs) of OsSR
genes. Green boxes denote UTR (untranslated region); yellow boxes denote exon; black lines

denote introns. The length of gene can be estimated using the scale at the bottom.
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Figure 2

Schematic representations for the chromosomal locations and segment duplications of
OsSR genes.

A total of 24 OsSR genes were mapped onto the chromosomes on the basis of their physical
location. 1-12 were the chromosome numbers (Chrl- Chr24). The gray lines indicated

duplicated blocks. The duplicated OsSR gene pairs were highlighted in green lines.
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Figure 3

Synteny analyses of SR genes between rice and four plant species (Arabidopsis thaliana,
Sorghum bicolor, Zea mays, and Triticum aestivum).

The gray lines indicated collinear blocks and syntenic SR gene pairs would be highlighted in

blue lines.
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Figure 4

Cis-acting elements in promoter regions of OsSR genes.

Cis-acting elements were predicted based on 2 kb sequences upstream of coding sequences.
The quantity of cis-acting elements was normalized by log 10 (number + 1) and then used for

heatmap construction.
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Figure 5

Expression profiling of the OsSR genes in 8 tissues based on gRT-PCR

DBF, Day before fertilization; DF, Day of flowering; DAF, Day after fertilization. OsActin was
used as control, and each set of data contained three replicates. The comparative ACT values

of OsSR genes were transformed by log2 to build the heatmap.
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Figure 6

Expression and AS patterns of OsSR genes.

DBF, Day before fertilization; DF, Day of flowering; DAF, Day after fertilization. The numbers
after the black arrows indicate the size of the amplification products. The diagrams on the
right are schematic diagrams of alternatively spliced transcripts, red arrows indicate primers,

the numbers on the right indicate the expected size of products.
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Figure 7

Expression of OsSR genes in response to salt (a) and drought (b) stress.

OsActin was used as control. Error bars represent mean + SE of three biological replicates. *P

< 0.05 and **P < 0.01 indicate significant differences compared with CK determined by

Student’s t-test.
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Figure 8

Expression of OsSR genes in response to cold (a) and hot (b) stress.

OsActin was used as control. Error bars represent mean + SE of three biological replicates.,

*P < 0.05 and **P < 0.01 indicate significant differences compared with CK determined by

Student’s t-test.
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Figure 9

Manuscript to be reviewed

Expression of OsSR genes in response to hormones.

OsActin was used as control. Error bars represent mean + SE of three biological replicates. *P

< 0.05 and **P < 0.01 indicate significant differences compared with CK determined by

Student’s t-test.
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Table 1l(on next page)

Basic information of OsSR gene family members.
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Protein Molecular Predicted
Revised Alternative Length Isoelectric Instability phosphorylation
Subfamily Intron Exon length Weight Subcellular
Nomenclature Splice Form (bp) point index sites
(aa) (kDa) location
OsSCL30a LOC 0Os02g15310.1 4309 6 7 265 30.47 11.09 111.87 nucleus 45
OsSCL30 LOC Os12g38430.1 3856 6 7 263 30.19 10.9 110.93 nucleus 47
OsSCL57 LOC Os11g47830.1 7034 13 14 502 56.83 10.01 100.02 nucleus 82
S OsSCL28 LOC 0s03g24890.1 4646 5 6 243 27.78 10.83 88.03 nucleus 35
OsSCL25 LOC 0Os07g43950.1 3180 4 5 213 24.82 10.68 103.01 nucleus 50
OsSCL26 LOC 0s03g25770.1 3549 4 5 218 25.68 11.17 114.71 nucleus 40
SC OsSC32 LOC 0Os07g43050.1 4182 7 8 275 32.24 11.35 118.57 nucleus 59
OsSC34 LOC 0s08g37960.1 3154 6 7 289 33.54 11.8 112.71 nucleus 56
OsSC25 LOC 0s03g27030.1 3000 6 7 206 24.90 10.33 64.44 nucleus 25
SR45 OsSR45a LOC 0Os05g01540.1 3826 10 11 426 47.75 12.19 133.86 nucleus 86
OsSR45 LOC 0Os01g72890.1 5025 11 12 432 48.11 12.37 160.81  chloroplast 77
RS2Z OsRS27Z39 LOC _0s05g07000.1 4237 5 6 338 39.02 9.83 64.03 nucleus 45
OsRS2737 LOC 0s01g06290.1 3944 5 6 324 36.89 11.27 96.97 nucleus 57
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OsRS2Z36 LOC 0s05g02880.1 3489 5 6 323 36.22 10.83 101.82 nucleus 61
OsRS2Z38 LOC Os03g17710.1 3333 5 6 335 37.52 11 100.05 nucleus 60
RSZ OsRSZ21a LOC 0Os06g08840.1 3671 4 5 185 21.18 11.29 103.17 nucleus 34
OsRSZ21 LOC _0s02g54770.1 4678 4 5 185 21.02 11.24 93.82 nucleus 29
OsRSZ23 LOC 0s02g39720.2 4269 3 4 203 23.20 11.33 112.07 nucleus 35
RS OsRS29 LOC 0Os04g02870.1 4490 4 5 245 28.78 9.94 68.28 nucleus 31
OsRS33 LOC _0s02g03040.1 3691 4 5 279 32.54 9.88 60.31 nucleus 30
SR OsSR33 LOC Os07g47630.1 5111 12 13 296 33.14 10.64 104.32 nucleus 59
OsSR32 LOC 0Os03g22380.1 4789 12 13 286 31.94 10.54 98.23 nucleus 55
OsSR33a LOC 0Os05g30140.1 7169 13 14 294 33.42 10.92 102.83 nucleus 64
OsSR40 LOC Os01g21420.1 7570 12 13 292 33.50 8.67 48.14 nucleus 29
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Table 2(on next page)

Alternative splicing pattern of 11 selected OsSR genes.

Peer] reviewing PDF | (2023:04:84270:0:1:NEW 13 Apr 2023)



PeerJ

Size of
amplification
SR gene Size of all predicted transcripts (bp)
product on

genome (bp)

1) 1269 (322), 2) 2241 (1293), 3) 1822 (875),
0sSCL30a 1738
4)2071 (1123)

OsSCL25 1) 1091 (491) 1931

0sSC34 1) 1403 (695), 2) 1416 (796), 3) 1392 (775) 970
1) 1332 (537), 2) 2351 (537), 3) 2417 (596),

OsRS2Z37 1887
4)2672 (851)

OsRS2Z36 1) 1312 (918) 2059

OsRS2Z38 1) 1456 (979), 2) 1442 (964) 2855

OsRSZ21 1) 1398 (469), 2) 991 (583) 957

OsRS29 1) 1234 (650), 2) 1183(650), 3) 1560(1074), 4) 1579(1083) 3782

1) 1349 (1001), 2) 1422 (1096), 3) 1859 (1511),
OsRS33 3343
4) 1705(1357)

OsSR32 1) 1042 (668), 2) 1003 (668), 3) 1076 (741) 2572

OsSR33a 1) 1500 (695), 2) 1690 (885) 2974

1 (1) The number in the parenthesis indicates the product size corresponding to the amplified primer

2 used in this experiment.
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Table 3(on next page)

NAGNAG acceptors in OsSR genes.
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mRNA
SR gene E I Motif
OsSCL30a 1 CAGGAG
OsSCL30 1 CAGGAG
OsSCL26 2 CAGTAG, TAGCAG
OsSC25 1 TAGCAG
OsSR45a 1 CAGCAG
OsSR45 1 CAGCAG
OsRS2Z39 1 CAGCAG
OsRS27Z36 2 CAGGAG
OsRS2Z38 1 CAGGAG
OsRSZ21a 1 2 CAGAAG, GAGCAG, AAGCAG
OsRSZ21 2 CAGAAG
OsRSZ23 1 TAGGAG
OsRS33 1 CAGGAG
OsSR33 1 CAGAAG

1 (1) Observed NAGNAG motifs and E and I acceptors confirmed by mRNA (from RefSeq) are

2 shown.
3
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