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ABSTRACT
The domain of unknown function 560 (DUF560), also known as the PDDEXK_6
family, is a ubiquitous plant protein that has been confirmed to play critical roles in
Arabidopsis root development as well as ABA and abiotic responses. However,
genome-wide identification and expression pattern analysis in rice (Oryza sativa) still
need to be improved. Based on the phylogenetic relationship, 10 OsDUF506 genes
were identified and classified into four subfamilies. Segmental duplication was
essential to the expansion of OsDUF506s, which were subjected to purifying selective
pressure. Except for OsDUF50609 and OsDUF50610, the OsDUF506s shared colinear
gene pairs with five monocot species, showing that they were conserved in evolution.
Furthermore, the conserved domains, gene structures, SNPs distribution, and
targeting miRNAs were systematically investigated. Massive cis-regulatory elements
were discovered in promoter regions, implying that OsDUF506smay be important in
hormone regulation and abiotic stress response. Therefore, we analyzed plant
hormone-induced transcriptome data and performed qRT-PCR on eight OsDUF506s
under drought, cold, and phosphorus-deficient stresses. The results revealed that
most OsDUF506s respond to ABA and JA treatment, as well as drought and cold
conditions. In conclusion, our findings provided insights into the evolution and
function of OsDUF506s, which could benefit crop breeding in the future.
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INTRODUCTION
Domains of unknown functions (DUFs) are batches of gene families with conserved
domains but unknown functions that are common in eukaryotes (Bateman, Coggill & Finn,
2010). The Pfam database contains 4,716 DUF families (https://www.ebi.ac.uk/interpro/
entry/pfam/). Although the majority of DUF families remain unknown, some have been
studied. In Oryza sativa, OsDUF1618 (Wang et al., 2014), OsDUF221 (Ganie, Pani &
Mondal, 2017), OsDUF1110 (Harada et al., 2016), OsDUF810 (Li et al., 2018), OsDUF668
(Zhong et al., 2019a),OsDUF231 (Zhong, Cui & Ye, 2019b), OsDUS936 (Li et al., 2017) have
been characterized. Previous studies showed that DUF genes were engaged in different
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biological functions in Oryza sativa. For instance, SWOLLEN TAPETUM AND STERILITY
1 (STS1), which contained a DUF726 domain, interacted with Polyketide Synthase 2
(OsPKS2) and Acyl-CoA Synthetase 12 (OsACOS12) to contribute to sporopollenin
biosynthesis (Yuan et al., 2022). Another DUF726 protein, encoded by Leaked and Delayed
Degraded Tapetum 1 (OsLDDT1), was involved in fatty acid synthesis and anther epidermis
formation (Sun et al., 2023). ROLLED and ERECT LEAF 2 (REL2), which contained
DUF630 and DUF632 conserved domains, was involved in regulating leaf morphology, its
functional loss resulted in rolling leaves (Yang et al., 2016). DUF genes have also been
implicated in various biotic and abiotic responses. For example, the Oryza sativa Stress
Responsive DUF740 Protein (OsSRDP) gene belonged to the DUF740 family, and its
overexpressed transgenic plants, driven by promoter AtRd29A, revealed increased
resistance to drought, salinity, and cold stresses as well as rice blast fungus (Jayaraman
et al., 2022). The DUF966-stress repressive gene 2 (OsDSR2) gene was involved in the
negative regulation of salt and drought stress responses (Luo et al., 2014).

The DUF506 family, also called the PDDEXK_6 family, is a group of plant proteins that
are distant homologs of the PD-(D/E)XK nuclease superfamily. The nuclear structure is
retained as a-β-β-a-β and includes the typical PDDEXK motifs II and III in modified
forms as xDxxx motif located in the second core beta-strand, where x is any hydrophobic
residue, and a (D/E)X(D/N/S/C/G) pattern. The missing positively charged residue of
motif III may be replaced by a conserved arginine in motif IV, which is located in the
proceeding alpha-helix (Knizewski et al., 2007). So far, DUF506 proteins in Oryza sativa
have not been characterized systemically and functionally. Previous research merely
identified that the expressions of 13 AtDUF506s were ubiquitous in organs and associated
with abiotic stresses and ABA response (Ying, 2021). The comparative microarray data
showed that AT2G20670 was inhibited by B. cinereal, heat, salinity, and osmotic stress
(Sham et al., 2019). Recent studies revealed that REPRESSOR OF EXCESSIVE ROOT HAIR
ELONGATION 1 (AtRXR1) gene encoded AT3G25240 protein, which was strongly
induced by phosphorus limitation and suppressed root hairs (RHs) extension by
interacting with RabD2c GTPase. Moreover, its function under phosphorus limitation was
conserved in both monocot and dicot, as proven by the analogous function of
Brachypodium distachyon DUF506 (Ying et al., 2022). AtRXR3 (AT1G62420), another
P-inducible AtDUF506 gene, inhibited RHs elongation by a distinct mechanism. AtRXR3
was transactivated by ROOT HAIR DEFECTIVE6-LIKE4 (RSL4) and interacted with
cytosolic calmodulins to repress RHs elongation (Ying & Scheible, 2022). Current studies
on DUF506s in Arabidopsis suggested that DUF506 family members were significant in
plant growth and abiotic resistance, but DUF506s functions in Oryza sativa have rarely
been investigated. LOC_Os01g68650, the closest homologous gene of AtRXR1, was
upregulated under drought stress, and its expression in drought tolerance 11 (OsDT11)
overexpression line was higher than in the wild line, indicating that this gene may
participate in drought response and be enhanced by OsDT11 (Zhao et al., 2020).
LOC_Os01g54340 was identified as a nitrogen-sensitive gene that was rapidly repressed by
nitrogen starvation (Hsieh et al., 2018). Until now, the OsDUF506 family has not been
genome-wide identified and the functions are still unknown.
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In this study, we identified all OsDUF506 family members in Oryza sativa by
bioinformatic methods. The phylogeny, conserved motifs, cis-acting regulatory elements,
distribution of non-synonymous SNPs, target miRNA, synteny, and tissue expression
specificity were analyzed. The expression pattern of OsDUF506s under plant hormones
treatments and drought, cold, and phosphorus-deficient stresses was investigated using
transcriptome and qRT-PCR. Our study provided a more comprehensive identification
and classification of OsDUF506s, broadened our recognition of the functions under abiotic
stresses, and laid the groundwork for molecular breeding in Oryza sativa.

MATERIALS AND METHODS
Identification of DUF506 members in 10 plant species
All the genome databases were downloaded from the EnsemblPlants database (http://
plants.ensembl.org). Thirteen Arabidopsis DUF506 protein sequences were obtained from
UniProtKB/Swiss-Prot (SwissProt) database (https://www.uniprot.org) and used as
queries to perform protein blast search in 10 plant species (Oryza sativa, Arabidopsis
thaliana, Glycine max, Solanum tuberosum, Gossypium raimondii, Zea mays, Hordeum
vulgare, Triticum aestivum, Sorghum bicolor and Ananas comosus) by using TBtools (Chen
et al., 2020). Meantime, the typical domain of DUF506 (PF04720, PDDEXK_6) was
downloaded from the PFAM database (http://pfam.xfam.org) and was used to search for
DUF506 with the HMMER tool (https://www.ebi.ac.uk/Tools/hmmer/search/hmmscan).
All the candidates were merged and edited to eliminate redundancies. The candidates were
then submitted to NCBI-CDD (https://www.ncbi.nlm.nih.gov/cdd/) to test for the
existence of the complete DUF506 conserved domain and those with an incomplete N end
or C end were eliminated. The molecular weight (Mw), isoelectric point (pI), instability
index, aliphatic index, and grand average of hydropathicity (GRAVY) of DUF506
members were predicted with ExPASy (http://web.expasy.org/protparam). The subcellular
localizations were predicted with WoLF PSORT (https://wolfpsort.hgc.jp).

Phylogenetic relationship, structure, and conserved motifs analysis of
OsDUF506 members
A total of 130 DUF506s was used for aligning with the MUSCLE method (default
parameters) and construction of an ML phylogenetic tree (default parameters) using
MEGA 11 software by setting bootstrap to 1,000 and JTT+G model (Tamura, Stecher &
Kumar, 2021). The result was displayed by ChiPlot (https://www.chiplot.online).
The conserved motifs were predicted with MEME (https://meme-suite.org/meme/doc/
meme.html) and visualized by TBtools (Chen et al., 2020).

Prediction of CREs of OsDUF506 members
The 2,000 bp upstream sequences of promoters were used to search for CREs with
PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html) and visualized
by TBtools (Chen et al., 2020).
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Analysis of SNPs of OsDUF506 members
The OsDUF506 sequences were used to query the SNP-Seek database for nsSNPs against
Nipponbare reference (https://snp-seek.irri.org). SNP-index was used to assess the
subpopulation specificity of nsSNPs. The SNP-index was calculated as SNPGJ-index = Nref/
Nall × 100%, SNPH-index = Nh/Nall × 100%, SNPXI-index = 1-SNPGJ-index-SNPH-index,
Nref represented the number of varieties sharing the same allele with reference, Nh

represented the number of varieties with heterozygous allele, Nall represented the total
number of varieties with determined alleles at the SNP locus.

Syntenic analysis of OsDUF506 members
The duplication events and syntenic relationship of DUF506s between Oryza sativa and
other plants were obtained by MCScanX (Wang et al., 2012). The results were visualized by
TBtools (Chen et al., 2020). The nonsynonymous (Ka) and synonymous (Ks) calculations
were performed by the simple Ka/Ks calculator kit of TBtools (Chen et al., 2020).

Predict analysis of miRNAs interacting with OsDUF506 members
The miRNAs targetingOsDUF506swere predicted by psRNATarget (https://www.zhaolab.
org/psRNATarget/analysis?function=2) and visualized by ChiPlot (https://www.chiplot.
online). The expressions of the predicted miRNAs were obtained from the PmiRExAt
database (http://pmirexat.nabi.res.in/searchdb.html) and the normalized TPM values
(log2) were used for constructing a heatmap, the scale method of normalized was used to
intuitively reflect the expressing differences between tissues and treatments by TBtools
(Chen et al., 2020).

Expression analysis of OsDUF506 members in different tissues and
induced by plant hormones
The expression data in various tissues and induced by 50 mM abscisic acid (ABA), 10 mM
gibberellin 3 (GA3), 10 mM auxin (IAA), 100 mM jasmonic acid (JA), 1 mM brassinolide
(BL), and 1mM trans-Zeatin (tZ) were obtained from RiceXPro database (https://ricexpro.
dna.affrc.go.jp/quick-guide.html), the normalized signal intensity values (log2) were used
for constructing heatmap, and the scale method of normalized was used to intuitively
reflect the expressing changes of particular genes at different treating time points by
TBtools (Chen et al., 2020).

Plant growth conditions and abiotic stresses treatments
Japonica rice variety Yunkegeng 5 was used in the expression analysis. The plants were
cultivated in a climate chamber (160 mmol−2 s−1 light intensity, 14 h-light and 10 h-dark a
cycle, 28 �C, 45% RH) for 14 days in Yoshida rice nutrient solution (NS1040; Coolaber
Technology Co., Ltd., Beijing, China). For drought stress, plants were transferred to a
nutrient solution of 20% (w/v) polyethylene glycol (PEG-6000) for 3 h. For cold stress,
plants were transferred to the climate chamber under 4 �C treatment for 3 h.
For phosphorus deficiency stress, plants were transferred to phosphorus-deficient Yoshida
nutrient solution (NSP1040-P; Coolaber Technology Co., Ltd., Beijing, China) for 7 days.
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Three biological replicates of the treated and control plants were harvested and stored at
−80 �C.

Expression analysis of OsDUF506 members by qRT-PCR
Primer design and specificity check was performed by Primer-BLAST of NCBI (https://
www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi). The total RNA was extracted by
TaKaRa MiniBEST Plant RNA Extraction Kit, cDNA was synthesized using Vazyme
HiSript III 1st Strand cDNA Synthesis Kit (+gDNA wiper). The qRT-PCR was
accomplished by Vazyme ChamQ SYBR Color qPCR Master Mix (Without ROX) in
LightCycler96 system under the PCR condition of 95 �C for 60 s, 45 cycles of 95 �C for 10 s,
54 to 60 �C for 20 s and 72 �C for 20 s. The relative expressions data were calculated by
2−DDCT method, and the reference used in this study was OsActin. The primer sequences
were listed in Table S9. The significant differences level was analyzed by unpaired t-test
with GraphPad Prism 8.0 software.

RESULTS
Identification and phylogenetic relationship of DUF506 members in
Oryza sativa and nine additional plant species
Using the previous method, we identified 10 DUF506s in Oryza sativa and named them
OsDUF50601 to OsDUF50610. Moreover, 13, 25, 13, 20, 8, 4, 22, 8, 7 DUF506s were
identified in Arabidopsis thaliana, Glycine max, Solanum tuberosum, Gossypium
raimondii, Zea mays, Hordeum vulgare, Triticum aestivum, Sorghum bicolor and Ananas
comosus, respectively (Table S1). A total of 130 DUF506s were used to construct an ML
phylogenetic tree and divided into four subfamilies based on the evolutionary distance
referred to previous literature (Ying, 2021). The IIIb subfamily contained the most
DUF506s, while the IIIa subfamily had the fewest. Three members belonged to subfamily I
(OsDUF50602, OsDUF50609, and OsDUF50610), two belonged to subfamily II
(OsDUF50601 and OsDUF50606), only OsDUF50603 belonged to subfamily IIIa, while the
rest four members composed the largest subfamily IIIb (Fig. 1).

Characterization and conserved motifs of OsDUF506 members
The 10 OsDUF506s were located on chromosome 1, 3, 5, 7, 10, 11. The summary of
characteristics was shown in Table 1. Their protein lengths ranged from 269 to 507.
The molecular weight, theoretical isoelectric points, and aliphatic index were predicted
between 29,861.74 to 54,428.55 Da, 5.58 to 9.12, and 62.39 to 86.85, respectively.
The instability index of proteins exceeded 40, and their GRAVY values were negative,
suggesting that they were unstable hydrophilic proteins. The subcellular localization of
subfamily II members (OsDUF50601 andOsDUF50606) was predicted to be in the nucleus,
while the rest were predicted to be in the chloroplast. OsDUF506s possessed 1 to 3 exons,
and the exon/intron structure of genes within a subfamily was comparable (Fig. 2A).
The OsDUF506s from subfamily I had only one CDS region, while those from subfamilies
II and IIIa had three CDS regions. The number of CDS regions led to the division of
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subfamily IIIb into two branches. The result suggested that members of different
subfamilies might have distinct functions.

Fifteen conserved protein motifs of OsUDF506s were identified (Fig. 2B). All Oryza
sativa and Arabidopsis DUF506 members shared motifs 1, 2, 3, and 5. In subfamily I, the
most conserved motif was 4 and 11. Ultimately, OsDUF50602 and OsDUF50610 shared the
same motifs with AT1G62420 and AT3G25240, indicating they may have the same
biological function. The subfamily II members shared motifs 8 and 11. The motif
construction of OsDUF50602 from subfamily IIIa was identical to that of AT2G39650.
All subfamily IIIb members shared motifs 4, 6, and 7. Three-quarters possessed motif 9,
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but motif 13 was exclusive to genes from Arabidopsis. The result showed that DUF506s
belonging to the same subfamily shared similar motif characteristics, indicating that they
have a similar function.

Analysis of cis-acting regulatory elements (CREs) of OsDUF506
members
To analyze the prospective function of OsDUF506s, we searched the promoter regions
(2,000 bp upstream of the start codon) and predicted 321 potential CREs (Fig. 3).
OsDUF50604 possessed the most CREs, while OsDUF50603 and OsDUF50609 possessed
the fewest (Table S2). Nineteen types of CREs were identified and grouped into three
functional categories: hormone response, abiotic stress response, and plant growth and
metabolism. Hormone response-related CREs included MeJA-response elements
(TGACG-motif and CGTCA-motif), abscisic acid response elements (ABRE), auxin
response elements (TGA and AuxRR-core), salicylic acid response elements (TCA) and
gibberellin response elements (GARE-motif and P-box). Each member of OsDUF506s
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contained at least two types of hormone response elements, MeJA-response elements and
abscisic acid response elements. Regarding abiotic stress response, light response elements,
anaerobic induction elements, and anoxic specific inducible elements were the most
prevalent. In subfamily II and IIIb, there were low-temperature response (LTR) elements.
Drought inducible elements (MSB) existed in OsDUF50601, OsDUF50602, OsDUF50607,
and OsDUF50609, indicating that they may be associated with drought stress. Fewer CREs
were related to plant growth and metabolism. CAT-boxes relating to meristem expression
were found in half of OsDUF506s, while Motif I in OsDUF50601, OsDUF50605, and
OsDUF50606 was involved in root specificity. Only a few OsDUF506 members possessed
CREs associated with circadian control, cell cycle regulation, zein metabolism regulation,
endosperm expression, and flavonoid biosynthetic genes regulation. These results
suggested that OsDUF506s might be essential in hormone regulation and abiotic stress
response.

Analysis of SNPs in OsDUF506 members
According to the Rice SNP-Seek Database, 78 SNPs were identified in OsDUF506s, of
which 30 were non-synonymous SNP (nsSNP) (Table 2). OsDUF50609 and OsDUF50610
possessed 13 and six nsSNPs, respectively, while the other members possessed between one
to three nsSNP, indicating they were relatively conserved. To explore the
subpopulation-specific variants, 30 nsSNP genotyping data of 2,644 Oryza sativa varieties
from nine subpopulations (five Xian/indicia (XI) subpopulations and four Geng/japonica
(GJ) subpopulations) were analyzed. SNPGJ-index represented the proportion of varieties
that shared the same allele as the reference Nipponbare. Three nsSNPs (OsDUF50609.1,
OsDUF50609.7, and OsDUF50610.6) from subfamily I and one nsSNP (OsDUF50607.1)
from subfamily IIIb were specific between Indica and Japonica varieties, because the
SNPGJ-index values in Indica subpopulations were less than 5%, while the values in the
Japonica subpopulations were greater than 85% (Fig. 4 and Table S3).

Table 1 Characteristics of DUF506 genes in Oryza sativa.

Gene ID Subfamily Locus ID Size
(aa)

Protein MW
(Da)

pI Instability
index

Aliphatic
index

GRAVY Chromosome Subcellular
localization

OsDUF50601 II LOC_Os01g54340 269 29,861.74 7.61 47.02 65.76 −0.460 1 Nucleus

OsDUF50602 I LOC_Os01g68650 293 30,429.34 8.97 52.76 75.22 −0.134 1 Chloroplast

OsDUF50603 IIIa LOC_Os01g74250 337 37,616.96 7.25 60.92 86.85 −0.325 1 Chloroplast

OsDUF50604 IIIb LOC_Os03g06680 307 33,011.21 6.68 45.12 80.59 −0.416 3 Chloroplast

OsDUF50605 IIIb LOC_Os03g58230 405 43,737.47 9.12 50.54 68.52 −0.489 3 Chloroplast

OsDUF50606 II LOC_Os05g44300 306 32,169.30 6.76 56.42 62.39 −0.267 5 Nucleus

OsDUF50607 IIIb LOC_Os07g08390 507 54,428.55 9.07 59.08 66.07 −0.481 7 Chloroplast

OsDUF50608 IIIb LOC_Os10g28210 301 32,041.06 6.52 50.73 79.60 −0.347 10 Chloroplast

OsDUF50609 I LOC_Os11g25020 286 30,211.19 9.03 42.62 76.71 −0.108 11 Chloroplast

OsDUF50610 I LOC_Os11g25040 306 32,464.54 5.58 50.32 82.06 −0.176 11 Chloroplast
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Synteny analysis of OsDUF506 members
Gene duplications are significant for gene family evolution. The synteny analysis result
showed three segmental duplications (OsDUF50601-OsDUF50606, OsDUF50604-
OsDUF50608, and OsDUF50605-OsDUF50607) and one tandem duplication
(OsDUF50609-OsDUF50610) in Oryza sativa (Fig. 5), indicating that segmental
duplication was the core expansion dynamic ofOsDUF506s evolution. All duplications had
Ka/Ks ratios below 0.5 (Table S4), demonstrating that OsDUF506s have undergone
purifying selective pressure during evolution. In addition, these duplicated events were
speculated to occurred at least 20.48 million years ago (Table S4).

Besides, duplicated events of DUF506s in Oryza sativa, the dicot model plant
(Arabidopsis thaliana), and other monocotyledonous species (Zea mays,Hordeum vulgare,
Triticum aestivum, Sorghum bicolor, and Ananas comosus) were also identified.
OsDUF50604, OsDUF50605, OsDUF50607, and OsDUF50608 in Oryza sativa and
AT3G22970 and AT4G14620 in Arabidopsis from subfamily IIIb formed six homologous
gene pairs and showed multiple collinearities (Fig. 5). In five monocotyledonous species,
other than OsDUF50609 and OsDUF50610 on chromosome 11, the other OsDUF506s all
had homologous genes. A total of 10 colinear gene pairs were found between Oryza sativa
and Hordeum vulgare, 11 pairs with Zea mays and Sorghum bicolor, respectively, 12 pairs
with Ananas comosus, and 30 pairs with Triticum aestivum (Fig. 6 and Table S5).
The results suggested that these DUF506s might be derived from the same ancestral type
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and function similarly. The OsDUF506s from subfamily IIIb were involved in gene pairs
with Arabidopsis thaliana and those five monocots, respectively, indicating that they might
be critical to the evolution of the DUF506 family.
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Predicted miRNAs analysis
Sixty-nine predicted miRNAs that target OsDUF506s and might be involved in expression
regulations were identified (Fig. 7A). All OsDUF506s were targeted by multiple miRNAs,
suggesting these genes were strictly regulated by the combination of multiple miRNAs.
MultipleOsDUF506s were targeted by osa-miRNA2927, osa-miRNA5075, osa-miRNA1848,
osa-miRNA2925, and osa-miRNA5809, indicating that these miRNAs were essential to
OsDUF506s. The lengths of matured miRNAs ranged between 19 and 24 nucleotides
(Table S6). Most of the miRNAs inhibited OsDUF506 expressions by cleavage, only osa-
miR2880, osa-miR5340, osa-miR2926, osa-miR156j-3p, osa-miR1875, osa-miR444b.1, osa-
miR444c.1, and osa-miR5832 inhibited OsDUF506 expressions by translation repression.

Table 2 Non-synonymous SNP distribution of OsDUF506s in 3,024 Oryza sativa varieties.

Subfamily Gene ID No. total SNP nsSNP ID Ref allele Alt allele Position

I OSDUF50602 2 OSDUF50602.1 C T Chr1:39867256

OsDUF50609 23 OsDUF50609.1 G T Chr11:14248387

OsDUF50609.2 C A Chr11:14248411

OsDUF50609.3 C T Chr11:14248432

OsDUF50609.4 A G Chr11:14248446

OsDUF50609.5 C T Chr11:14248498

OsDUF50609.6 A G Chr11:14248539

OsDUF50609.7 C G Chr11:14248616

OsDUF50609.8 C G Chr11:14248636

OsDUF50609.9 C T Chr11:14248665

OsDUF50609.10 G T Chr11:14248737

OsDUF50609.11 C T Chr11:14248861

OsDUF50609.12 A C Chr11:14248932

OsDUF50609.13 T C Chr11:14249448

OsDUF50610 9 OsDUF50610.1 G T Chr11:14267840

OsDUF50610.2 C T Chr11:14267960

OsDUF50610.3 G A Chr11:14268083

OsDUF50610.4 C G Chr11:14268298

OsDUF50610.5 C T Chr11:14268593

OsDUF50610.6 T C Chr11:14268614

II OsDUF50606 3 OsDUF50606.1 G A Chr5:25778321

OSDUF50601 9 OSDUF50601.1 A G Chr1:31272839

IIIa OSDUF50603 12 OSDUF50603.1 G A Chr1:43017098

OSDUF50603.2 C A Chr1:43018592

IIIb OsDUF50608 7 OsDUF50608.1 G C Chr10:14658953

OsDUF50608.2 G A Chr10:14658996

OsDUF50608.3 C G Chr10:14659216

OsDUF50604 3 OsDUF50604.1 T C Chr3:3381185

OsDUF50607 3 OsDUF50607.1 G C Chr7:4305870

OsDUF50605 7 OsDUF50605.1 T A Chr3:33171316

Dong et al. (2023), PeerJ, DOI 10.7717/peerj.16168 11/25

http://dx.doi.org/10.7717/peerj.16168/supp-7
http://dx.doi.org/10.7717/peerj.16168
https://peerj.com/


The expression analysis revealed that the majority of miRNAs were expressed at a
modest level in Oryza sativa tissues (Fig. 7B). The osa-miR1874-3p, which targeted
OsDUF50605 specifically, showed the highest expression level in embryo. The osa-
miR444b.1 targeting OsDUF50606 was highly expressed in all tissues except anther,
indicating that OsDUF50606 expression was limited in these tissues, which may inhibit the
function of OsDUF50606 in plant growth. The expression levels of miRNAs under
drought, salt, and cold stress showed no significant changes, suggesting they did not
participate in abiotic stress responses.
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Expression analysis of OsDUF506 members in different tissues and
induced by plant hormones
To investigate the expression specificities of OsDUF506s, the expression values in the leaf
blade, leaf sheath, root, stem, inflorescence, anther, pistil, lemma, palea, ovary, embryo,
and endosperm were analyzed (Fig. 8; Table S7). OsDUF50602 from subfamily I expressed
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in all tissues, with the highest expressions in the embryo and endosperm 7 days after
flowering, whereas OsDUF506010 was expressed at an exceedingly low level in all tissues.
The expression modes of the segment duplication gene pair OsDUF50601-OsDUF50606
from subfamily II were wholly dissimilar, suggesting that they might be involved in
functional redundancy. Compared to the genes from subfamily IIIa, the expression levels
of four genes from subfamily IIIb were higher in most tissues. The segment duplication
gene pair OsDUF50604-OsDUF50608 was highly expressed in anther and leaf sheath,
respectively. In contrast, another segment pair, OsDUF50605-OsDUF50607, was highly
expressed in the leaf blade and leaf sheath, revealing that they might be involved in
functional differentiation.

The CREs analysis of OsDUF506s suggested that they were widely involved in hormonal
regulation, thus we analyzed their expression profiles in root and shoot treated with six
plant hormones, including abscisic acid (ABA), gibberellic acid (GA3), indole-3-acetic acid
(IAA), jasmonic acid (JA), brassinolide (BL), and trans-zeatin (tZ). OsDUF506s showed
distinct regulating modes (Fig. 9 and Table S8). Significant upregulation of OsDUF50602
was induced by ABA and JA, whereas opposite regulation was induced by tZ in root and
shoot. Subfamily II members, OsDUF50601 and OsDUF50606 exhibited identical
regulation under ABA treatment. In the root, except OsDUF50605 was upregulated by
ABA induction, the other members from subfamily IIIb were downregulated by ABA, IAA,
and JA. Under BL treatment, OsDUF50604 and OsDUF50608 were upregulated, whereas
OsDUF50605 and OsDUF50607 were downregulated in root. Interestingly, OsDUF50607
was significantly upregulated by ABA induction in shoot, while the opposite was observed
in root. OsDUF50605 also showed opposite effects on shoot and root regulations by ABA
induction.

Expression analysis of OsDUF506 members under drought stress,
cold stress, and phosphorus-deficient stress
To explore the responses of OsDUF506s under abiotic stresses, the relative expressions of
eight OsDUF506s under drought, cold, and phosphorus-deficient stresses were analyzed by
qRT-PCR (Fig. 10). Under drought condition, the expressions of OsDUF50601,
OsDUF50603, OsDUF50604, OsDUF50607, and OsDUF50608 were significantly
downregulated, whereas only OsDUF50602 was significantly upregulated with a more than
2-fold increase. By contrast, OsDUF506s were more sensitive to cold stress. Under cold
treatment, six OsDUF506s were upregulated with the exception of OsDUF50606 and
OsDUF50607, OsDUF50601, and OsDUF50504, which showed a 4-fold increase in gene
expression. Under phosphorus-deficient condition within a week, OsDUF50601,
OsDUF50604, and OsDUF50607 were significantly downregulated, whereas only
OsDUF50605 was significantly upregulated but by less than 2-fold. The result
demonstrated the majority of OsDUF506s were induced by drought and cold stresses,
suggesting these genes might be implicated in these stress responses.
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DISCUSSION
DUFs are a specific type of genes with conserved domains but unknown functions.
DUF506 family belongs to the PD-(D/E)XK nuclease superfamily, which consists of
numerous enzymes involved in significant cellular processes (Knizewski et al., 2007). Most
families are certified to be distinct restriction endonucleases with functions including
repair of damaged DNA, resolution of holliday junctions, and excessive cleaving in DNA
recombination (Bujnicki, 2003). The family retains the characteristic motif II of PD-(D/E)
XK, but lacks a functionally-characterized domain (Knizewski et al., 2007). Until now,
DUF506 family research has only performed in Arabidopsis (Ying, 2021). In this study, we
identified 10 OsDUF506s with an intact DUF506 domain in Oryza sativa and categorized
them into four subfamilies based on the previous study in Arabidopsis (Table 1).
Additionally, 120 DUF506 genes from five other monocots and four dicots were also
identified and their phylogenetic relationship withOsDUF506swas analyzed. In contrast to
DUF1618s, which only existed in monocot, DUF506s were present in both monocots and
dicots (Fig. 1), indicating that DUF506 was an ancient gene family that originated prior to
the dicotyledon-monocotyledon divergence (Wang et al., 2014). DUF506 members from
monocots or dicots preferred to congregate on the same branch (Fig. 1), indicating a
substantial divergence in DUF506s between monocots and dicots. Moreover, genome size
did not correlate with the number of DUF506 genes. In dicots, for example, Arabidopsis
thaliana and Solanum tuberosum possessed the same quantity of DUF506 genes, but their
genome sizes differed significantly.

Gene duplication is widespread in plants and contributes to genome expansion and the
evolution of new functions. The majority of gene duplications consist of whole-genome
duplications and tandem duplications (Panchy, Lehti-Shiu & Shiu, 2016). However, in
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OsDUF506 duplication events, segmental duplication accounted for 75%, while tandem
duplication only accounted for 25% (Table S4), suggesting that segmental duplication was
critical for expanding OsDUF506 family members. The dynamic processes between gene
duplications and gene losses contribute to genomes differences (Holland et al., 2017).
Research on Oryza sativa duplications revealed that 85% of duplicates underwent loss,
subfunctionalization, or neofunctionalization during 50-70 million years of evolution
(Throude et al., 2009). OsDUF50602 and OsDUF50603 did not form duplicate gene pairs
(Fig. 5), indicating they could undergo gene losses. The mechanisms of duplicate gene loss
include the deletion of duplicate sequence and pseudogenization, the latter of which refers
to gene silence and genetic redundancy (Ho-Huu et al., 2012; Lynch & Conery, 2000;
Thibaud-Nissen, Ouyang & Buell, 2009). The duplicated gene with low expression may
experience pseudogenization, and pseudogenes typically originate from tandem
duplications (Yang et al., 2011). This viewpoint is supported by the tandem duplicate pair
OsDUF50609-OsDUF50610, which originated 58.69 million years ago. According to the
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gene expression profiles of the RiceXPro database (Fig. 8) and Rice Genome Annotation
Project database (http://rice.uga.edu/expression.shtml), they were barely expressed in any
tissue. Besides, compared to other members, OsDUF50609 andOsDUF50610 contained the
most nsSNP mutations (Table 2), and excessive nonsynonymous nucleotide mutants are a
characteristic of pseudogenes (Balakirev & Ayala, 2003). DUF family appears to be
abundant in pseudogenes, such as DUF1311, DUF 1124, and DUF 3054 (Thibaud-Nissen,
Ouyang & Buell, 2009). On the other side, OsDUF50609 and OsDUF50610 exhibited a
general loss bias in Gramineae species, including Zea mays, Hordeum vulgare, Triticum
aestivum, and Sorghum bicolor (Fig. 6). Except for the presumed pseudogenes, the other
OsDUF506s all have colinear gene pairs with the other five monocots (Fig. 6), revealing
that they were conserved in the evolution and expansion of the DUF506 family in plants
and they might have originated from the same ancestor. Previous studies suggested that
more than half of duplicated genes have diverged in gene expression in both Arabidopsis
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and Oryza sativa (Blanc &Wolfe, 2004; Yim, Lee & Jang, 2009). Two duplicated gene pairs
from subfamily IIIb (OsDUF50604-OsDUF50608 and OsDUF50605-OsDUF50607)
revealed different tissue specificity (Fig. 8), and duplicates respond conversely under
phosphorus-deficient conditions (Fig. 10), suggesting that they might be
neofunctionalized.

MicroRNAs (miRNAs) are fundamental noncoding riboregulators for gene expression.
In plants, miRNA silences genes by guiding RNA cleavage or translation inhibition (Song
et al., 2019). They cooperate closely with target genes and transcription factors to regulate
plant growth and resistance; it could be an effective strategy for precisely improving Oryza
sativa varieties by derepressing specific genes using CRISPR/Cas9 (Lin et al., 2021;
Nadarajah & Kumar, 2019). We predicted the miRNAs targeting OsDUF506s and
analyzed their expression profiles in tissues and under stresses of drought, cold, and salt
(Fig. 7). The osa-miR444b.1, which specifically targeted OsDUF50606, was the only one
highly expressed in tissues excluding the anthers and under the four stresses. It was
functionally unknown. One copy of the segmental duplicates from subfamily II
(OsDUF50606) expressed extremely low in all tissues, it showed no significant changes in
expression level under those abiotic stresses. In contrast, the other copy (OsDUF50601)
was constitutively expressed and was strongly induced by drought, cold, and
phosphorus-deficient stresses (Figs. 8 and 10). Further verification is required to ascertain
if the expression difference originates from the translation inhibition by osa-miR444b.1.

The results of expression induced by plant hormones showed that OsDUF506s were
more sensitive to ABA and JA treatments than IAA and GA3 treatments, which was
consistent with the presence of hormone-responsive CREs observed in their promoters
(Figs. 3 and 9). Although the promoter region of some OsDUF506s contained a few GA3

and IAA CREs, they show no significant and specific response trend under corresponding
hormone treatment.

The CREs analysis also showed that OsDUF50601, OsDUF50602, OsDUF50607, and
OsDUF50609 each contained one MBS, which was a MYB transcription factor binding site
responsive to drought. However, only OsDUF50602 was upregulated under drought
treatment (Figs. 3 and 10), indicating that their promotors might recruit different MYBs to
active OsDUF50602 expression and inhibit OsDUF50601 and OsDUF50607 expressions to
regulate drought tolerance. Perhaps this is due to the vital function of hormones under the
drought condition. ABA is an important plant hormone regulating water status and
stomatal movement. When plants suffer from a drought environment, they synthesize
ABA. Increasing ABA could induce plants to close their stomatal and retain water (Lim
et al., 2015). Seven copies of ABRE(ABA-responsive element)existed in the promotor
region of OsDUF50602. Its expression significantly increased in both shoot and root under
ABA treatment, suggesting that it might also be involved in the ABA-related signaling
pathway of drought responses (Fig. 9). Moreover, a previous study revealed that the
expression of OsDUF50602 was higher in OsDT11 OE lines than in the wild line under
drought treatment, indicating that the drought response of OsDUF50602 might be
enhanced in the particular genetic background (Zhao et al., 2020). ABRE has been proved
to be the most conserved drought-inducible promoter in Arabidopsis, Oryza sativa, and
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soybean, indicating that the transcriptional regulation of drought-inducible genes like
OsDUF50602 is similar across these species (Maruyama et al., 2012). Therefore, we
analyzed the expressions of its homologous genes under drought stress in the eplant
database (http://bar.utoronto.ca/). In Triticum aestivum, TraesCS3A02G420900 gene
expression increased 3.34-fold under drought stress. On the other hand, JA and its
derivatives, which occur at low levels under normal condition, accumulate to high levels
and are transmitted over long distances under abiotic stress (Wang et al., 2021a).
The promoter of OsDUF50602 contained six copies of the CGTCA/TGACG-motif (JA-
responsive element). With JA treatment, the expression of OsDUF50602 was rapidly and
significantly upregulated in both the shoot and root (Fig. 9). However, further verification
is required to determine whether these two hormones collaboratively induce the drought
responses of OsDUF50602.

The OsDUF506s were more sensitive to cold stress than to drought stress. Under cold
stress, except for the slight downregulation of OsDUF50606 and OsDUF50607, the other
OsDUF506s were significantly upregulated, and three genes containing LTR elements
(OsDUF5060601, OsDUF5060604, and OsDUF50608) showed the highest level (Fig. 10).
DUF506s from other species also revealed an active response to cold stress. For instance,
At1g62420, At3g25240, Bradi2g58590, and Bradi2g62310 were strongly induced by cold
stress in Arabidopsis and Brachypodium (Ying, 2021). The above results demonstrated that
DUF506 genes play a crucial role in cold response with different mechanisms.

Recent studies showed five AtDUF506 genes belonging to subfamilies I and II
(At1g62420, At3g07350, At3g25240, At2g20670, and At4g32480) were strongly upregulated
by P-limitation (Ying et al., 2022; Ying & Scheible, 2022). However, although the
OsDUF506s, which belong to subfamilies I and II, shared a highly similar exon/intron
structure and conserved motifs (Fig. 3), onlyOsDUF50601was significantly downregulated
by P-limitation, indicating that monocot and dicot species differed in phosphorus
responding signal pathway.

Rice (Oryza sativa) is an essential staple food for approximately half of the world’s
population, and stable rice production is crucial for food security, especially in Asia
(Zhang, 2007). However, extreme weather and climate change, such as drought, flooding,
salinity, low temperature, high temperature, and mineral deficiency, seriously affect crop
productivity and sustainability. Among the abiotic stress, drought is the most destructive
threat. Half of the world’s arable land will suffer from drought in the next three decades
(Singhal et al., 2016). Hence, it is urgent to breed rice varieties with superior drought
resistance. Drought resistance is a complex agronomic trait regulated by multiple genes.
Exploring drought resistance genes through linkage analysis or GWAS is inefficient and
genes with minor effects are hard to clone (Sun et al., 2022). With the development of
bioinformatics and gene editing technology, the reverse genetics method can be combined
to identify and characterize abiotic resistance-related genes such as OsDUF506s. Abiotic
resistance improvements usually require increased expression of related genes, including
DROUGHT1 (DROT1), ONAC066, OsMADS23, DROUGHT-INDUCED
BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE (OsDIAT), CHILLING-
TOLERANCE DIVERGENCE 1 (COLD1), and Cyclic Nucleotide-gated Channels 9
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(OsCNGC9) (Sun et al., 2022; Yuan et al., 2007; Li et al., 2021; Shim et al., 2023; Ma et al.,
2015; Wang et al., 2021b). A donor-DNA-free CRISPR/Cas-based approach to knock-up
genes in rice could be helpful for rice breeding practices and simplify regulatory approval
of the edited plants (Lu et al., 2021).

CONCLUSIONS
In this study, 10 OsDUF506 family members in Oryza sativa were identified and classified
into four subfamilies. We analyzed the phylogenetic relationship, gene structures,
conserved motif, CREs, SNP distribution, and targeting miRNA, which filled the gap of
DUF506 family in rice. The results of public expression profiles and RT-qPCR data in
tissues and under plant hormones and abiotic stresses demonstrated that OsDUF506s were
actively involved in ABA and JA response and had different expression patterns under
drought and cold, which laid the foundation for further functional analysis of OsDUF506
family.
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