

Diurnal predator attacks indirectly affect overnight retention of restocked *Diadema antillarum* on artificial reefs

Mareike de Breuyn¹, Alex van der Last¹, Oliver J Klokman¹, Alwin Hylkema ^{Corresp. 1, 2}

Corresponding Author: Alwin Hylkema Email address: alwin.hylkema@hvhl.nl

The long-spined sea urchin Diadema antillarum controls reef dynamics by grazing on algae, and increasing coral recruitment. Populations of D. antillarum never recovered after a mass-die off in 1983 and 1984 and numbers were further reduced by a more recent dieoff in 2022. To restore grazing pressure and thereby the resilience of Caribbean coral reefs, multiple D. antillarum restocking efforts have been performed. Although results vary, the relatively low retention is one of the reasons restocking is not considered more often. If causes for the low retention will be identified, suitable measures can be taken to increase restocking success of D. antillarum. In this study, we monitored restocked labreared and wild juvenile *D. antillarum* on artificial reefs around Saba, Caribbean Netherlands. To assess the retention of *D. antillarum* over time, we conducted diver surveys and used remote underwater photo time lapse during daylight. Retention of uncaged lab-reared and wild *D. antillarum* decreased steadily and was low after 10 days. In total, 138 predator-prey interactions were recorded, of which 99% were conducted by the gueen triggerfish Balistes vetula. Other predators showed limited interest in the restocked D. antillarum. None of the predator-prey interactions was successful, which suggests that artificial reefs with incorporated shelters may be suitable for juveniles as daytime refuge. However, D. antillarum that were often attacked during the day, often vacated their shelter during the night. As no *D. antillarum* were found back on surrounding reefs, we expect that they moved off the artificial reefs in search for better shelter and were predated during the night. Our remote photos revealed that wild *D. antillarum* were attacked significantly more than lab-reared D. antillarum, possibly because the wild urchins were slightly bigger, but this did not significantly affect retention. Future restocking should be performed on natural or artificial reefs with deeper shelters, so D. antillarum can retract further into their crevice, and should include night-time monitoring to identify the remaining unknown factors that cause low retention, including the main nocturnal predators. This knowledge is urgently needed for coral reef managers so they

PeerJ reviewing PDF | (2023:05:86062:0:1:NEW 22 May 2023)

¹ Van Hall Larenstein University of Applied Sciences, Leeuwarden, Friesland, The Netherlands

² Marine Animal Ecology group, Wageningen University, Wageningen University & Research, Wageningen, Gelderland, The Netherlands

can increase *D. antillarum* restocking success by selecting reefs with a lower predator density, protect urchins during an acclimatization period and/or conduct temporary predator control measures.

Diurnal predator attacks indirectly affect overnight

2 retention of restocked Diadema antillarum on artificial

3 reefs

6 Mareike de Breuyn¹, Alex van der Last¹, Oliver J. Klokman¹, Alwin Hylkema^{1, 2}

- 8 ¹ Van Hall Larenstein University of Applied Sciences, P.O. Box 1528, 8901 BV Leeuwarden, the
- 9 Netherlands
- 10 ² Marine Animal Ecology group, Wageningen University, Wageningen University & Research,
- 11 P.O. Box 338, 6700 AH Wageningen, The Netherlands

- 13 Corresponding Author:
- 14 Alwin Hylkema^{1,2}
- 15 Agora 1, 8901 BV Leeuwarden, the Netherlands Email address: Alwin.hylkema@hvhl.nl

42 43

44

45 46

47

48

49

50

51 52

53

54

55 56

57

58

59

60 61

62

63

64

65

66

67

68

69 70

71

Abstract

The long-spined sea urchin *Diadema antillarum* controls reef dynamics by grazing on algae, and increasing coral recruitment. Populations of D. antillarum never recovered after a mass-die off in 1983 and 1984 and numbers were further reduced by a more recent die-off in 2022. To restore grazing pressure and thereby the resilience of Caribbean coral recommultiple D. antillarum restocking efforts have been performed. Although results vary, the relatively low retention is one of the reasons restocking is not considered more often. If causes for the low retention will be identified, suitable measures can be taken to increase restocking success of D. antillarum. In this study, we monitored restocked lab-reared and wild juvenile D. antillarum on artificial reefs around Saba, Caribbean Netherlands. To assess the retention of D. antillarum over time, we conducted diver surveys and used remote underwater photo time la se during daylight. Retention of uncaged lab-reared and wild D. antillarum decreased steadily and was low after 10 days. In total, 138 predator-prey interactions were recorded, of which 99% were conducted by the queen triggerfish Balistes vetula. Other predators showed limited interest in the restocked D. antillarum. None of the predator-prey interactions was successful, which suggests that artificial reefs with incorporated shelters may be suitable for incorporated shelte antillarum that were onen attacke uring the day, often vacated their effective during the night. no D. antillarum were found back on surrounding reefs, we expect that they moved off the artific at reefs in search for better shelter and were predated during the night. Our remote photos revealed that wild D. antillarum were attained significantly more than lab-reared D. antillarum, possibly because the wild urchins were slightly bigger, but this did not significantly affect retention. Future restocking should be promised on natural or artificial reefs with deeper shelters, so D. antillarum can retract further into their crevice, and should include night-time monit may to identify the remaining unknown factors that cause we retention, including the main nocturnal predators. This knowledge is urgently needed for coral reef managers so they can increase D. antillarum restocking success by selecting reefs with a lower predator density, protect urchins during an acclimatization period and/or conduct temporary predator control measures.

72 73

74

75 76 77

78 79

80

81

Key words:

reef restoration, coral reef, Caribbean, sea urchin, predation

Introduction

The long-spined sea urchin *Diadema antillarum* was once a ubiquitous species on Caribbean coral reefs. High densities of 12 to 71 m⁻² were found on reefs and other habitats throughout the region (Randall et al., 1964; Sammarco, 1982; Bak et al., 1984). *D. antillarum* is considered a

82 keystone herbivore as it structures the benthic community through its gregarious grazing behaviour. Between 1983 and 1984, 95-99% of all D. antillarum were killed during one of the 83 most extensive and severe die-offs ever recorded for a marine invertebrate (Lessios et al., 1984a. 84 1984b; Hughes et al., 1985; Hunte et al., 1986; Levitan et al., 2014). Without other herbivores to 85 86 fill the niche (Mumby et al., 2006; Dell et al., 2020), macroalgae became the dominant benthic group on many Caribbean coral reefs (Hughes et al., 1985; Carpenter, 87 1986; Lessios, 1988). Other stressors such as disease outbreaks and hurricanes reduced 88 coral cover by as much as 50% (Hughes, 1994; Jackson et al., 2014; Cramer et al., 2020). The 89 emptied space was quickly overgrown by macroalgae and other benthic organisms such as 90 91 cyanobacteria (Bakker et al., 2017) and peyssonnelids (Williams and Garcia-Sais, 2020; Wilson et al., 2020; Stockton and Edmunds, 2021), which all inhibit coral recruitment (Lessios, 1988; 92 McCook et al., 2001; Kuffner et al., 2006). This resulted in coral recruitment failure and a 93 94 decreased resilience of Caribbean coral reefs (Bellwood et al., 2004). 95 the decades after the die-off, D. antillarum recovery remained slow. In 2016, Lessios (2016) estimated the D. antillarum density as 8.5 times less dense than before the 1983-1984 die-off. 96 The few recovered D. antillarum populations have been linked to reduced macroalgae cover 97 (Edmunds and Carpenter, 2001; Myhre and Acevedo-Gutiérrez, 2007), increased coral 98 recruitment (Carpenter and Edmunds, 2006), survival and growth (Idjadi et al., 2010) and 99 ultimately, higher coral cover (Myhre and Acevedo-Gutiérrez, 2007). Active restoration of D. 100 antillarum has therefore become a top priority in Caribbean coral reef management (Bellwood et 101 al., 2004), especially because a new die-off reduced population densities across the Caribbean in 102 2022 (Hylkema et al. 2023). Approaches to restore *D. antillarum* include restocking individuals 103 104 (Chapone et al., 2006; Nedimyer and Moe, 2006; Dame, 2008) or Assisted Natural Recovery (ANR) in which suitable settlement substrate for D. antillarum larvae is supplied on the reef 105 (Hylkema et al. 2022). Individuals for restocking can be acquired through culture from gametes 106 (Pilnick et al., 2021; Wijers et al., 2023) and in-situ collection of settlers (Williams, 2018, 2022), 107 108 but most restocking attempts have been performed by translocating individuals from naturally recovered areas to experimental plots (Chiappone et al., 2006; Nedimyer and Moe, 2006; Maciá 109 et al., 2007; Burdick, 2008, Dame, 2008). 110 Some restocking attempts recorded retention of D. antillarum on experimental reefs of up to 111 112 52% after 3 to 6 weeks (Maciá et al., 2007; Dame, 2008; Williams, 2018). However, most restocking attempts had relatively few or no retaining D. antillarum after 3.5 to 12 months 113 (Chiappone et al., 2006; Nedimyer and Moe, 2006; Burdick, 2008; de Breuyn, 2021). Most 114 authors point toward predation (The Nature Conservancy, 2004; Chiappone et al., 2006; 115 Nedimyer and Moe, 2006; Burdick, 2008), emigration (Maciá et al., 2007; Williams, 2018), or a 116 combination of both (Dame, 2008; Wynne, 2008; Williams, 2022) as potential causes for the 117 decline of restocked D. antillarum. Predation may be due to high predation pressure by fishes 118 (Harborne e 2009), low fitness of lab-reared D. antillarum (Sharp et al., 2018) or a lack of 119 120 available refuge (Bodmer et al., 2015), while emigration may be triggered by low food 121 availability (Vadas, 1977) or predator avoidance behaviour (Snyder and Snyder, 1970). With the

positive effects of recovered D. antillarum population, the slow recovery in other places well 122 as the few successful restocking attempts, the need for successful D. antillarum restocking 123 etices is high and the key factors determining retention must be identified. 124 On Saba, Caribbean Newerlands, a restocking experiment was conducted with 147 lab-reared 125 126 juveniles (de Breuyn, 2021), which were introduced on artificial reefs with suitable shelters, as recommended by Delgado and Sharp (2021). As with multiple other restocking attempts, 127 retention was low and the cause unknown (de Breuyn, 2021). Because spines with tissue chunks 128 were observed as fast as one hour after introduction, the author pointed towards a diurnal 129 predator as the most important factor affecting retention, but no actual attacks were observed. 130 The aim of the current study was to identify the main predators of restocked D. antillarum on 131 artificial reefs on Saba. We hypothesize that diurnal predation is the main cause for low retention 132 of D. antillarum at this location. As susceptibility to predation might differ between lab-reared 133 and wild individuals (Sharp et al., 2018; Brundu et al., 2020), individuals from both sources were 134 135 introduced on standardized artificial reefs and monitored intensively using time lapse cameras. Based on Sharp et al. (2018) and Brundu et al. (2020) hypothes that lab-reared D. 136 antillarum have a lower retention than wild conspecifics. Our study will increase insight in the 137 main factors affecting retention of restocked *D. antillarum* and determine if lab-reared and wild 138 139 D. antillarum are suitable for restocking.

140 141

142

Materials & Methods

We conducted our field experiments at Big Rock Market (N: 17.36772, W: 063.14264) which lies South of Saba, Caribbean Netherlands, with the Saba National Marine Park (Fig. 1). Our study site was at a depth of 19 m and in the proximity of a previous study site, where *D. antillarum* restocking was unsuccessful due to one or more unidentified predators (de Breuyn, 2021).

148

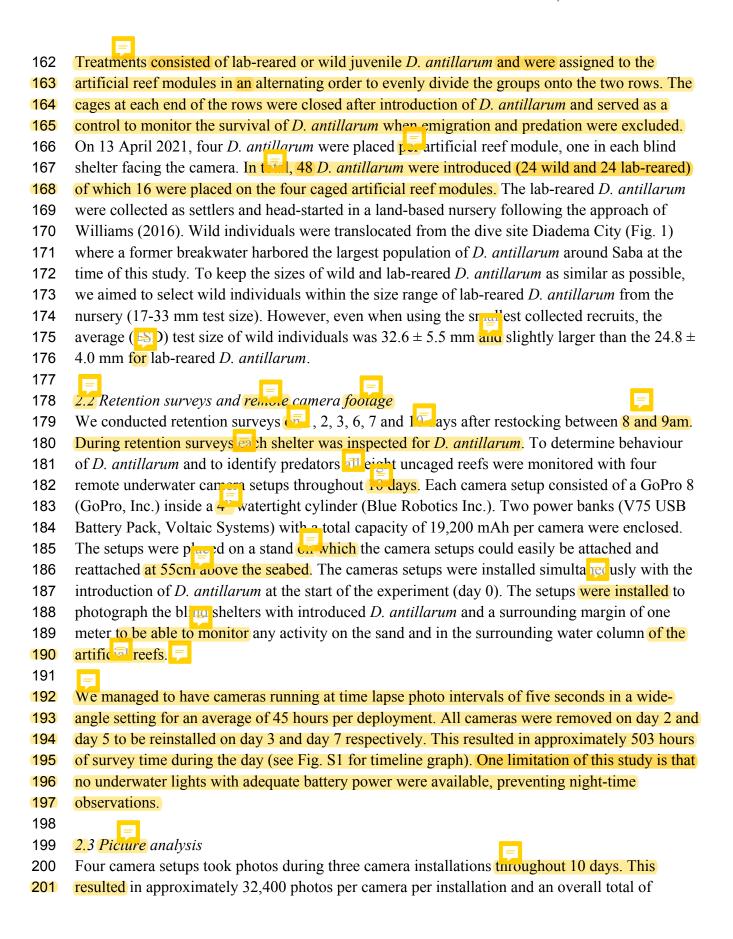
2.1 Experimental set-up
150 elve Moreef (Modular Restoration Reef, www.moreef.com) artificial reef modules were set
151 out in two rows of six on a large sand patch with nearby patches (Fig. 2a). The Moreefs were

spaced one meter apart, which was the largest distance possible while allowing two reefs being more ored by a single camera, as only four camera setups were available. The four reefs on the

outside of the rows were placed in cages made from chicken wire with a mesh size of 1.3 cm and

155 functioned as control (Fig. 2b).

156 157 reef modules (height cm, diameter 60 cm) were made from concrete in August 2020.


Each Moreef regular commission eight blind shelters, two tunnel shelters and numerous micro-

shelters (Fig. 5). The artificial reefs were deployed in September 2020 and repositioned for the

160 current experiment in March 2021.

161

202 388,800 photos (four cameras multiplied by three runs). Pictures taken within ten minutes after retention surveys or camera deployments were excluded from analysis. Pictures taken at night 203 were also excluded as they were entirely black. We manually analysed 194,400 pictures. For 204 analysis, each picture was carefully searched for known predate of D. antillarum and for D. 205 206 antillarum outside of their shelter space. The list of predators was based on Randall et al. (1964) and included black margate Anisotremus surinamensis, white margate Haemulon album, Spanish 207 grunt Haemulon macrostomum, Caesar nt Haemulon carbonarium, white grunt Haemulon 208 plumierii, bluestriped grunt Haemulon Sciurus, permit Trachinotus falcatus, jolthead porgy 209 Calamus bajarado, saucereye porgy Calamus calamus, Spanish hogfish Bodianus rufus, 210 Caribbean spiny lobster *Panulirus argus*, queen triggerfish *Balistes vetula* bandtail puffer 211 Sphoeroides spengleri and the spotted porcupine fish Diodon hysterix. The just of predators was 212 213 supplemented with the spotted spiny lobster *Panulirus guttatus*, which was reported as a *D*. 214 antillarum predator by Kintzing and Butler (2014).

215216

217

218

219

220

221222

223224

225

226

227228

229230

Sightings were coded according to predefined codes (Table 1) of which examples can be seen in Fig. 4. Predator sightings were coded 1-7 and include a code for a predator-prey interaction on the reef (code 4) and off the reef (code 6), as well as a code for a predator feeding on D. antillarum (code 7). Codes 8 and 9 relation D. antillarum outside of their shelter space without the presence of a predator. It was not feasible to observe the actual attack inside the shelter on picture, due to *D. antillarum* retracting into the shelter and predators following, blocking the view of the cameras. We therefore coded these potential attacks as "Interior between D. antillarum predator and D. antillarum on the artificial reef" (coin 4). Pictares were only attributed to a single and most precise code describing the action, so a picture with a predator interacting with D. antillarum in the shelter was only attributed to code 4 and not to code 1, 2 or 3. We installed cameras opposite of each other, so both cameras had two artificial reefs in the front and two in the back of the picture, to account for actions at the back of the artificial reefs. Codes 2-9 were only recorded for the two artificial reefs directly in front of the respective camera, avoiding double counts of the cameras opposite. We cannot exclude the possibility that code 1 had double counts as the distance was too inaccurate to assign the sighting to a specific Moreef.

231232233

234

235236

237

238

239240

2.4 Roving diver survey

To determine the presence of predators on the surrounding reefs, priving diver visual survey was conducted after completion of the retention count on day 6. No cameras were running during that time frame, preventing interference with the camera footage of the experiment. We based the survey on the fish roving diver technique, which considers presence/absence data as well as frequencies of fish species (Hill and Wilkinson, 2004), and adapted it by only including predators relevant to *D. antillarum* (Randall et al., 1964; Kintzing and Butler, 2014). The starting point of the survey was the centre of the experimental plot at location BRM. Three scuba divers

systematically inspected the reefs within a 200 m radius from the experimental plots for 30 minutes and recorded predators of *D. antillarum* as well as their size.

2.5 Statistical analysis

A perentized Linear Mixed Model (GLMM) was used to assess the effect of source (factor: labreared or wild), caging (factor: caged or uncaged) and day of the experiment (covariate) on the retention of *D. antillarum* (response variable, modelled as number of urchins alive, number of urchins dead). As urchins alive were a proportion of the initial number of restocked individuals, a binomial distribution was used. Models were fit using the glmer function in the R package "lme4" (Bates et al., 2014). To account for daily repeated surveys on the same reefs, reef ID was included as random factor. For statistical inference, likelihood ratio tests (LRT) were performed using the drop1 function (Zuur et al. 2009).

Generalized Linear Models (GLMs) were used to assess the effect of treatment (fixed factor) on the number of times a predator was within 10 cm (code 3) and interacted with the *D. antillarum* (code 4). Model validation was performed according a Zuur et al. (2009). Initial models were fit with a Poisson distribution (glm function with family=poisson in the R package "lme4") but turned out to be overdispersed. This was resolved by using a negative-binomial distribution (glm.nb function in the R package "MASS"). Likelihood ratio tests (LRT) were performed for statistical inference of the fixed factors using the drop1 function.

To test it the number of interactions recorded for a specific shelter affected the respective shelter to be vacated the next day, a subset of the data was created including only observations made in the first two day. Shelters that had a single *D. antillarum* at the start of the night. The difference in number of *D. antillarum* between the start of the night and the next morning was modelled with GLMMs using the glmer function in the R package "lme4". A binomial distribution was used (family=binomial) as the difference in *D. antillarum* at the beginning and end of the night was either 0 or 1 (presence-absence data). Treatment and total number of interactions were considered as fixed factors. To account for dependency, the same shelter was surveyed multiple nights, shelter ID was included as a random factor. Model selection was performed based on AIC (Zuur et al., 2009, Bolker et al., 2009). For statistical inference, likelihood ratio tests (LRT) were performed using the drop1 function (Zuur et al. 2009).

All statistical analyses were performed with R (R Core Team, 2021) using R studio version 1.2.5001. P-values <0.05 were considered statistically significant. Reported values are mean \pm standard deviation, unless otherwise indicated. The R package "ggplot2" was used to construct the graph.

Results


```
extention of D. antillarum on the artificial reefs was significantly affected by caging (LR
280
       13.41, df = 3, P < 0.001) and \frac{1}{1000} of the experiment (LRT = 56.17, df = 1, P < 0.001), the latter
281
      having a strong negative affect on retention. Retention was not significantly affected by source
282
      of the sea urchins. Actificial reefs with uncaged wild and lab-reared D. antillarum had
283
      respectivel \pm 47\% and 25 \pm 29\% arrange survival of restocked D. antillarum \boxed{2} g. 5). Of
284
      the controls, all caged wild and seven out of eight lab-reared caged D. antillarum survived the
285
286
      experiment.
287
      Picture analysis resulted in 648 coded sightings. All of those included D. antillarum predators
288
      and no sightings were recorded of D. antillarum outside their shelter without a predator present
289
      (code 8 and 9). Of all predator sightings (Table 2), 1 included a predator re than 50 cm
290
      from an artificial reef module (code 1). 251 sightings included predators within 50 cm but not
291
292
      closer than 10 cm of an exificial reef (code 2), 40 sightings included predators within 10 cm of
293
      an artificial reef (code 3) and 136 sightings include interactions between the predator and D.
294
      antillarum (code 4). There was a single sighting of a D. antillarum outside its shelter, on the
      sand, with a predator within 50 cm (code 5) and another single sighting of a predator attacking
295
      that same individual ( 6). No sightings were observed of a predator feeding on D. antillarum
296
297
      (code 7). The queen triggerfish B. vetula was by far the most abundant predator with 589
      sightings, followed by the porcupinefish D. hysterix with 23 sightings and the Caribbean spiny
298
      lobster P. argus, which was sighted 22 times. Of all predators, only B. vetula and B. rufus
299
      approached the reer within 10 cm of the snelter of the reef (code 3 and 4). For B. rufus as was
300
      recorded twice, while the other 176 sightings concerned B. Lettala. Most of these sightings (135)
301
302
      concerned interactions between B. vetula and D. antillarum. Over the course of the experiment,
      B. vetula was observed 6.0 \pm 4.1 times within 10 cm of a shelter an artificial reef restocked
303
      with wild D. antillarum. This was not significantly different compared to reefs restocked with
304
      lab-reared D. antillarum, where B. vetula was seen 3.8 \pm 2.2 times within 10 cm of a shelter.
305
306
      Interactions of B. vetula with D. antillarum were observed significantly more often on reefs
      resto \mathbb{R} d with wild compared to lab-re \mathbb{R} 1 D. antillarum (LRT = 11.72, df = 1, P < 0.001). Per
307
      artificial reef, 26.2 \pm 15.8 interactions were observed between B. vetula and wild D. antillarum,
308
      \frac{1}{\sqrt{50}}e 7.5 ± 2.7 interactions were observed between B. vetula and lab-reared D. antillarundo
309
310
      Total number of interactions during the day on a corrain shelter had a significant effect on the
311
312
      retention \Box D. antillarum in that shelter during the following night (LRT = 8.36, df = 1, P =
      0.004). For shelters that retained \frac{1}{2} antillarum at the end of the gight (r. 4), \frac{1}{2} 3 ± 1.52
313
      interactions with predators were remarded during the previous day. For shelte that lost their D.
314
      an \mu rum during the night (n=22), 3.48 ± 6.20 interactions with predators were recorded.
315
316
      Treatment had no significant effect on the retention and was not included in the best fitting
317
      model.
318
      A total of six D. ar ar ar predator species were sighted during the roving diver survey. The
319
320
      Caesar grunt H. carbonarium was the most abundant with four sightings, followed by two
```


sightings of the spotted spiny lobster *P. guttatus*. The black margate *A. surinamensis*, Caribbean spiny lobster *P. argus*, queen triggerfish *B. vetula* and Spanish hogfish *B. rufus* were all sighted once.

Discussion

Retention of *D. antillarum* on the artificial reefs was relatively low with 25-30 % after 10 days. This was expected, as the current study is a follow-up on a restocking attempt at a nearby location, where a restocking experiment resulted in a mean retention of 60% after 2 months and 0% after 3 months (de Breuyn, 2021). The sharp decline in *D. antillarum* in less than two weeks in the current study makes it unlikely that any of the restocked individuals would have remained on the artificial reefs for longer than a few months. Caged lab-reared and wild *D. antillarum* survived for the full duration of the experiment, indicating that potential stressors respect to the transportation (e.g. changes in oxygen, salinity, and temperature) or handling of *D. antillarum* seem to be of minor concern and other factors negatively affected retention. Retention of restocked *D. antillarum* is thought to be mediated by predation pressure, habitat, food availability, and behavioural tendencies (Miller et al 2007; Keller and Donahue, 2006; Williams 2022).

 Based on the removal of *D. antillarum* within hours after restocking during a previous experiment (de Breuyn, 2021 hypothesized that diurnal predation would be the major factor affecting retention. Contrary to this hypothesis, no D. antillarum predation was recorded in this study. We did, however, observe many predator-prey interactions, of which the majority was conducted by B. vetula, which is known as one of the most important predators of D. antillarum (Randall et al., 1964). Next to B. vetula, many other fishes and crustaceans are known as predators of D. antillarum (Randall et al. 1964; Kintzing and Butler, 2014). Of those, D. hysterix, B. rufus and P. argus were regularly observed on the remote photos. Only B. rufus was observed two times close to the shelter entrance one of these sightings concerned an interaction. In addition to the predators recorded on photo, A. surinamensis, H. carbonarium and P. guttatus were recorded on the adjacent reefs during a roving diver survey pparently, most of the predators observed on photos and during the roving diver survey, were not attracted by the presence of D. antillarum. This may be an effect of the continued low local densities of D. antillarum, which could have resulted in dietary shifts of certain predators (Reinthal et al., 1984). The reefs surrounding the experimental site had very w D antillarum densities with no individuals observed during this study (personal observation of all authors) and we assume D. antillarum do not form a significant dietary proportion of predators in the area. More generalist predators such as the wrasses and grunts could therefore be less attracted by low densities of D. antillarum. More specialized predators, such as B. vetula were able to persist after the 1983-1984 D. antillarum die-off by switching to other prey items in the absence of their primary prey

(Reinthal et al., 1984), but might still pre D. antillarum. Limited observations of other predators could also be explained by aggressive territorial behaviour of B. vetula (Sevon, 2020). Male queen triggerfish establish harems of several females and are known to aggressively defend their territories, especially their nests, during the spawning season (Bester, 2017). The spawning season of B. vetula is between December and August and includes multiple spawning ents per season (Rivera Hernández et al., 2018). As the present study took place in April, there is a high chance of it falling within B. vetula spawning season.

368 369

370

371

372373

374

375

376

377

378

379

380

381

382

383

384

385

386 387

388

389

390 391

392

The low success of predation attempts indicates that the shelter of the Moreef modules provided suitable protection for D. antillarum during the day. The remote photos of the interactions indicate that the shelters were too narrow for the snout of B. vetula to reach D. antillarum at the deep end of the crevice. Dame (2008) conducted a restocking experiment with D. antillarum around Curação and already concluded that the shape of the shelter affects retention. Both types of shelter tested by Dame (2008) showed a decrease in retention throughout the 3-week observation period, but the persistence of *D. antillarum* was significantly higher in "tunnel" shelters than in "hut" shelters, which had 0% retention after 16 days though the shelters of the artificial reefs used in the present study provided protection a ring the day, the predator-prey interactions still appeared to affect D. antillarum reten as shelters that were attacked often during the day had a higher chance of bein acated the following day. Thus, the depth of the artificial reef shelters (20 cm) was not deep enough to prevent predator-prey interaction altogether and day-time attacks likely resulted in nocturnal migration off the artificial reefs. Carpenter (1984) showed that D. antillarum can assess the quality of their shelter and that poorer quality crevices were more readily vacated after imulated predation, something that also could have happened during the present study. Uner restocking studies have hypothesized that habitat features were a driver of losses in retention (Miller et al., 2007; Keller and Donahue, 2006). Small test reefs (Miller et al., 2007; Levitan and Genquese, 1989) and limited reef complexity (Keller and Donahue, 2006; Dame, 2008) were possible explanations for migration, which coupled with the high predation pressure on some individuals could have expedited nocturnal migration in the present study. Another incentive for migration is to find conspecifics to aggregate with. This is a known defence mechanism of D. antillarum (Kintzing and Butler, 2014) and has been experimentally shown to increase juvenile survival (Miller et al., 2007). The limited size of the artificial reefs used in this study did not allow large D. antillarum aggregations and could have been a reason for migration off the artificial reef.

393 394 395

396

397

398 399

400

Contrary to our hypothesis, wild *D. antillarum* were attacked significantly more often compared to lab-reared individuals. This was unexpected, as lab-reared *D. antillarum* can exhibit reduced sheltering behaviour, which would increase vulnerability to predation, compared to wild urchins (Sharp et 12018). Nonetheless, in our study, no *D. antillarum* were recorded outside their shelter, as both lab-reared and wild *D. antillarum* were sneltering to the shelters. It could be that our urchins were more accustomed to a normal day-night rhythm,

something that was also observed by Hassan et al. (2022). In addition, the high number of unsuccessful daytime attacks likely provided increased stimulus for the diel sheltering patterns observed (Carpenter, 1984). A final explanation for the higher number of interactions on wild *D. antillarum* is that they were slightly bigger compared to the lab-reared urchins. Possibly, *B. vetula* prefers larger may or it could be that larger prey is simply more readily detected or easier to attack, as they can retract less far in the shelter. The higher number of interactions on wild *D. antillarum* did not affect the final retention, which was similar for both sources.

The effect of interactions during the day on the chance a shelter is vacated during the night reduces the possibility that shelters were vacated by D. antillarum searching for food elsewhere. Although this alternative hypothesis cannot be totally disregarded, the artificial reefs were well overgrown with turf algae and some macroalgae, which reduces the chance that D. antillarum were wandering off in search of food. Nevertheless, causation of post ann slocation movements remains poorly understood and attempts to stock reefs with higher densities of adults (Wynne, 2008) and on high rugosity reefs (Keller and Donahue, 2006) still resulted in migration, even if predation remained low. Williams (2022) notes that translocated archins will disperse freely and need to be corralled for experimental manipulations, indicating unknown factors influence retention. Although not part of our study design, we opportunistically inspected the surrounding reefs for *D. antillarum* during this study. Like Miller et al. (2007) and contrary to Dame (2008) and Williams (20 an not a single D. antillarum was found, suggesting that migration, if it occurred, was disrupted by predation during the night. Individual D. antillarum on sand have little protection (Levitan and Genovese, 1989), which could be an explanation why these individuals were not round back. Additionally, some D. antillarum may have been attacked when they were still residing on or in the artificial reef modules during the night. Of the predators that were present on the surrounding reefs, D. Hystrix (Carpenter, 1984), P. argus (Lozano-Alvarez and Spanier, 1997), P. guttatus (Kintzing and Butler, 2014) and A. surinamensis (McClanahan, 1999) are known to be nocturnal.

Conclusions

We conclude that the low retention of *D. antillarum* during the present study is likely a result of predation or migration at night. The deep shelters of the artificial reefs used in this study prevented successful predation and did not prevent interaction between predators and *D. antillarum*. Unsuccessful attacks by *B. vetula* during the day likely resulted in migration away from the artificial reef during the night, possibly followed by predation when the *D. antillarum* were vulnerable on sand. No indications were found that lab-reared individuals were less suitable than wild *D. antillarum* for restocking practices, although it cannot be ruled out that lab-reared individuals were initially attacked less because of their smaller size. To increase restocking success, future restocking attempts should be conducted on artificial or natural reefs that have

441	shelters more than 20 cm deep, so D. antillarum can retract far enough to avoid predator-prey
442	interaction. We recommend monitoring restocked D. antillarum also at night and at other
443	locations, to determine the causative factors for low D. antillarum retention, including
444	identification of the most important predators. This information is essential to give coral reef
445	managers the opportunity to increase D. antillarum restocking success by selecting reefs with a
446	lower predator density, giving restocked D. antillarum an acclimatization period in a protected
447	environment (Williams 2022), and/or conduct temporary predator control measures. Since
448	Caribbean coral reefs continue to degrade and a new die-off reduced D. antillarum densities in
449	large parts of the Caribbean in 2022 (Hylkema et al., 2023), the development of effective
450	restocking practices is urgently needed.
451	
452	

453

455 456

Declaration of competing interest

454

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

457 458

459

Acknowledgements

- This research is conducted in the context of the RAAK PRO Diadema project (project# 460
- RAAK.PRO03.005), partly funded by SIA, which is part of the Dutch Organization of Scientific 461
- 462 Research (NWO). We would like to thank the Saba Conservation Foundation for providing us
- with a workspace to conduct this project; with a special thanks to Walter Hynds Dilbert, Ayumi 463
- Kuramae Izioka, Tom Brokke and Marijn van der Laan for their assistance. We further thank 464
- Esther van de Pas and Marnik Lehwald for help during the experimental setup and camera 465
- 466 installations. We greatly appreciate the suggestions of Patrick Bron and Jorien Rippen on the 467 research proposal.

468

469 470

References

472 473

474

475

478 479

471

Bak, R., Carpay, M., & de Ruyter Van Steveninck, E. (1984). Densities of the sea urchin Diadema antillarum before and after mass mortalities on the coral reefs of Curagao. Marine Ecology Progress Series, 17, 105–108. https://doi.org/10.3354/meps017105

476 477

Bakker, D. M. de, van Duyl, F. C., Bak, R. P. M., Nugues, M. M., Nieuwland, G., & Meesters, E. H. (2017). 40 Years of benthic community change on the Caribbean reefs of Curação and Bonaire: the rise of slimy cyanobacterial mats. Coral Reefs, 36(2), 355-

480 481	367. https://doi.org/10.1007/s00338-016- 1534-9
482 483	Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models using lme4. <i>arXiv preprint arXiv:1406.5823</i> .
484	
485	Bellwood, D. R., Hughes, T. P., Folke, C., & Nyström, M. (2004). Confronting the coral reef
486	crisis. <i>Nature</i> , 429(6994), 827–833. https://doi.org/10.1038/nature02691
487	
488 480	Bester, C. 2017. <i>Balistes vetula</i> . Florida Museum. Retrieved from
489 490	https://www.floridamuseum.ufl.edu/discover-fish/species-profiles/balistes-vetula/ (January, 16, 2023)
491	
492	Bodmer, M. D. V., Rogers, A. D., Speight, M. R., Lubbock, N., & Exton, D. A. (2015). Using
493	an isolated population boom to explore barriers to recovery in the keystone Caribbean
494	coral reef herbivore Diadema antillarum. Coral Reefs, 34(4), 1011–1021.
495	https://doi.org/10.1007/s00338-015-1329-4
496	
497	Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H.,
498	& White, J. S. S. (2009). Generalized linear mixed models: a practical guide for
499 500	ecology and evolution. <i>Trends in ecology & evolution</i> , 24(3), 127-135.
500 501	Breuyn, M. de (2021). <i>Diadema antillarum</i> retention, fish assemblages and sessile
502	macrobenthic communities on artificial reefs on Saba, Dutch Caribbean. (Unpublished
503	data). RAAK PRO Diadema project/Van Hall Larenstein University of Applied Sciences.
504	
505	Brundu, G., Farina, S., & Domenici, P. (2020). Going back into the wild: the behavioural effects
506	of raising sea urchins in captivity. Conservation Physiology, 8(1).
507	https://doi.org/10.1093/conphys/coaa015
508	
509	Burdick, D. R. (2008, July). The effectiveness of macroalgal reduction and <i>Diadema</i>
510	antillarum addition in limiting macroalgal growth and facilitating coral recovery. In
511	Proceedings of the 11th International Coral Reef Symposium (Vol. 24, pp. 1204- 1208).
512	Florida: Ft Lauderdale.
513	Comparted D. C. (1004). Devolution and remodelies 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
514 515	Carpenter, R. C. (1984). Predator and population density control of homing behavior in the Caribbean echinoid <i>Diadema antillarum</i> . <i>Marine Biology</i> , 82(1), 101–108.
515 516	https://doi.org/10.1007/bf00392768
517	https://doi.org/10.100//0100372/00

518	Carpenter, R. C. (1986). Partitioning Herbivory and Its Effects on Coral Reef Algal
519	Communities. Ecological Monographs, 56(4), 345–364.
520	https://doi.org/10.2307/1942551
521	
522	Carpenter, R. C., & Edmunds, P. J. (2006). Local and regional scale recovery of <i>Diadema</i>
523	promotes recruitment of scleractinian corals. <i>Ecology Letters</i> , 9(3), 271–280.
524	https://doi.org/10.1111/j.1461-0248.2005.00866.x
525	
526	Chiappone, M., Swanson, D., & Miller, S. (2006). One-year Response of Florida Keys Patch
527	Reef Communities to Translocation of Long-spined Sea Urchins (Diadema
528	antillarum). https://nmsfloridakeys.blob.core.windows.net/floridakeys-
529	prod/media/archive/research_monitoring/one_year_response.pdf
530	
531	Cramer, K. L., Jackson, J. B. C., Donovan, M. K., Greenstein, B. J., Korpanty, C. A., Cook,
532	G. M., & Pandolfi, J. M. (2020). Widespread loss of Caribbean acroporid corals was
533	underway before coral bleaching and disease outbreaks. Science Advances, 6(17),
534	eaax9395. https://doi.org/10.1126/sciadv.aax9395
535	
536	Dame, E. A. (2008). Assessing the Effect of Artificial Habitat Structure on Translocation of
537	the Long-Spined Sea Urchin, <i>Diadema antillarum</i> , in Curação (Netherlands Antilles).
538	Bulletin of Marine Science, 82(2), 247–254.
539	https://www.ingentaconnect.com/contentone/umrsmas/bullmar/2008/0000082/00000
540	002/art00008#
541	
542	Delgado, G. A., & Sharp, W. C. (2021). Does artificial shelter have a place in <i>Diadema</i>
543	antillarum restoration in the Florida Keys? Tests of habitat manipulation and
544	sheltering behavior. Global Ecology and Conservation, 26, e01502.
545	https://doi.org/10.1016/j.gecco.2021.e01502
546	T
547	Dell, C. L. A., Longo, G. O., Burkepile, D. E., & Manfrino, C. (2020). Few Herbivore
548	Species Consume Dominant Macroalgae on a Caribbean Coral Reef. <i>Frontiers in</i>
549	<i>Marine Science</i> , 7. https://doi.org/10.3389/fmars.2020.00676
550	
551	Edmunds, P. J., & Carpenter, R. C. (2001). Recovery of <i>Diadema antillarum</i> reduces
552	macroalgal cover and increases abundance of juvenile corals on a Caribbean reef.
553	Proceedings of the National Academy of Sciences, 98(9), 5067–5071.
554	https://doi.org/10.1073/pnas.071524598
555	1
556	Harborne, A. R., Renaud, P. G., Tyler, E. H. M., & Mumby, P. J. (2009). Reduced density of
557	the herbivorous urchin <i>Diadema antillarum</i> inside a Caribbean marine reserve linked

558	to increased predation pressure by fishes. <i>Coral Reefs</i> , 28(3), 783-791.
559	https://doi.org/10.1007/s00338-009-0516-6
560	
561	Hassan, M. M., Pilnick, A. R., Petrosino, A. M., Harpring, J., Schwab, C. J., O'Neil, K. L., &
562	Patterson, J. T. (2022). Growth and foraging behavior of hatchery propagated long-
563	spined sea urchins, <i>Diadema antillarum</i> : Implications for aquaculture and restocking.
564	Aquaculture Reports, 26, 101298. https://doi.org/10.1016/j.aqrep.2022.101298
565	
566	Hill, J., & Wilkinson, C. (2004). Methods for ecological monitoring of coral reefs. Version 1.
567	ISBN0642322376. Australian Institute of Marine Science.
568	
569	Hughes, T. P., Keller, B. D., Jackson, J. B. C., & Boyle, M. J. (1985). Mass mortality of the
570	echinoid Diadema antillarum Philippi in Jamaica. Bulletin of Marine Science, 36(2),
571	377– 384.
572	https://www.researchgate.net/publication/262908451_Mass_mortality_of_the_echinoi
573	d_Diadema_antillarum_Philippi_in_Jamaica
574	
575	Hughes, T. P. (1994). Catastrophes, Phase Shifts, and Large-Scale Degradation of a
576	Caribbean Coral Reef. Science, 265(5178), 1547–1551.
577	https://doi.org/10.1126/science.265.5178.1547
578	
579	Hunte, W., Côté, I., & Tomascik, T. (1986). On the dynamics of the mass mortality of
580	Diadema antillarum in Barbados. Coral Reefs, 4(3), 135-139.
581	https://doi.org/10.1007/bf00427934
582	
583	Hylkema, A., Debrot, A. O., Van de Pas, E. E., Osinga, R., & Murk, A. J. (2022). Assisted
584	natural recovery: a novel approach to enhance Diadema antillarum
585	recruitment. Frontiers in Marine Science, 1160.
586	
587	Hylkema, A., Kitson-Walters, K., Kramer, P. R., Patterson, J. T., Roth, L., Sevier, M. L. B.,
588	Vega-Rodriguez, M., Warham, M. M., Williams, S. M., & Lang, J. C. (2023). The
589	2022 Diadema antillarum die-off event: Comparisons with the 1983-1984 mass
590	mortality. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.1067449
591	
592	Idjadi, J., Haring, R., & Precht, W. (2010). Recovery of the sea urchin <i>Diadema antillarum</i>
593	promotes scleractinian coral growth and survivorship on shallow Jamaican reefs. <i>Marine</i>
594	Ecology Progress Series, 403, 91–100. https://doi.org/10.3354/meps08463
595	

596 597 598 599	Caribbean Coral Reefs: 1970-2012. Global Coral Reef Monitoring Network, IUCN. https://portals.iucn.org/library/efiles/documents/2014-019.pdf
500 501	Keller, B.D. & S. Donahue. ed. (2006). 2002-03 Florida Keys National Marine Sanctuary science report: an ecosystem report card after five years of marine zoning. Marine
502	Sanctuaries Conservation Series NMSP-06-12. U.S. Department of Commerce,
302 303	National Oceanic and Atmospheric Administration, National Marine Sanctuary
303 304	Program, Silver Spring, MD. 358 pp.
305	110gram, Shiver Spring, 1vib. 550 pp.
306	Kintzing, M., & Butler, M. (2014). Effects of predation upon the long-spined sea urchin
307	Diadema antillarum by the spotted spiny lobster Panulirus guttatus. Marine Ecology
808	Progress Series, 495, 185–191. https://doi.org/10.3354/meps10568
609	Trogress serves, 190, 100 1911 Hopelin dollars Transported to
310	Kuffner, I., Walters, L., Becerro, M., Paul, V., Ritson-Williams, R., & Beach, K. (2006).
311	Inhibition of coral recruitment by macroalgae and cyanobacteria. <i>Marine Ecology</i>
312	Progress Series, 323, 107–117. https://doi.org/10.3354/meps323107
313	
314	Lessios, H. A., Cubit, J. D., Robertson, D. R., Shulman, M. J., Parker, M. R., Garrity, S. D.,
315	& Levings, S. C. (1984a). Mass mortality of <i>Diadema antillarum</i> on the Caribbean
316	coast of Panama. Coral Reefs, 3(4), 173–182. https://doi.org/10.1007/bf00288252
317	
318	Lessios, H. A., Robertson, D. R., & Cubit, J. D. (1984b). Spread of <i>Diadema</i> Mass Mortality
319	Through the Caribbean. <i>Science</i> , <i>226</i> (4672), 335–337.
320	https://doi.org/10.1126/science.226.4672.335
321	
522	Lessios, H. A. (1988). Mass Mortality of <i>Diadema antillarum</i> in the Caribbean: What Have
523	We Learned? Annual Review of Ecology and Systematics, 19(1), 371–393.
524	https://doi.org/10.1146/annurev.es.19.110188.002103
325	
526	Lessios, H. A. (2016). The great Diadema antillarum die-off: 30 years later. Annual review of
527	marine science, 8, 267-283. https://doi.org/10.1146/annurev-marine-122414-033857
528	
529	Levitan, D. R., & Genovese, S. J. (1989). Substratum-dependent predator-prey dynamics:
30	patch reefs as refuges from gastropod predation. Journal of Experimental Marine
331	Biology and Ecology, 130(2), 111–118. https://doi.org/10.1016/0022-0981(89)90198-
32	6
33	
34	Levitan, D. R., Edmunds, P. J., & Levitan, K. E. (2014). What makes a species common? No
335	evidence of density-dependent recruitment or mortality of the sea urchin <i>Diadema</i>

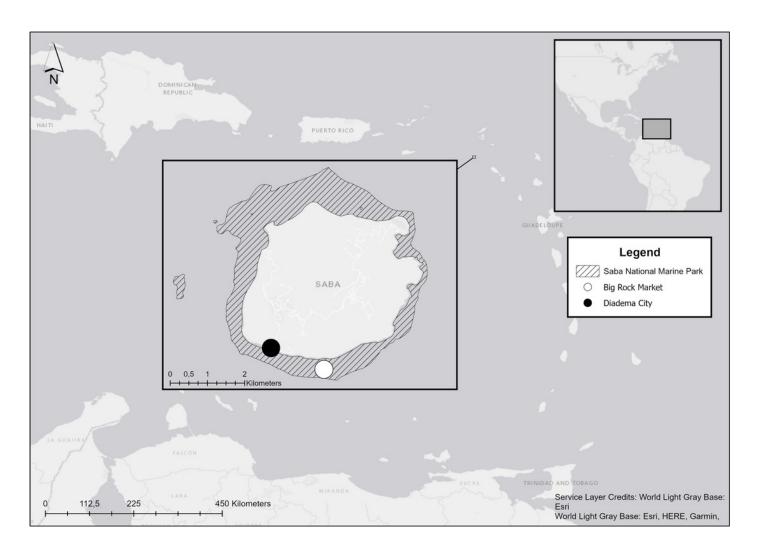
636	antillarum after the 1983–1984 mass mortality. <i>Oecologia</i> , 1/3(1), 11/–128.
637	https://doi.org/10.1007/s00442-013-2871-9
638	
639	Lozano-Alvarez, E., & Spanier, E. (1997). Behaviour and growth of captive spiny lobsters
640	(Panulirus argus) under the risk of predation. Marine and Freshwater
641	Research, 48(8), 707-714.
642 643	Maciá, S., Robinson, M. P., & Nalevanko, A. (2007). Experimental dispersal of recovering
644	Diadema antillarum increases grazing intensity and reduces macroalgal abundance or
645	a coral reef. Marine Ecology Progress Series, 348, 173–182.
646	https://doi.org/10.3354/meps06962
647	maps.//doi.org/10.555//meps00502
648	McClanahan, T. R. (1999). Predation and the control of the sea urchin <i>Echinometra viridis</i>
649	and fleshy algae in the patch reefs of Glovers Reef, Belize. <i>Ecosystems</i> , 2(6), 511-523
650	
651	McCook, L., Jompa, J., & Diaz-Pulido, G. (2001). Competition between corals and algae on
652	coral reefs: a review of evidence and mechanisms. Coral Reefs, 19(4), 400–417.
653	https://doi.org/10.1007/s003380000129
654	
655	Miller, R. J., Adams, A. J., Ebersole, J. P., & Ruiz, E. (2007). Evidence for positive density-
656	dependent effects in recovering Diadema antillarum populations. Journal of
657	Experimental Marine Biology and Ecology, 349(2), 215–222.
658	https://doi.org/10.1016/j.jembe.2007.05.014
659	
660	Mumby, P. J., Hedley, J. D., Zychaluk, K., Harborne, A. R., & Blackwell, P. G. (2006).
661	Revisiting the catastrophic die-off of the urchin <i>Diadema antillarum</i> on Caribbean
662	coral reefs: Fresh insights on resilience from a simulation model. <i>Ecological</i>
663	Modelling, 196(1–2), 131–148. https://doi.org/10.1016/j.ecolmodel.2005.11.035
664	
665	Myhre, S., & Acevedo-Gutiérrez, A. (2007). Recovery of sea urchin <i>Diadema antillarum</i>
666	populations is correlated to increased coral and reduced macroalgal cover. <i>Marine</i>
667	Ecology Progress Series, 329, 205–210. https://doi.org/10.3354/meps329205
668	
669	Nedimyer, K., & Moe, M. A. (2006). Techniques development for the reestablishment of the
670	long-spined sea urchin, <i>Diadema antillarum</i> , on two small patch reefs in the upper
671	Florida Keys. Science Report: An Ecosystem Report Card After Five Years of Marine
672	Zoning, 268.
673	

675 676	intensive <i>Diadema antillarum</i> propagation as a step towards population enhancement. Scientific reports, 11(1), 1-13. https://doi.org/10.1038/s41598-021-90564-1
677	
678 679 680 681 682	Randall, J. E., Schroeder, R. E., & Starck, W. A. (1964). Notes on the biology of the echinoid <i>Diadema antillarum. Caribbean Journal of Science</i> , <i>4</i> (2), 421–433. https://www.researchgate.net/publication/246980787_Notes_on_the_biology_of_the_echinoid_Diadema_antillarum
683 684 685 686	Reinthal, P. N., Kensley, B., & Lewis, S. M. (1984). Dietary shifts in the queen triggerfish, <i>Balistes vetula</i> , in the absence of its primary food item, <i>Diadema antillarum</i> . <i>Marine Ecology</i> , <i>5</i> (2), 191-195.
687 688 689 690	R Core Team (2021). R: A language and environment for statistical computing (Vienna, Austria: R Foundation for Statistical Computing). Available at: https://www.R-project.org/.
691 692 693 694 695	Rivera Hernández, J. M., Peña Alvarado, N., Correa Vélez, K., Nemeth, R., Appeldoorn, R., & Shervette, V. (2018). Queen Triggerfish Reproductive Biology in U.S. Caribbean Waters. <i>Transactions of the American Fisheries Society</i> , <i>148</i> (1), 134–147. https://doi.org/10.1002/tafs.10124
696 697 698	Sammarco, P. W. (1982). Effects of grazing by <i>Diadema antillarum</i> Philippi (Echinodermata: Echinoidea) on algal diversity and community structure. <i>Journal of Experimental Marine Biology and Ecology</i> , 65(1), 83–105. https://doi.org/10.1016/0022-0981(82)90177-0
699 700 701 702	Sevon, A. C. (2020). A Survey of the Order Tetraodontiformes on Coral Reef Habitats in Southeast Florida.
703 704 705 706 707	Sharp, W. C., Delgado, G. A., Hart, J. E., & Hunt, J. H. (2018). Comparing the behavior and morphology of wild-collected and hatchery-propagated long-spined urchins (<i>Diadema antillarum</i>): implications for coral reef ecosystem restoration. <i>Bulletin of Marine Science</i> , 94(1), 103–122. https://doi.org/10.5343/bms.2017.1068
708 709 710	Snyder, N., & Snyder, H. (1970). Alarm Response of <i>Diadema antillarum</i> . <i>Science</i> , <i>168</i> (3928), 276–278. https://doi.org/10.1126/science.168.3928.276
711 712	Stockton, L., & Edmunds, P. J. (2021). Spatially aggressive peyssonnelid algal crusts (PAC) constrain coral recruitment to <i>Diadema</i> grazing halos on a shallow Caribbean reef.

Journal of Experimental Marine Biology and Ecology, 541, 151569. https://doi.org/10.1016/j.jembe.2021.151569
The Nature Conservancy. (2004). The <i>Diadema</i> Workshop Report. Rep <i>Diadema</i> Work March 19-20.
Vadas, R. L. (1977). Preferential Feeding: An Optimization Strategy in Sea Urchins. <i>Ecological Monographs</i> , 47(4), 337–371. https://doi.org/10.2307/1942173
Wijers, T., Hylkema, A., Pilnick, A. R., Murk, A. J. and Patterson, J. T. (2023). Feeding
density, larval density, and temperature effect on <i>Diadema antillarum</i> larvae survival and growth. Manuscript under review.
Williams, S. M. (2014). Seeding reefs with Diadema antillarum to enhance coral recovery in Puerto Rico. https://repository.library.noaa.gov/view/noaa/13514
Williams, S. M. (2016). A novel approach to the restoration of <i>Diadema antillarum</i> on coral
reefs in the Caribbean. <i>Reef Encounter</i> , 31(2), 48–50.
https://www.researchgate.net/publication/315454483_A_novel_approach_to_the_rest oration_of_Diadema_antillarum_on_coral_reefs_in_the_Caribbean
Williams, S. M. (2018). The control of algal abundance on coral reefs through the reintroduction
of Diadema antillarum. Final Report. San Juan, Puerto Rico: Department of Natural and Environmental Resource of Puerto Rico.
Williams, S. M., & García-Sais, J. R. (2020). A potential new threat on the coral reefs of Puerto
Rico: The recent emergence of <i>Ramicrusta</i> spp. <i>Marine Ecology</i> , 41(4). https://doi.org/10.1111/maec.12592
Williams, S. M. (2022). The reduction of harmful algae on Caribbean coral reefs through the reintroduction of a keystone herbivore, the long spined sea urchin, <i>Diadema</i>
antillarum. Restoration Ecology, e13475. https://doi.org/10.1111/rec.13475
Wilson, B., Fan, C. M., & Edmunds, P. J. (2020). An unusual microbiome characterises a
spatially-aggressive crustose alga rapidly overgrowing shallow Caribbean reefs. <i>Scientific Reports</i> , 10(1). https://doi.org/10.1038/s41598-020-76204-0
Wynne, S. (2008). Diadema antillarum Translocation Study in Anguilla, British West Indies.
Department of Fisheries and Marine Resources. Prod by Dep Fish Mar Resour Gov Anguilla.

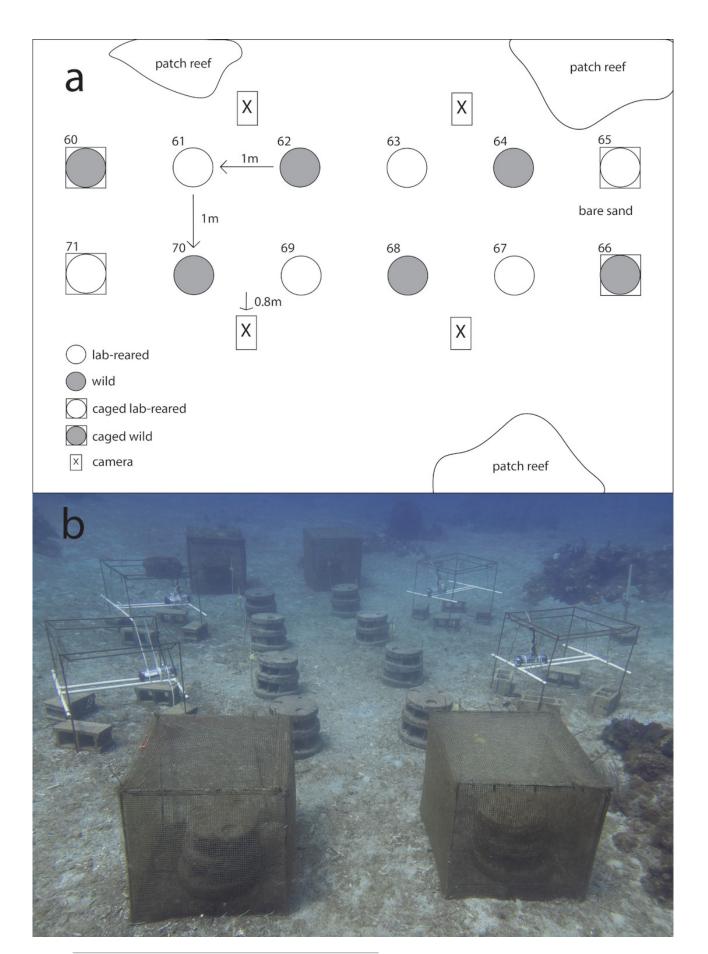
PeerJ

753	
754	Zuur, A., Ieno, E.N., Walker, N., Saveliev, A.A., Smith, G.M. (2009). Mixed Effects Models
755	and Extensions in Ecology with R. Springer Science & Business Media.

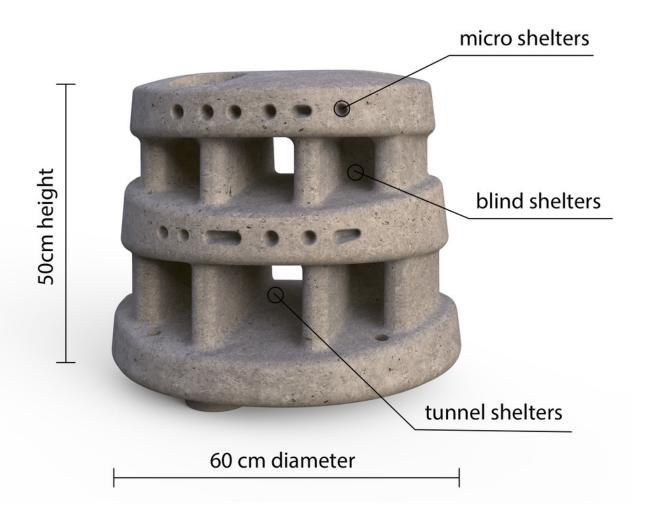

Manuscript to be reviewed

756

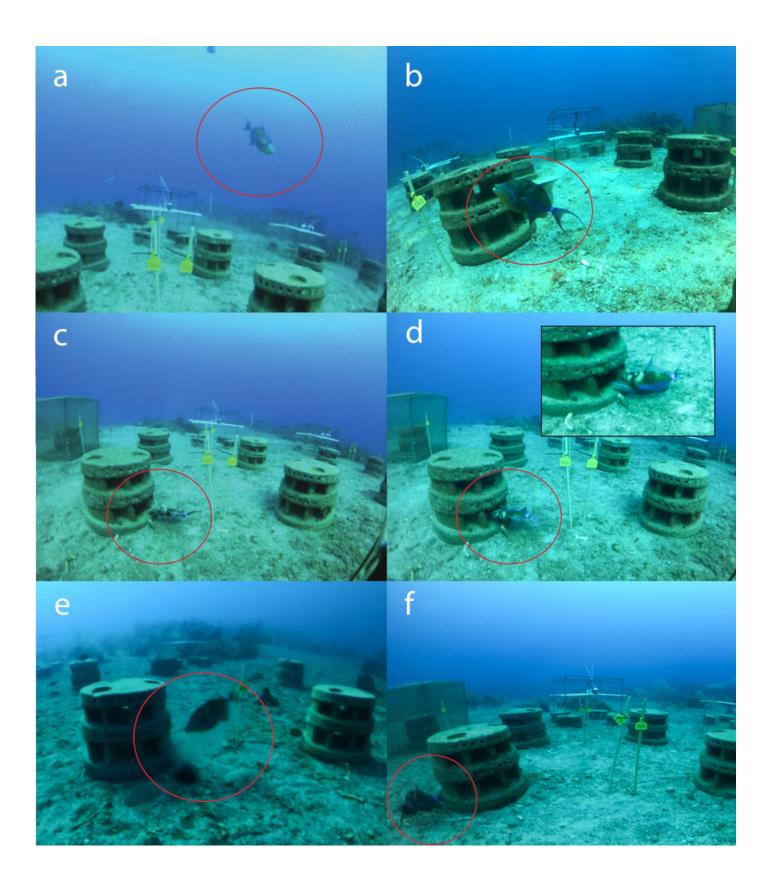
Location of Saba in the Caribbean.


Location of Saba in the Caribbean. Experiments were performed at Big Rock Market and wild Diadema antillarum were collected at Diadema City.

Experimental setup.

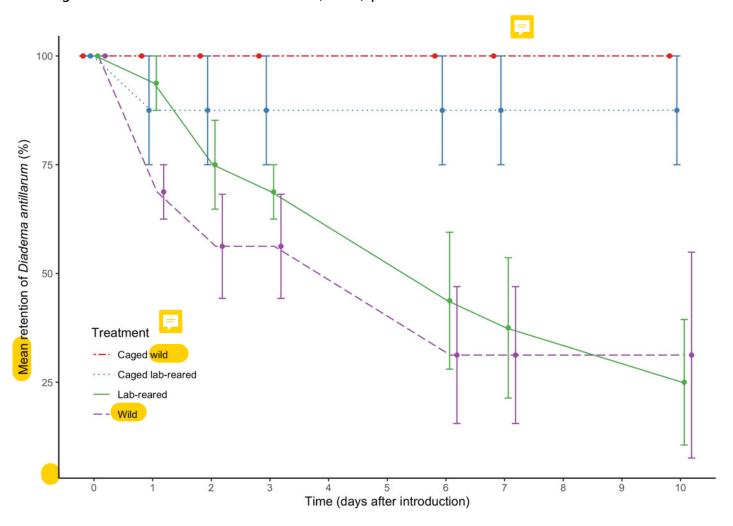

(a) Schematic overview of the experimental setup. (b) Photo of the experimental setup.

PeerJ reviewing PDF | (2023:05:86062:0:1:NEW 22 May 2023)


Moreef artificial reef module.

Front view of Modular Restoration Reef (Moreef) module with incorporated shelters.

Codes to categorize actions of predators and Diadema antillarum.


Codes used in this study to categorize actions of predators and *Diadema antillarum*: (a) Code 1: *D. antillarum* predator is present outside of a 50 cm virtual sphere around the artificial reef. (b) Code 2: *D. antillarum* predator is present within a 50 cm virtual sphere around the artificial reef, but not within 10 cm radius around the shelter entrance. (c) *D. antillarum* predator is present within 10 cm around the shelter entrance of the artificial reef. (d) Code 4: Interaction between *D. antillarum* predator and *D. antillarum* on the artificial reef. (e) *antillarum* predator is present within a 50 cm virtual cylinder around *D. antillarum* which is located outside the shelter. (f) *D. antillarum* predator attacks *D. antillarum* which is located outside the shelter.

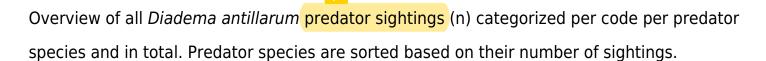
Diadema antillarum retention

Average Diadema antillarum retention (± SE) per treatment on artificial reefs over time.

Table 1(on next page)

Codes for sightings and predator-prey interactions.

Codes for sightings and predator-prey interactions. Pictures were only attributed to the most precise code describing the action. Code examples shown in Figure 4.


Code	Definition = 5								
1	D. antillarum predator is present outside of a 50 cm virtual sphere around the								
	artificial reef.								
2	D. antillarum precator is present within a 50 cm virtual sphere around the artificial								
	reef, but not within 10 cm radius around the shelter entrance.								
3	D. antillarum predator is present in 10 cm around the shelter entrance of the								
	artificial reef.								
4	Interaction between D. artillarum predator and D. antillarum on the artificial reef.								
5	D. antill au m predator is present within a 50 cm virtual cylinder around D. antillarum								
	which is located outside the shelter.								
6	D. antillarum predator attacks D. antillarum which is located outside the shelter.								
7	D. antillarum page ator feeds on D. antillarum outside the shelter.								
8	D. antillarum is outside the shelter and present within a 50 cm radius around the								
	artificial reef. No <i>D. antillarum</i> predator present.								
9	D. antillarum is outside the shelter and present outside of a 50 cm radius around the								
	artificial reef. No <i>D. antillarum</i> predator present.								

1

Table 2(on next page)

Diadema antillarum predator sightings

Common name	Scientific name	Potenti al predato r > 50cm or artificial reef	Potenti al predato r < 50cm of artificial reef	Potenti al predato r < 10cm of artificial reef	Interactio n predator and <i>D.</i> antillaru m	Potential predator <50 cm of D. antillaru m outside shelter	Potential predator attacks D. antillaru m outside shelter	Potential predator feeds on D. antillaru m	Total actions per species :
	Code	1	2	3	4	5	6	7	
queen triggerfish	Balistes vetula	159	254	39	135	1	1	0	589
porcupine fish Caribbean spiny	Diodon hysterix	20	3	0	0	0	0	0	23
lobster	Panulirus argus	7	15	0	0	0	0	0	22
Spanish hogfish	Bodianus rufus Sphoeroides	0	9	1	1	0	0	0	11
bandtail pufferfish	spengleri	2	0	0	0	0	0	0	2
saucereye porgy	Calamus calamus	1	0	0	0	0	0	0	1
Total actions per code:			281	40	136	1	1	0	648