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ABSTRACT
Amphibians are the most threatened species-rich vertebrate group, with species
extinctions and population declines occurring globally, even in protected and
seemingly pristine habitats. These ‘enigmatic declines’ are generated by climate
change and infectious diseases. However, the consequences of these declines are
undocumented as no baseline ecological data exists for most affected areas. Like other
neotropical countries, Costa Rica, including Área de Conservación Guanacaste
(ACG) in north-western Costa Rica, experienced rapid amphibian population
declines and apparent extinctions during the past three decades. To delineate
amphibian diversity patterns within ACG, a large-scale comparison of multiple sites
and habitats was conducted. Distance and time constrained visual encounter surveys
characterised species richness at five sites—Murciélago (dry forest), Santa Rosa (dry
forest), Maritza (mid-elevation dry-rain forest intersect), San Gerardo (rainforest)
and Cacao (cloud forest). Furthermore, species-richness patterns for Cacao were
compared with historic data from 1987–8, before amphibians declined in the area.
Rainforests had the highest species richness, with triple the species of their dry forest
counterparts. A decline of 45% (20 to 11 species) in amphibian species richness was
encountered when comparing historic and contemporary data for Cacao.
Conservation efforts sometimes focus on increasing the resilience of protected areas,
by increasing their range of ecosystems. In this sense ACG is unique containing many
tropical ecosystems compressed in a small geographic space, all protected and
recognised as a UNESCO world heritage site. It thus provides an extraordinary
platform to understand changes, past and present, and the resilience of tropical
ecosystems and assemblages, or lack thereof, to climate change.

Subjects Biodiversity, Conservation Biology, Ecology, Zoology
Keywords Costa Rica, Species richness, Anurans, Amphibian declines, Forest habitats

How to cite this article Edwards AW, Harrison XA, Smith MA, Chavarría Díaz MM, Sasa M, Janzen DH, Hallwachs W, Chaves G,
Fernández R, Palmer C, Wilson C, North A, Puschendorf R. 2023. Amphibian diversity across three adjacent ecosystems in Área de
Conservación Guanacaste, Costa Rica. PeerJ 11:e16185 DOI 10.7717/peerj.16185

Submitted 24 April 2023
Accepted 5 September 2023
Published 27 November 2023

Corresponding author
Robert Puschendorf,
robert.puschendorf@plymouth.ac.uk

Academic editor
Daniel Silva

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj.16185

Copyright
2023 Edwards et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.16185
mailto:robert.puschendorf@�plymouth.ac.uk
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.16185
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


INTRODUCTION
Ongoing biodiversity loss and its associated impacts are a major global issue, with the
current rate of extinctions unprecedented in recent time—over 1,000 times the probable
natural background rate (Barnosky et al., 2011; Ceballos, Ehrlich & Dirzo, 2017; Pimm
et al., 2006, 2014). This loss of species is changing and impoverishing ecosystems all over
the world (Hooper et al., 2012; Pimm & Raven, 2000; Pimm et al., 1995) and is a major
concern for biologists and ecologists studying a wide range of taxa (Ehrlich, 1995, Dirzo
et al., 2014, Janzen & Hallwachs, 2020, Worm & Tittensor, 2011), not to mention the
tropical societies that are losing their natural wild capital. At the vanguard of this current
extinction spasm however are amphibians, with more species threatened with extinction
than any other major vertebrate taxon (Stuart et al., 2004).

Amphibian diversity is strongly correlated with environmental conditions such as
precipitation, temperature, and available moisture. Available moisture can be measured as
the relation between potential and actual evapotranspiration and appears to be a major
determinant of amphibian diversity in Costa Rica (Savage, 2002), with extreme humid
conditions (where precipitation greatly exceeds potential evapotranspiration) being
associated with the highest diversity of species. Temperature is another essential driver of
Costa Rican amphibian diversity and is reflected by changes in temperature along an
altitudinal gradient—moving from cooler temperatures at higher elevations to warmer
ones at lower elevations. For example, 65% of Costa Rican amphibians can be found within
the premontane belt, potentially reflecting the overlap between the lower temperature
limits of upland species and upper limits of lowland species (Savage, 2002). However, this
means that individuals are highly susceptible to changes in these conditions (Bickford et al.,
2010; Ficetola & Maiorano, 2016; Ryan et al., 2015; Walls, Barichivich & Brown, 2013),
making them vulnerable to anthropogenic pressures.

There are approximately 8,480 known amphibian species (Frost, 2022), 41% of which
are threatened with global extinction (IUCN, 2018) and 43% have declining populations
(Hof et al., 2011; Stuart et al., 2004). Yet even these numbers are likely to be
underestimated as our knowledge of tropical amphibian diversity and density is so poor
(Wake & Vredenburg, 2008). It is widely agreed that amphibians face a constellation of
threats, with many working synergistically to accelerate declines, including global climate
change, habitat destruction and alteration, invasive species, overexploitation, and
infectious disease (Collins & Crump, 2009). Amphibian population declines have been
noted as early as the 1950s (Houlahan et al., 2000) but did not receive broad attention until
the 1980s (although see Alford, Dixon & Pechmann, 2001), after several localities
experienced rapid population crashes, with many of these occurring in seemingly pristine
and protected areas (Stuart et al., 2004; Burrowes, Joglar & Green, 2004). These ‘enigmatic’
declines were thought to occur due to a myriad of factors (Collins & Storfer, 2003), but
today two main causal factors have since been recognised: the pathogenic fungus
Batrachochytrium dendrobatidis and climate change (Blaustein & Dobson, 2006; Clare
et al., 2016; Lips et al., 2006, 2008; Pounds & Puschendorf, 2004; Pounds et al., 2006; Rohr
et al., 2008; Whitfield et al., 2007).
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Similar to other regions in tropical Central America, declines of Costa Rican
amphibians have occurred rapidly (within 2–3 years.) at elevations above 500 m (Young
et al., 2001) and has resulted in the extirpation of endemics found at higher elevations
(Bolaños, 2002; Pounds et al., 1997). Área de Conservación Guanacaste (ACG), which
protects 120,000 ha of dry, rain and, cloud forest (and 43,000 ha of Pacific Ocean) in
northwestern Costa Rica, (Janzen, Hallwachs & Kappelle, 2016) lost many amphibian
species in the late 1980’s, mostly in upland areas (Puschendorf et al., 2019).

Amphibian communities are already feeling the effects of climate change, both globally
(Blaustein et al., 2010; Corn, 2005; Li, Cohen & Rohr, 2013) and within ACG. These
impacts observed for amphibians are mirrored by other taxa, with many lowland ACG
species of both vertebrates and invertebrates now being recorded at much higher elevations
(Smith, Hallwachs & Janzen, 2014), whilst increased droughts have led to widespread tree
and epiphyte mortality (Powers et al., 2020). Furthermore, Janzen & Hallwachs (2021) have
witnessed a precipitous decline in insect numbers since they first started working in ACG
since 1963 and 1978, respectively. This trend they attribute to climate change, specifically
the expanded and irregular dry season in all three major ecosystems present in ACG.
The evidence is mounting that climate change is not an abstract event that will impact the
world and ACG in the future, but a catastrophe we are experiencing now. To understand
the future impacts of climate change, it is important to know the species that are most at
risk and their needs and characteristics.

To draw meaningful comparisons, document any potential shift in diversity and
distribution of species and define and measure conservation targets, temporal baseline data
is fundamental (Mihoub et al., 2017). Despite the well documented recent declines and
extinctions of amphibians across the globe, baseline data for many tropical places is still
scant (Collen et al., 2008; Feeley & Silman, 2010; Siddig, 2019). This well documented
decline of tropical amphibian diversity is based on a limited number of localities in better
studied countries such as Australia, Costa Rica, Panama, Ecuador and a few others (Pounds
& Crump, 1994; Richards, McDonald & Alford, 1994; Lips et al., 2006; Merino, Coloma &
Almendáriz, 2006). Most of these declines have occurred at higher elevations, but more
recent work suggest lowland populations are not exempt, with declines tending to occur
over longer time periods (Whitfield et al., 2007; Ryan et al., 2014). Despite Costa Rica being
one of the better studied localities for amphibian declines, baseline data is still lacking for
many important areas—including ACG.

Several studies have investigated amphibian species richness within ACG, but these
tended to focus on a single forest type (Bickford, 1994; Sasa & Solórzano, 1995) and lacked
population level data. Identifying long-term population trends is essential for any
conservation endeavour but has proved difficult for most tropical amphibians due to the
lack of historical baseline data and overall disinterest in gathering it. The few studies (e.g.,
Acosta-Chaves et al., 2019; Ryan et al., 2014; Whitfield et al., 2007) that have incorporated
long-term population data have found large-scale declines in amphibian populations. Over
a 35-year period in the lowland rainforest of La Selva, Caribbean Costa Rica, Whitfield
et al. (2007) documented a decline of 75% in terrestrial amphibian density since 1970.
La Selva is a protected old-growth rainforest. Here we are building on these initial studies
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and integrating abundance data in a large-scale comparison of several sites and habitats
within ACG, providing vital baseline data valuable for understanding and anticipating
long-term trends. Furthermore, by incorporating historic species richness data for one of
the ACG cloud forest sites, where species richness declined in the late 1980’s, we
hypothesise that some species recovery should be noted, mirroring similar species
re-discovery in many other sites in lower Central America, where declines occurred
(García-Rodríguez et al., 2012; Voyles et al., 2018).

METHODS
Study sites
We sampled five sites in ACG which included: Cacao (10�55′36.264″N; 85�28′5.8794″W;
1,050 m above sea level (asl); cloud forest), San Gerardo (10�52′48″N; 85�23′20.3994″W;
573 m asl; rainforest), Maritza (10�57′727.0″N; 85�29′40.3″W; 590 m asl; mid-elevation
dry-rain forest intersect), Murciélago (10�54′3.6354″N; 85�43′45.444″W; 80 m asl; dry
forest) and Santa Rosa (10�50′16.7634″N; 85�37′7.2042″W; 289 m asl; dry forest; Fig. 1).
All five sites are 4.5–37.5 km distance from each other. Murciélago has the highest mean
annual temperature, whereas Cacao has the lowest (Table 1). Cacao has the highest mean
annual precipitation and precipitation during the driest quarter, while Murciélago has the
lowest annual precipitation (Table 1). Santa Rosa and Murciélago are comprised of a
mosaic of relatively young dry forest in restoration from pastureland in the last three
decades, with a few remaining tiny patches of older growth forest that escaped logging and
burning. San Gerardo is a classical rainforest of 400–700 m elevation. Cacao and Maritza
are both older forests, with a mix of old-growth and regenerating forests. Average annual
rainfall at these study sites can vary and ranges between 1,613.3 � 17.44 mm and 2,820 �
56.35 mm (Mean � SD; Fick & Hijmans, 2017) with a major part of this variation due to
hurricane years. The mean annual temperature ranges between 20.74 �C � 0.67 �C and
26.15 �C � 0.18 �C (Mean � SD; Fick & Hijmans, 2017), with a marked rainy season
(May–December).

Sampling methods
We collected data between the 09 August and 15 November 2017 (rainy season). At each
site, 10 × 100 m long transects were established—split evenly between terrestrial and
riparian habitats. Animals were captured within 2 m of the transect and extending 2 m in
height. The distance between transects varied between 100 m and 4 km, depending on
terrain and topography. We used distance and time constrained Visual Encounter Surveys
(hereafter referred to as ‘VES’; Scott, 1994; von May et al., 2010) for a duration of 40 min.
We sampled three quarters of the transects at night (18:00–00:00 h) and the remainder
during the day (10:20–15:30 h) to account for both diurnal and nocturnal species. We used
VES as most amphibian species are nocturnal and previous studies have shown that VES’s
(Crump & Scott, 1994) are more effective than other methods when sampling at night
(Doan, 2003; Rödel & Ernst, 2004) and have been shown to be of equal effectiveness to
other methods when sampling for amphibians during the day (Doan, 2003). VES are an
effective tool for detecting several salamander species of the Plethodontidae family
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(Grover, 2006), however species in the genera Nototriton and Oedipina are best sampled
using cover object searches which can damage fragile habitats—notably mosses and
bromeliads. No specific efforts were therefore taken to conduct destructive sampling of a
fragile cloud forest ecosystem in search of salamanders.

On terrestrial transects amphibians located 2 m either side of the transect centre were
captured, for a total width of 4 m and on substrates up to 2 m in height (von May &
Donnelly, 2009). Captured individuals were placed in their own plastic bags with substrate
and water for moisture and labelled with a unique identification code and location on the
transect. Further biosecurity precautions (e.g., new gloves for each capture) were deemed
unnecessary due to the high prevalence of B. dendrobatidis and Ranavirus within the ACG
(Wynne, 2018; Puschendorf et al., 2019). Most individuals were released at the end of the
survey, but some were brought back for further identification and released the next day
back at the point of capture.

• San Gerardo

Figure 1 Study sites. Study sites in the Área de Conservación Guanacaste. Map was generated using
open source data, from Ortiz-Malavassi (2014). Figure Source: https://hdl.handle.net/2238/6749.

Full-size DOI: 10.7717/peerj.16185/fig-1

Table 1 Climatic data for study sites.

Site Annual mean temperature (�C) Annual precipitation (mm) Precipitation of the driest quarter (mm) Elevation (m asl)

Cacao 20.74 2,820.00 154.39 1,050

San Gerardo 23.15 2,558.18 104.45 573

Maritza 22.93 2,599.29 106.29 590

Murciélago 26.15 1,613.30 15.50 80

Santa Rosa 24.76 1,700.90 11.70 289

All sites 23.17 2,325.66 88.29 516

Note:
Climatic data for each of five sites and all sites pooled together. The environmental envelope for each site was extracted at a 1 km2 resolution from WorldClim.
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We resampled transects at 2-to-4-day intervals, with each transect sampled four times
during this study. After the transect was set up a minimum of 2 days were left before
surveying began, to minimise any impact from disturbance on sampling. We measured
and marked down every 10 m on transects using flagging tape which we collected at the
end of the study. GPS coordinates and elevation were collected at the midpoint of each
transect using a Garmin 60CSX. Annual mean temperature, annual precipitation and
precipitation of the driest quarter were extracted for each field site from WorldClim
(version 1.4) at a 1 km2 resolution (Hijmans et al., 2005).

Historic data for Cacao was obtained from Arctos Collaborative Collection (MVZ, 2018)
management solutions museum database. Data were collected by David Cannatella and
David Good over 23 days between July 1987 and January 1988—with most sampling
occurring in August 1987 (For species list see Table S1). There was no standardised
sampling, observers walked through the forest collecting everything they came across (D.
Cannatella, 2018, personal communication). Historic data for Cacao is hereafter referred
to as historic Cacao. This work was carried out under CONAGEBIO Permit number R-
036-2013-OT-CONAGEBIO.

Data analysis
Unless otherwise stated, all statistical analysis was conducted in the R statistical
environment v4.1.2 (R Core Team, 2022). We used the numbers equivalent approach as
suggested by Jost (2006, 2007) to describe patterns of beta diversity and community
similarity across sites using the package ‘vegetarian’ (Charney & Record, 2012). β-diversity
was analysed based on the numbers equivalent of Shannon’s diversity 1Dβ using the
diversity order q = 1 which considers the proportional abundance of each species in a
community, without favouring either rare or abundant species (Jost, 2006). Ten thousand
bootstrap replicates of the data were used to determine standard error of β-diversity for
each site.

We performed sample-based rarefaction analyses to compare patterns of species
richness between sites (Gotelli & Colwell, 2001). Transect data were pooled across sites and
the ‘vegan’ package (Oksanen et al., 2007) was used to generate the subsequent
comparisons. A sample-based rarefaction curve was further used to compare species
richness patterns between historic and current data for Cacao.

To estimate inventories completeness, we used the nonparametric estimators of species
richness; ACE and Chao1 based on abundance data (Hughes et al., 2001; Jiménez-Valverde
& Hortal, 2003), using EstimateS Program V9.1.0 (Chao, 1984; Chao & Lee, 1992; Chao &
Yang, 1993; Chazdon et al., 1998; Colwell, 2013; Colwell & Coddington, 1994).

To compare species abundance patterns between sites, rank abundance curves (RAC)
were plotted (Magurran, 2004) using the BiodiversityR package (Kindt & Coe, 2005).
The slope of linear regression of an RAC expresses the evenness in abundance among
species within an assemblage and an analysis of covariance (ANCOVA) was used to
compare differences in evenness among sites. An abundant species was arbitrarily defined
as those that were represented by more than 12 individuals (which is approximately 2% of
all individuals across the study). We used the package brms (Bürkner, 2017, 2018) to test
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for differences among sites in the rate of decay in rank abundance slopes. We specified
per-species abundance as an outcome variable, with a negative binomial error structure.
We included the interaction between rank and site as fixed effects, allowing the slope of
decay to vary by site. We assessed model fit using visual inspection of mcmc chains, and
posterior predictive checks. We determined differences between sites in rates of abundance
decay based on whether differences in 95% credible intervals of slope parameters included
zero. We used the Leave One Out Information Criterion (LOO-IC, Vehtari, Gelman &
Gabry, 2017; Vehtari et al., 2020) to perform a full model test of the maximal model against
the intercept only model (Forstmeier & Schielzeth, 2011).

Multidimensional scaling (nMDS) ordination (k = 2, stress = 0.12) using the ‘vegan’
package (Oksanen et al., 2022) was used to visualise the difference in community structure
and composition among sites. The nMDS plot is based on a Jaccard matrix, using species
presence/absence data. Additionally, the similarity percentage (SIMPER: Clarke &
Warwick, 2001) was calculated to identify the contribution of individual species to the
dissimilarity of amphibian community structure among sites. Moreover, a SIMPER
analysis was also conducted using the historic data for Cacao to understand the changes in
community structure over time and how this has affected inter-site relatedness.
Abundance was analysed after a square root transformation of the data. This was
conducted using the ‘vegan’ package (Oksanen et al., 2007).

All code and datasets required for reproducing these results, including model fitting and
data visualisation, are provided online (https://github.com/xavharrison/CostaRica_
RankAbundance_2022).

RESULTS
During the surveys between August–November 2017, 660 individual amphibians from 37
species were recorded, all anurans, (Table S2). This represents 46.25% of known
amphibian species to occur in ACG (Table S3). The overall sampling effort was 267
person-hours throughout the entire study. In total 50 transects were resampled four times
for a total of 200 transects. Several other individuals and species were captured outside of
standard sampling (Table S4), but those have not been included in this analysis.
Duellmanohyla rufioculis, Craugastor fitzingeri, Rhaebo haematiticus and Craugastor
crassidigitus were the most common species, comprising 20.3%, 13.5%, 11.7% and 11.7% of
the total captured. We recorded nine amphibian families (all anuran), with three families
represented by only a single species: Microhylidae (Hypopachus variolosus),
Phyllomedusidae (Agalychnis callidryas) and Eleutherodactylidae (Diasporus diastema).

All sites had low similarity based upon species abundance (Horn index � SD: 0.19
� 0:17). The overall β-diversity for all sites combined was 3.16 � 0.134 (1Dβ � SD),
highest in San Gerardo (1Dβ = 3.27 � 0.26) and lowest in Santa Rosa (1Dβ = 1.23 � 0.11).
β-diversity for the remaining sites was as follows; Cacao (1Dβ = 2.02 � 0.11), Maritza
(1Dβ = 1.98 � 0.16) and, Murciélago (1Dβ = 2.14 � 0.20).

The sample size was sufficient to characterise species richness for three of the five sites;
Cacao; San Gerardo and Santa Rosa, as the rarefaction curve approaches an asymptote
(Fig. 2A). The highest number of species was recorded in San Gerardo (rainforest) and the
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least in Santa Rosa. In Cacao, a total of 20 species were recorded in the 1980’s compared to
only 11 in 2017, a decline of 45% (Fig. 2B). Of the 11-species recorded in 2017, three of
them were absent from the 1987 data—Craugastor fitzingeri, Hyalinobatrachium
colymbiphyllum and Smilisca baudinii. Furthermore, the curve for the historic data failed
to reach an asymptote, suggesting that the inventory was incomplete at that stage and more
species remained to be discovered. This is supported by museum records and data
collected and stored at Arctos Collaborative Collection management solutions (MVZ,
2018), which suggest a total of 39 species are known to occur in Cacao (Table S5).

Overall estimates of completeness were highest for Santa Rosa (ACE = 85.71% and
Chao1 = 100%) and San Gerardo, which was predicted to be missing seven species
(Table 2). Cacao had the lowest level of completeness (ACE = 68.75% and
Chao1 = 64.71%), as 54.58% of all individuals encountered were Duellmanohyla rufioculis.

Our Bayesian regression (Table 3), suggests that Cacao was found to have much higher
species abundances at lower ranks. Whilst all sites decayed at a similar rate (i.e. had similar
slopes), the site:rank interaction in the model revealed San Gerardo to have a much
shallower rate of decline (Figs. 3 and S1). Low density species (represented by a single
individual) also mainly occurred in San Gerardo as well as Cacao. The abundance
distribution in Murciélago and Santa Rosa suggests that these sites today have less
abundant species as compared with San Gerardo (Fig. 4). Rhinella horribilis was the most
dominant species in both Murciélago and Santa Rosa. In contrast the dominant species in
Cacao and Maritza (Duellmanohyla rufioculis and Lithobates warszewitschii) are not found
in lowland sites (Savage, 2002).
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Figure 2 Sample-based rarefaction curves. Sample-based rarefaction curves, whereby each curve
represents the expected number of species for a certain number of observed individuals. (A) Comparison
among five different sites within the ACG, representing the four main forest ecosystems. (C) Comparison
among historical (1987/8) and current (2017) data for one one sites (Cacao).
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Table 2 Observed species richness.

Site Sobs Species predicted ACE % Of completeness ACE Species predicted Chao1 % Of completeness Chao1

Cacao 11 16 68.75 17 64.71

San Gerardo 23 30 76.67 30 76.67

Maritza 8 12 66.67 11 72.73

Murciélago 7 10 70 10 70

Santa Rosa 6 7 85.71 6 100

Note:
Observed species richness (Sobs), number of species predicted by the nonparametric species richness estimators ACE and Chao1, and the percentage completeness of each
site based on these estimators.

Table 3 Model estimates.

Mean Lower 95% CI Upper 95% CI

Intercept (Cacao) 5.27 4.75 5.78

Rank −0.64 −0.78 −0.51

Maritza −2.21 −3.16 −1.26

Murciélago −2.09 −3.05 −1.09

SanGerardo −0.94 −1.59 −0.35

SantaRosa −1.16 −2.07 −0.15

Rank: Maritza 0.1 −0.2 0.38

Rank: Murciélago 0.07 −0.24 0.36

Rank: SanGerardo 0.39 0.25 0.53

Rank: SantaRosa 0.04 −0.26 0.32

R2 0.83 0.61 0.95

Note:
Model estimates from best supported model containing means and 95% credible intervals are shown in bold.
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Figure 3 Site rank decay curves for the five sampled sites. Site rank decay curves for the five sampled
sites. Bold lines represent posterior means, and shaded areas are 95% credible intervals from a negative
binomial GLM. Full-size DOI: 10.7717/peerj.16185/fig-3
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The nMDS shows a clear split between most of the sites. Santa Rosa and Murciélago are
the most similar sites, followed by Cacao and Cacao historic (Fig. 4). Excluding Cacao
historic, San Gerardo was identified as the most unique site, but this was closely followed
by Maritza. However, including Cacao historic resulted in Maritza being the most unique.
The SIMPER analysis suggests that the community structure of the five sites is distinct
from each other, despite the short geographic distance between them (Table 4), with an
average dissimilarity of 83.20%. Murciélago and Santa Rosa were the least dissimilar sites,
with a dissimilarity of 60.97%, followed by Cacao and Maritza with a dissimilarity of
71.66%. Cacao and Santa Rosa had the highest dissimilarity between sites at 96.37%.
The SIMPER analysis using the historic data for Cacao showed an increase in similarity
between Cacao and the other sites over the 30-year period (1987/8–2017). As expected, the
historic data for Cacao was most like contemporary Cacao, with a dissimilarity of 61.87%.
All sites, except Santa Rosa, experienced an increase in similarity between the two periods
with Maritza experiencing the biggest drop, with a decrease in dissimilarity from 81.77% to
71.66%. The dissimilarity between Santa Rosa and Cacao increased between the two
sampling periods, increasing from 75.35% to 96.37%.

Cacao

San Gerardo

Maritza

Murciélago

Santa Rosa

Cacao Historical

−0.4

−0.2

0.0

0.2

−0.6 −0.3 0.0 0.3 0.6
NMDS1

N
M

D
S2

Group Dry Intermediate Wet

Figure 4 Non-metric multidimensional scaling (NMDS) ordination. Results of a non-metric multi-
dimensional scaling (NMDS) ordination for six amphibian communities across Área de Conservación
Guanacaste (ACG). Solid symbols indicate the site and habitat type of individual communities
(blue = wet forest, red = dry forest, and green = mid-elevation dry-rain intersect). Abundance data was
transformed by dividing each value by the row total (a simple transformation when some sites have
higher abundance than others). The NMDS1 axis can be seen as a measure of temperature and pre-
cipitation while the NMDS2 axis is a measure of the seasonality of precipitation (calculated using vectors
of BIOCLIM variables). Full-size DOI: 10.7717/peerj.16185/fig-4
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Table 4 SIMPER analysis, showing dissimilarity between sites based on amphibian assemblages.

Comparison Overall diss.
(%)

Species* Average
abundance

Average
diss.

Contribution
(%)

Cumulative contribution
(%)**

Cacao v. San Gerardo 76.05 Cac S G

D. rufioculis 11.45 0.00 11.62 15.27 15.27

R. haematiticus 0.00 8.77 8.91 11.71 26.98

C. fitzingeri 2.00 9.11 7.22 9.49 36.47

C. megacephalus 1.73 6.32 4.66 6.13 42.6

C. crassidigitus 8.00 3.61 4.46 5.86 48.47

T. pulverata 0.00 3.87 3.93 5.17 53.64

L. vaillanti 0.00 3.00 3.04 4.00 57.64

L. warszewitschii 4.47 1.73 2.78 3.66 61.3

S. sordida 0.00 2.65 2.69 3.53 64.83

C. bransfordii 0.00 2.24 2.27 2.98 67.81

T. spinosa 0.00 2.24 2.27 2.98 70.79

Cacao v. Maritza 71.66 Cac Mar

D. rufioculis 11.45 1.73 19.41 27.08 27.08

C. crassidigitus 8.00 0.00 15.98 22.3 49.39

P.ridens 3.16 0.00 6.32 8.82 58.2

H. colymbiphyllum 2.00 0.00 4 5.58 63.78

T. typhonius 0.00 1.73 3.46 4.83 68.61

C. megacephalus 1.73 0.00 3.46 4.83 73.44

Cacao v. Murciélago 91.98 Cac Mur

D. rufioculis 11.45 0.00 22.94 24.93 24.93

C. crassidigitus 8.00 0.00 16.03 17.43 42.36

L. warszewitschii 4.47 0.00 8.96 9.74 52.1

R. horribilis 0.00 4.12 8.26 8.98 61.09

P. ridens 3.16 0.00 6.34 6.89 67.98

C. ranoides 0.00 2.24 4.48 4.87 72.85

Cacao v. Santa Rosa 96.37 Cac S R

D. rufioculis 11.45 0.00 20.77 21.55 21.55

C. crassidigitus 8.00 0.00 14.52 15.07 36.62

R. horribilis 0.00 5.57 10.10 10.49 47.11

L. warszewitschii 4.47 0.00 8.12 8.42 55.53

E. pustulosus 0.00 3.87 7.03 7.29 62.82

P. ridens 3.16 0.00 5.74 5.96 68.78

H. variolosus 0.00 2.83 5.13 5.33 74.10

Cacao v. Cacao (Historical) 61.87 Cac Cac
(H)

C. crassidigitus 8.00 1.73 8.30 13.42 13.42

D. rufioculis 11.45 5.20 8.28 13.38 26.80

N. guanacaste 0.00 4.24 5.62 9.08 35.89

L. forreri 1.00 4.24 4.30 6.94 42.83

L. warszewitschii 4.47 2.00 3.27 5.29 48.12

(Continued)
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Table 4 (continued)

Comparison Overall diss.
(%)

Species* Average
abundance

Average
diss.

Contribution
(%)

Cumulative contribution
(%)**

C. megacephalus 1.73 3.87 2.84 4.58 52.71

L. forreri 2.00 0.00 2.65 4.28 56.99

C. fitzingeri 2.00 0.00 2.65 4.28 61.27

H. colymbiphyllum 0.00 2.00 2.65 4.28 65.55

C. fitzingeri 3.16 1.73 1.89 3.06 68.62

C. melanostictus 0.00 1.41 1.87 3.03 71.64

P. ridens

H. variolosus

San Gerardo v. Maritza 90.04 S G Mar

R. haematiticus 8.77 0.00 11.71 13.00 13.00

C. fitzingeri 9.11 1.00 10.82 12.02 25.02

C. megacephalus 6.32 0.00 8.44 9.37 34.39

T. pulverata 3.87 0.00 5.17 5.74 40.12

C. crassidigitus 3.61 0.00 4.81 5.34 45.47

S. baudinii 3.16 0.00 4.22 4.68 50.15

L. vaillanti 3.00 0.00 4.00 4.44 54.60

S. sordida 2.65 0.00 3.53 3.92 58.51

L. warszewitschii 1.73 4.36 3.50 3.89 62.41

C. bransfordii 2.24 0.00 2.98 3.31 65.72

T. spinosa 2.24 0.00 2.98 3.31 69.03

T. typhonius 0.00 1.73 2.31 2.57 71.60

San Gerardo v. Murciélago 87.35 S G Mur

R. haematiticus 8.77 0.00 11.73 13.43 13.43

C. fitzingeri 9.11 1.00 10.84 12.41 25.84

C. megacephalus 6.32 0.00 8.45 9.68 35.52

T. pulverata 3.87 0.00 5.18 5.93 41.44

C. crassidigitus 3.61 0.00 4.82 5.52 46.96

L. vallianti 3.00 0.00 4.01 4.59 51.55

S. sordida 2.65 0.00 3.54 4.05 55.6

R. horribilis 1.73 4.12 3.2 3.66 59.26

C. ranoides 0.00 2.24 2.99 3.42 62.68

C. bransfordii 2.24 0.00 2.99 3.42 66.1

T. spinosa 2.24 0.00 2.99 3.42 69.52

I. leutkenii 0.00 1.73 2.32 2.65 72.17

San Gerardo v. Santa Rosa 95.67 S G S R

C. fitzingeri 9.11 0.00 11.39 11.9 11.9

R. haematiticus 8.77 0.00 10.97 11.46 23.36

C. megacephalus 6.32 0.00 7.9 8.26 31.63

E. pustulosus 0.00 3.87 4.84 5.06 36.69

T. pulverata 3.87 0.00 4.84 5.06 41.75
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Table 4 (continued)

Comparison Overall diss.
(%)

Species* Average
abundance

Average
diss.

Contribution
(%)

Cumulative contribution
(%)**

R. horribilis 1.73 5.57 4.79 5.01 46.76

L. forreri 0.00 3.61 4.51 4.71 51.47

C. crassidigitus 3.61 0.00 4.51 4.71 56.18

S. baudinii 3.16 0.00 3.95 4.13 60.31

L. vaillanti 3.00 0.00 3.75 3.92 64.23

H. variolosus 0.00 2.83 3.53 3.69 67.92

S. sordida 2.65 0.00 3.31 3.46 71.38

San Gerardo v. Cacao
(Historical)

77.12 S G Cac
(H)

C. fitzingeri 9.11 0.00 9.07 11.77 11.77

R. haematiticus 8.77 0.00 8.74 11.33 23.1

D. rufioculis 0.00 5.20 5.18 6.71 29.81

L. forreri 1.41 4.23 6.06 35.87

N. guanacaste 0.00 4.24 4.23 5.00 40.87

T. pulverata 0.00 4.24 3.86 4.90 45.77

S. baudinii 3.87 0.00 3.15 4.08 49.85

L. vaillanti 3.16 0.00 2.99 3.87 53.73

S. sordida 3.61 2.64 3.42 57.14

C. megacephalus 3.00 0.00 2.44 3.17 60.31

T. spinosa 2.65 0.00 2.23 2.89 63.20

C. melanostictus 6.32 3.87 1.99 2.58 65.78

C. crassidigitus 2.24 0.00 1.87 2.42 68.20

C. persimilis 0.00 2.00 1.73 2.24 70.44

3.61 1.73

1.73 0.00

Maritza v. Murciélago 77.21 Mar Mur

L. warszewitschii 4.36 0.00 16.56 21.44 21.44

R. horribilis 1.00 4.12 11.86 15.36 36.81

C. ranoides 0.00 2.24 8.49 11 47.81

S. baudinii 0.00 2.00 7.6 9.84 57.64

I. leutkenii 0.00 1.73 6.58 8.52 66.16

D. rufioculis 1.73 0.00 6.58 8.53 74.68

Maritza v. Santa Rosa 84.68 Mar S R

R. horribilis 1.00 5.57 14.49 17.11 17.11

L. warszewitschii 4.36 0.00 13.83 16.33 33.44

E. pustulosus 0.00 3.87 12.28 14.51 47.94

L. forreri 0.00 3.61 11.44 13.51 61.45

H. variolosus 0.00 2.83 8.97 10.59 72.04

(Continued)
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Table 4 (continued)

Comparison Overall diss.
(%)

Species* Average
abundance

Average
diss.

Contribution
(%)

Cumulative contribution
(%)**

Maritza v. Cacao (Historical) 81.77 Mar Cac
(H)

L. forreri 0.00 4.24 8.17 9.99 9.99

N. guanacaste 0.00 4.24 8.17 9.99 19.99

C. megacephalus 0.00 3.87 7.46 9.12 29.11

D. rufioculis 1.73 5.20 6.67 8.16 37.27

L. warszewitschii 4.36 2.00 4.54 5.56 42.83

C. melanostictus 0.00 2.00 3.85 4.71 47.54

T. typhonius 1.73 0.00 3.34 4.08 51.62

C. crassidigitus 0.00 1.73 3.34 4.08 55.7

P. ridens 0.00 1.73 3.34 4.08 59.78

H.variolosus 0.00 1.41 2.72 3.33 63.12

C. bransfordii 0.00 1.41 2.72 3.33 66.45

D. diastema 0.00 1.41 2.72 3.33 69.78

C. granulisa 1.41 0.00 2.72 3.33 73.11

Murciélago v. Santa Rosa 60.97 Mur S R

L. forreri 0.00 3.61 11.49 18.84 18.84

E. pustulosus 1.00 3.87 9.16 15.02 33.86

H. variolosus 0.00 2.83 9.01 14.78 48.64

C. ranoides 2.24 0.00 7.13 11.69 60.33

S. baudinii 2.00 0.00 6.37 10.45 70.78

Murciélago v. Cacao
(Historical)

92.27 Mur Cac
(H)

D. rufioculis 0.00 5.20 10.04 10.88 10.88

L. forreri 0.00 4.24 8.20 8.88 19.76

N. guanacaste 0.00 4.24 8.20 8.88 28.64

C. megacephalus 0.00 3.87 7.48 8.18 36.75

R. horribilis 4.12 1.00 6.03 6.54 43.29

C. ranoides 2.24 0.00 4.32 4.68 47.97

S. baudinii 2.00 0.00 3.86 4.19 52.16

L. warszewitschii 0.00 2.00 3.86 4.19 56.34

C. melanosticus 0.00 2.00 3.86 4.19 60.53

I. leutkenii 1.73 0.00 3.35 3.63 64.16

C. crassidigitus 0.00 1.73 3.35 3.63 67.78

P. ridens 0.00 1.73 3.35 3.63 71.41

Santa Rosa v. Cacao
(Historical)

75.35 S R Cac
(H)

D. rufioculis 0.00 5.20 9.12 12.11 12.11

R. horribilis 5.57 1.00 8.02 10.64 22.75

N. guanacaste 0.00 4.24 7.45 9.88 32.63

C. megacephalus 0.00 3.87 6.80 9.02 41.65

E. pustulosus 3.87 1.00 5.04 6.69 48.35

L. warszewitschii 0.00 2.00 3.51 4.66 53.01
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DISCUSSION
Our analysis presented here reinforces that amphibian species richness is strongly
correlated with forest type. This pattern follows the diverging environmental conditions
present in each forest type, which has resulted in very different communities across ACG.
Furthermore, we observed a substantial decrease in amphibian species richness over time,
at the relatively undisturbed cloud forest site Cacao. This is further evidence for the
widespread decline of amphibians observed globally and in Costa Rica over the past several
decades, and recovery is still tenuous, if at all (Lips et al., 2006; Stuart et al., 2004;Whitfield,
Lips & Donnelly, 2016).

Historic museum records kept at the Museo de Zoología, Universida de Costa Rica have
documented 80 species, consisting of 75 Anurans, one Gymnophiona and four Caudata
within ACG. We detected 37 species of anurans in the three main ACG ecosystems. Many
ACG areas have yet to be surveyed more than superficially; and will contain unrecorded or
new species. For example, during the pilot study we discovered Agalychnis saltator in
Pitilla (Table S4), which represents a substantial range expansion for this species and a
species new to ACG. Furthermore, new molecular approaches are revealing previously
undescribed amphibian cryptic diversity (Funk, Caminer & Ron, 2012; Stuart, Inger &
Voris, 2006) including in ACG frogs (e.g., Cryer et al., 2019). Finally, sampling across
seasons and years will be key to elucidating the full diversity of ACG amphibians, with
many species experiencing yearly fluctuations in population size (Marsh, 2001) and higher
visibility in specific seasons (Laurencio & Fitzgerald, 2010, Savage, 2002).

Rainforests had the highest levels of amphibian species richness, which support
previous findings for Costa Rica (Savage, 2002) and elsewhere (Duellman & Trueb, 1994).
The three forest types sampled are in part defined by their evolutionary history, vegetation
communities, previous disturbance and stage of restoration, levels of precipitation,
temperature and the annual actual evapotranspiration (AET; Janzen, Hallwachs &
Kappelle, 2016). It has been demonstrated that a mixture of water and energy variables are
important in shaping amphibian species richness patterns in North America, Europe, Asia
and Central America (Currie, 2001; Laurencio & Fitzgerald, 2010; Rodríguez, Belmontes &
Hawkins, 2005). For example, Qian et al. (2017) found a strong positive correlation
between amphibian species richness and environmental variables such as precipitation, net

Table 4 (continued)

Comparison Overall diss.
(%)

Species* Average
abundance

Average
diss.

Contribution
(%)

Cumulative contribution
(%)**

C. melanostictus 0.00 2.00 3.51 4.66 57.66

C. crassidigitus 0.00 1.73 3.04 4.04 61.70

P. ridens 0.00 1.73 3.04 4.04 65.74

H. variolosus 2.83 1.41 2.48 3.29 69.03

T. typhonius 1.41 0.00 2.48 3.29 72.32

Notes:
* The species contributing the most towards distinguishing between the habitats.
** Contributions of all species until a threshold of 70% of the total dissimilarity between groups is explained.
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primary productivity, range in elevation and temperature; in 245 localities across China.
These findings demonstrate that environmental variables may play a role in constraining
the species richness at a site and constitutes the most plausible explanation for the
differences between the forest types. This is supported by the fact that dry forest sites, prior
to disturbance, had much lower levels of species richness and tended to be dominated by
large-bodied generalists, such as Rhinella horribilis, Smilisca baudinii and Lithobates forreri
which have wide distributions and are adapted to the seasonally xeric conditions of the dry
forest. These anurans are less prone to desiccation, as their large body size means that they
have proportionally lower surface area to body volume and thus lower rates of water loss
than smaller bodied species (Duellman & Trueb, 1994) This likely explains their higher
abundances and dominance in the dry forest, which is characterised by dry season high
temperatures and less rain, especially during the dry season. One such adaption to the xeric
conditions of the dry forest is cocoon formation, as observed in Smilisca baudinii, allowing
them to survive long periods without rain (McDiarmid & Foster, 1987). The similarity
between Cacao and Maritza is likely due to the proximity of these two sites (4.5 km) and
that they occupy one continuous forest, albeit over an elevational gradient, rather than
environmental conditions—which are grossly different between the two sites.
Duellmanohyla rufioculis was only found at these two sites, whilst Lithobates
warszewitschii was far more abundant in these two sites than any other.

Weather conditions at different elevations are likely to play a significant role in
constraining diversity to a specific site and may explain the greater diversity found in San
Gerardo compared to Cacao. For many groups of organisms, including amphibians
(Campbell, 1999), diversity changes along an elevational gradient (e.g., McCain, 2005;
Navas, 2003; Terborgh, 1971), following a bell-shaped curve. Species richness is relatively
low at lower and higher elevations, with the highest species richness recorded at mid-
elevations. However, endemism in the tropics is far more ubiquitous at high elevation sites;
meaning they are of great conservation priority—a consequence of these sites being far
more insular (Savage, 2002). The results roughly follow this trend, with the average
elevation of our transects in the most species rich site, San Gerardo (573.32 m), between
the elevation of the less diverse higher elevation site (Cacao: 1,050.17 m) and lower
elevation sites (Santa Rosa: 289.2 m, Murciélago: 80.5 m).

Despite differences in the structure of the forest habitats, two species were found to
occur in all four, Rhinella horribilis and Craugastor fitzingeri. This is likely attributed to
their generalist nature and ability to adapt to human altered landscapes (Crawford,
Bermingham & Carolina, 2007). Only 11 species were found at more than one site, but
some exhibited far higher abundance in only one forest type, such as D. rufioculis which
was found at very high abundances in Cacao (131 individuals), low abundances at Maritza
(three individuals) and absent from all other sites—a consequence of the elevational range
constraints and climatic requirements of this species (Savage, 2002). Historic declines may
also play a role in the presence and absence of certain species at different sites, as illustrated
by Craugastor ranoides. This once widespread riparian species is likely highly sensitive to
B. dendrobatidis outbreaks (known populations of this species have disappeared frommost
of its range in Costa Rica, and B. dendrobatidis was found responsible for the decline of a
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highly-related species, Craugastor punctariolus; Ryan, Lips & Eichholz, 2008) and is likely
only to persist in Murciélago due to the areas status as a climatic refuge, where the
environmental conditions have helped prevent disease outbreaks (Puschendorf et al.,
2009). However, this dry forest peninsula is also subject to serpentinization (Sánchez-
Murillo et al., 2014). This produces hyperalkaline fluids, reaching a pH of >11, which drain
into the local streams in which these frogs live. The potential effects of this pH change on
the skin fungus and its resultant disease are yet to be explored. In Cacao forest, alongside
Craugastor ranoides, Atelopus varius, Isthmohyla tica, Craugastor andi, Duellmanohyla
uranochroa have also vanished and all salamanders are now extremely uncommon.
However, more intensive sampling during different years and different seasons may reveal
that these species persist, albeit in much lower numbers.

The steep decline in amphibian diversity in Cacao, over the 30-year period 1987/8–2017
is persistent and clearly recovery has been slow. A 45% reduction in species richness was
observed, with only 11 species recorded in 2017 compared to 20 in the 1980’s, with far
greater sampling effort involved in 2017. The complete lack of salamanders on the
transects was especially notable, due to their historic ubiquity in the area and this finding
aligns with the declines reported by other studies on neotropical salamanders (Acosta-
Chaves et al., 2015; Rovito et al., 2009). In the early 1980’s and 1990’s, D.H. Janzen regularly
encountered salamanders under fallen, rotting tree stems (night and day) and on wet
foliage at night, whilst searching for caterpillars in the vicinity of Estacioón Biológica
Cacao (800–1,400 m) year-round. Since the 2000’s none have been encountered by either
D.H. Janzen or the parataxonomists on their daily search for caterpillars. Although we
cannot say with certainty that these salamanders are locally extinct, if they are still present
at Cacao it is likely at levels substantially below their pre-decline numbers and recovery to
these levels appears increasingly doubtful. The historic data supports previous studies
looking at herpetofauna diversity of sites at similar elevations (Scott, 1976: Puntarenas
Province, Costa Rica). Cacao is comprised of mostly old growth forest with a few patches of
forest at various stages of regeneration, which makes these declines even more alarming.
But these declines match those experienced by other high elevation old growth forests in
the neotropics (Young et al., 2001). The limited data also demonstrates that there has been
little recovery of amphibian diversity following these declines. However, certain species
appear to have been less affected in the long-term than others, such as C. crassidigitus,
D. rufioculis and, L. warszewitschii, which despite experiencing similar declines, have since
recovered and are now the most visible of the Cacao amphibian community. A recent
study by Acosta-Chaves et al. (2019) found similar results with C. crassidigitus and
L. warszewitschii now dominating the amphibian community of Reserva de San Ramón,
despite their almost absence in the 1990s. Voyles et al. (2018), examined the temporal
changes in detection rates of 12 riparian species at three sites in Panama. Many of the
species experienced rapid decreases during the epizootic phase of the B. dendrobatidis
outbreak. However, following the transition to the enzootic phase, B. dendrobatidis
prevalence decreased, concomitant to the recovery of several of the species; including
L. warszewitschii and C. crassidigitus. This suggests changes in host responses to diseases.

Edwards et al. (2023), PeerJ, DOI 10.7717/peerj.16185 17/27

http://dx.doi.org/10.7717/peerj.16185
https://peerj.com/


A potential cause of these declines is the pathogenic fungus B. dendrobatidis, which has
been reported for several frog species on Cacao (Wynne, 2018), although synergistic
interactions among different environmental variables may conceal individual effects
(Navas & Otani, 2007). Scheele et al. (2019) suggest that B. dendrobatidis is responsible for
the decline of 501 amphibian species and the potential extinction of 90 species, making it
seem to be one of the deadliest diseases for wild biodiversity. However, amphibian
population collapses are not occurring in isolation—they are part of a constellation of
changes taking place in tropical old growth forests (including Cacao), such as the decline of
birds, lizards and insects, which are not susceptible to B. dendrobatidis (Janzen &
Hallwachs, 2021; Lister & Garcia, 2018; Pounds, Fogden & Campbell, 1999; Zipkin et al.,
2020; Zipkin & DiRenzo, 2022), suggesting B. dendrobatidis may not be the sole culprit of
these observed declines. Cacao, as with many of the other regions where declines have been
documented, has gone through an ecological homogenisation, with a large increase in
similarity among sites following the declines (Smith, Lips & Chase, 2009). This is likely to
be an underestimate of dissimilarity as today we know that lowland amphibian
communities have also been suffering declines, just over a longer time period (Ryan, Lips &
Eichholz, 2008; Whitfield et al., 2007). However, baseline data is only available for Cacao.

Documenting long-term declines is only possible through the collection of baseline data
(e.g., Ryan, Lips & Eichholz, 2008; Whitfield et al., 2007). The observation of a substantial
decline in amphibian diversity within an old growth forest in ACG was only possible
because of data collected several decades prior, by an expedition from the University of
California, Berkeley. Other sites examined in this study may have experienced similar
declines to that of Cacao, however we lack the data to empirically support this. ACG is in a
unique position to provide a platform for understanding changes, past and present, and the
resilience, or lack thereof, of tropical ecosystems and assemblages to climate change.
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