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The Pollard-Yates transect is a widely used method for sampling butterflies. Data from
these traditional transects are analyzed to produce density estimates, which are then used
to make inferences about population status or trends. A key assumption of the Pollard-
Yates transect is that detection probability is 1.0, or constant but unknown, out to a fixed
distance (generally 2.5 m on either side of a transect line). However, species-specific
estimates of detection probability would allow for sampling at farther distances, resulting

in more detections of individuals. Our objectives were to —
— We conducted Pollard-Yates transects and distance-sampling

transects in central lowa in 2014. For comparison to densities derived from Pollard-Yates
transects, we used Program DISTANCE to model detection probability (p) and estimate
density (D) for eight butterfly species representing a range of morphological
characteristics. We found that detection probability among species varied greatly beyond
2.5 m, with variation apparent even within 5 m of the line. Such variation corresponded
with wing size, where species with larger wing size generally had higher detection
probabilities. Distance sampling provided more robust density estimates at these greater
distances and detection probability was often considerably <1.0, particularly for smaller,
cryptic species such as the least skipper. Estimated detection probabilities ranged from
0.53 to 0.79 across the eight species. We recommend that researchers integrate distance
sampling into butterfly sampling and monitoring, particularly for studies utilizing survey
transects >5 m wide and when smaller species are targeted.
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Abstract

The Pollard-Yates transect is a widely used method for sampling butterflies. Data from these
traditional transects are analyzed to produce density estimates, which are then used to make
inferences about population status or trends. A key assumption of the Pollard-Yates transect is
that detection probability is 1.0, or constant but unknown, out to a fixed distance (generally 2.5
m on either side of a transect line). However, species-specific estimates of detection probability
would allow for sampling at farther distances, resulting in more detections of individuals. Our
objectives were to (1) compare butterfly density estimates from Pollard-Yates line transects to
those that incorporate distance sampling, (2) estimate how detection probabilities for butterflies
vary across sampling distances and butterfly wing lengths, and (3) offer advice on future
butterfly sampling techniques to estimate population density. We conducted Pollard-Yates
transects and distance-sampling transects in central lowa in 2014. For comparison to densities
derived from Pollard-Yates transects, we used Program DISTANCE to model detection
probability (p) and estimate density (D) for eight butterfly species representing a range of
morphological characteristics. We found that detection probability among species varied greatly
beyond 2.5 m, with variation apparent even within 5 m of the line. Such variation corresponded
with wing size, where species with larger wing size generally had higher detection probabilities.
Distance sampling provided more robust density estimates at these greater distances and
detection probability was often considerably <1.0, particularly for smaller, cryptic species such
as the least skipper. Estimated detection probabilities ranged from 0.53 to 0.79 across the eight
species. We recommend that researchers integrate distance sampling into butterfly sampling and
monitoring, particularly for studies utilizing survey transects >5 m wide and when smaller
species are targeted.

Introduction
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Ecologists have often struggled with the need to estimate the probability that an organism is
detected during a survey, given that it is present. This concept is widely referred to as detection
probability (Burnham & Anderson, 1984). Early studies tended to ignore it and assumed that all
organisms were detected during surveys (Mackenzie et al., 2005). Later work shifted towards
developing methods to directly estimate detection probability, which include distance sampling
(Eberhardt, 1968; Gates, 1968; Buckland et al., 2001; Buckland et al., 2004), multiple-covariate
distance sampling (Marques et al., 2007), mark-recapture (e.g., Haddad et al., 2008; Pellet et al.,
2012), double observers (Nichols et al., 2000; Koneff et al., 2006), and a synergy of distance-
sampling and double-observer methods (Kissling & Garton, 2006). If detection probability is
estimated to be less than 1.0, that information is used to correct estimates of density and
abundance to account for the fact that some fraction of the population is almost always missed
during surveys (Buckland et al., 2010). Still, despite heightened awareness of imperfect detection
and advances in statistical software, estimation of detection probability is widely lacking
(Kellner & Swihart, 2014; Kral et al., 2018). For example, in a quantitative review of 537 papers
from 1971-2011, Kellner and Swihart (2014) found that only 23% of ecological studies had
accounted for imperfect detection.

The importance of addressing concerns about detection probability has clear and important
implications for conservation biology. Conservation plans often address the need to know the
size of the population of interest (Yoccoz et al., 2001; McGill, 2006; Farr et al., 2022), and such
estimates repeated in time are useful for estimating the trend of the population (Buckland et al.,
2001). The conditions for surveying a population can change over time for many reasons —
differences in habitat, changes in observers, and a host of other factors. As such, trends that rely
on changes in relative abundance may be biased because they assume that detection probability
remains constant. Studies that directly estimate detection probability can greatly minimize this
source of bias, result in more robust inferences about the population, and lead to more informed
conservation actions. Many types of surveys are used to estimate the size of a population, and
one of the most common is line transects (Buckland et al., 2001). For decades, researchers have
been using line transects to survey and derive population estimates for a variety of taxa,
including birds (e.g., Childers & Dinsmore, 2008; Newson et al. 2008), desert tortoises (Swan et
al., 2002), marine mammals (Barlow et al., 2001; Calambokidis & Barlow, 2004), and
marsupials (Lollback et al., 2015). Traditional fixed-width line transects include the assumption
of perfect detection within a specified width. Distance sampling enables us to test this
assumption by assigning a distance (or distance bin) to each individual detected.

For butterfly surveys, the standard Pollard-Yates line transect has been the most extensively used
means of surveying butterflies since the early 1990s (e.g., Brown & Boyce, 2001; Collier et al.,
2006; Nowicki et al., 2008). This method involves walking at a slow pace (ca. 10 m/min) along a
predetermined line and counting only butterflies seen within a prescribed width, often 5.0 m (i.e.,
2.5 m to either side of the observer; Pollard & Yates, 1993). An implicit assumption of these
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transects is that detection probability of butterflies is 1.0, or that detection probability is constant
across the survey period. Violating this assumption means that estimates of density or abundance
may not be comparable, and that any changes detected could result from true changes in the
population or from changes in survey conditions (e.g., different observers). Data from Pollard-
Yates transects are often converted to density estimates and used to make inferences about
populations. But a considerable body of research with varied taxa has illustrated that the
assumption of perfect detection, even within a small area, is often unmet (Mackenzie et al.,
2005). Fortunately, there are additional survey methodologies that can be used to directly
estimate detection probability and thus yield “corrected” density estimates. One such approach is
distance sampling (Burnham & Anderson, 1984). Prior to 2000, distance sampling was rarely
used for butterflies (Brown & Boyce, 1998), and imperfect detection as a concept was widely
unaccounted for in the majority of invertebrate papers (Kellner & Swihart, 2014). Since then,
researchers have summarized the need to address sampling bias that stems from variation in
butterfly detectability (Dennis et al., 2006; Kéry & Plattner, 2007; Haddad et al., 2008; Nowicki
et al., 2008), and several studies have incorporated distance sampling into the traditional Pollard-
Yates framework (Powell et al., 2007; Moranz, 2010; Isaac et al., 2011; Kral-O’Brien et al.,
2020). However, a literature review on butterfly sampling methodologies (Kral et al., 2018),
suggested that incorporating distance sampling is still rare. Not accounting for imperfect
detection can result in underestimates of true abundance (Burnham & Anderson, 1984), which
may have implications for conservation or management decisions when accurate population
estimates are desired.

In this study, our objectives were to (1) compare butterfly density estimates from Pollard-Yates
line transects to those that incorporate distance sampling, (2) estimate how detection
probabilities for butterflies vary across sampling distances and wing length, and (3) offer advice
on future butterfly sampling techniques to estimate population density. Wing length was chosen
as a detection covariate because it is a useful proxy for overall butterfly size.

Materials & Methods
Study Area and Site Selection

Our study was conducted at four public properties (Harrier Marsh Waterfowl Production Area,
Marietta Sand Prairie State Preserve, McCoy Wildlife Management Area [WMA], and Rock
Creek Marsh WMA) in central lowa, each of which was included in the ongoing lowa Multiple
Species Inventory and Monitoring (MSIM) program (Kinkead, 2006). Sites were selected to
represent a range of habitats appropriate for butterfly species that inhabit typical habitats (e.g.,
prairies and thickets) and ensure that our surveys would detect sufficient numbers to estimate
detection probability for multiple species. Harrier Marsh (170 ha) and McCoy WMA (177 ha)
are located in the Des Moines Lobe of the Prairie Pothole Region, while Marietta Sand Prairie
(93 ha) and Rock Creek WMA (343 ha) lie nearby in the Southern Iowa Drift Plain (Prior 1991).
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Although most of the former prairies, marshes, and savannas in these landforms have been
converted to row-crop agriculture (Reeder & Clymer, 2015), our study sites collectively
encompass a mixture of floodplain wetland, prairie-pothole marsh, upland meadow, restored dry-
mesic prairie, and shrubby thickets.

Butterfly surveys

To eliminate observer effects, a single observer (SSP) conducted all surveys, which took place
between 24 July and 24 August 2014 to coincide with prolific flight periods for many species
common to this region (Schlicht et al., 2007). Each of the four sites were visited seven times
during this period (n = 28 surveys) with an average of 3.67 days (SD = 2.44 days) between visits
across all sites. Due to logistical constraints all sites were not visited on the same day, but we
attempted to space visits evenly across the survey window for all sites. In accordance with
MSIM protocol (Kinkead, 2006), based on techniques developed by Shepherd and Debinski
(2005), surveys were conducted along a single 400-m long, 5-m wide line that had been placed
on the centerline of an established 10.4-ha sampling hexagon at each property. For the Pollard-
Yates transect, the observer walked at a steady pace (ca. 10 m/min) down the middle of the
transect line and recorded number and species for butterflies detected within the 5-m wide
transect corridor. Behavior (i.e., flying, nectaring, resting, basking, mineralizing, ovipositing, and
courting) at initial detection of each individual was also recorded. Butterfly nomenclature and
taxonomic sequence adhered to those of Opler et al. (2010).

On each site visit, the single observer (SSP) alsorconductedunlimited=distancerlinetransectsiin

the opposite direction on the same transect line. Allraspectsiof samplingitechniquesnergmpace

144 during survey) matched the methodology of the Pollard-Yates transects, with one difference: for
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each individual detected, the observer assigned it to one @fiflifi@ distance bins basedonits

perpendiculardistancefromrthertransectline)(bin 1 = 0-1 m, bin 2 = 1-1.75 m, bin 3 = 1.75-2.5
m, bin 4 =2.5-5.0 m, bin 5 = 5.0-10 m, bin 6 = 10-25 m, bin 7 = 25-50 m, and bin 8§ =>50 m)
during the count. These detection-distance categories were arranged in such a way to allow for
comparison to the established 5-m sampling width of the Pollard-Yates line transects (S.
Shepherd, lowa Department of Natural Resources, pers. comm.). To allow butterflies sufficient
time to settle following sampling disturbance, we waited 10 min before beginning the second
transect and we alternated the survey type (Pollard-Yates or distance sampling) that was
conducted first on a given visit. We completed all surveys between 9:00 a.m. and 6:00 p.m. and
during warm temperatures (> 20°C), low cloud cover (<70%), calm winds (<16 km/h), and no
precipitation. All weather variables were measured immediately before and after the completion
of each transect.

Data analyses

Peer] reviewing PDF | (2023:04:84393:0:0:NEW 5 Apr 2023)

Eight


Geraldo Freire

Geraldo Freire

Geraldo Freire

Geraldo Freire

Geraldo Freire

Geraldo Freire

Geraldo Freire

Geraldo Freire

Geraldo Freire
Eight


PeerJ

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

186

187
188
189
190
191
192
193
194
195
196
197
198
199

We selected a suite of eight butterfly species (least skipper [Ancyloxypha numitor], cabbage
white [Pieris rapae], clouded sulphur [Colias philodice], orange sulphur [Colias eurytheme],
little yellow [Pyrisitia lisa], eastern tailed-blue [ Cupido comyntas], monarch [Danaus plexippus],
and viceroy [Limenitis archippus]) for analyses. Species were chosen to meet the minimum
sample size recommended by Thomas et al. (2010) for analysis in Program DISTANCE and to
represent a range of sizes that could contribute to detection probability. Program DISTANCE fits
the data to a function relating detectability to distance from the line, provides an estimate of
detection probability, and estimates a “corrected” density for each species (Buckland, 2004;
Thomas et al., 2010).

Density was estimated differently for the two sampling approaches. For standard Pollard-Yates
transects, we calculated density (number/ha, or total number of detections divided by area
sampled) by siterandracrossisitesh We were unable to calculate a measure of precision for these
estimates because a) the number of surveys per site was low (7), and b) for some species there
was considerable variation in peak flights even within our short survey window. Eorunlimited=
distance transects, we used Program Distance (v6.2) to estimate detection probability (and
associated sampling coefficient of variation [CV]) along with density for each species by site and
acrossisites: We considered only the four models endorsed by Buckland et al. (2001) ([1]
uniform key function with cosine adjustments, [2] half-normal key with cosine adjustments, [3]
half-normal key function with Hermite polynomial adjustments, and [4] hazard rate key function
with simple polynomial adjustments). These models demonstrate characteristics that meet the
distance sampling assumption of monotonically decreasing probability of detection from the line.
Model fit was evaluated using the chi-square goodness-of-fit test in Program Distance. We used
AIC model selection (Burnham and Anderson 2002) to choose the best approximating model for
each species, with truncations made at 50 m, 5 m, and 2.5 m. The latter two cut-points enabled
further comparison to the densities produced via the 5-m wide Pollard-Yates transects.

Results

Eight species had a sufficient number of detections for our analyses and included least skipper (n
= 350), cabbage white (n = 117), clouded sulphur (n = 158), orange sulphur (n =291), little
yellow (n = 414), eastern tailed-blue (n = 247), viceroy (n = 88), and monarch (n =301). The two
smallest species, least skipper and eastern tailed-blue, were detected in categories extending only
out to the 5-10 m and 10-25 m bins respectively, whereas the other six species were recorded in
all eight bins. However, in all instances, the two outermost bins accounted for a small proportion
(<10%) of the detections, and the median detection distances occurred in the following bins for
each species: least skipper (1-1.75 m), cabbage white (1.75-2.5 m), clouded sulphur (2.5-5.0 m),
orange sulphur (2.5-5.0 m), little yellow (2.5-5.0 m), eastern tailed-blue (1-1.75 m), viceroy (2.5-
Si0m)pandMonarchi(2:5=5:0im): Bor every species, >80% of individuals were identified as
flying, basking, or nectaring at tighe of detection, with resting, mineralizing, courting/mating, and
ovipositing butterflies composing the remainder.

What the proportion of each behavior?
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Butterfly detectability varied by distance and species’ morphology. Withifithe'standard Pollard=
Yates transect (i.e., < 2.5 m from the transect line), detectability among all species was >0.90,
and for several species was estimated at 1.0. However, species-specific detectability began to
decrease at distances >2.5 m (Table 1). At the 2.5-5.0 m bin, detection probabilities ranged from
Or53rforithenleastiskippertor0:79 for the much larger, more conspicuous monarch (Table 1). At
this distance, the top model for all species included a hazard-rate key and simple polynomial
adjustments. Additionally, a post-hoc analysis also revealed a strong positive correlation (r =
0.91) between mean wing length and detection probability, suggesting that detection
probabilities were greater for larger species.

The corresponding species-specific densities varied by sampling methodology. Densities derived
from distance sampling were greater than those from the Pollard-Yates transects for all species
but little yellow and monarch (Fig. 1). Generallyyspeciesioccurringrintherhighestdensitiesrwere
Least Skipper, Eastern Tailed-Blue, and Little Yellow according to distance sampling and
Pollard=Yates. However, Pollard-Yates estimates suggest Eastern Tailed-Blue and Little Yellow
occur at similar densities (Eastern Tailed-Blue: 23 no/ha, Little Yellow: 22 no/ha), while
distance sampling predicted more than double the number of Eastern Tailed-Blue compared to
Little Yellow (Eastern Tailed-Blue: 33 no/ha, Little Yellow: 15 no/ha) (Fig. 1).

Discussion

Our study found that detection probabilities of eight common, widespread butterfly species in
Iowa were at or near 1.0 in the standard Pollard-Yates transect but dropped considerably when
the sampling area extended >2.5 m from the line transect. Detection probability was positively
correlated with mean wing size and was greatest for the largest, most conspicuous species.
Below we discuss our findings in the larger context of methods to estimate butterfly densities,
and then comment on how the inclusion of distance sampling can help with conservation and
management decisions for this taxon.

Species-Specific Detection Probabilities

As expected, detectability varied considerably among the eight butterfly species, with an upward
trend that'generally corresponded tormedian'wing'size. This is similar to the detailed findings of
Kral-O'Brien et al. (2020), whorfound that'detection probabilitiesof butterfliesiinthe'Great
Plains were greater for species with larger wingspans and brighter colors. The biggest exception
in our study was that of little yellow, which produced the third-highest detection probability
whilerhavingthethird=smallestmediannwingilength: Perhaps this detection probability stemmed
from this species’ tendency to flutter conspicuously just above the tops of Chamaecrista
fasciculate, a widespread species that serves as the butterfly’s favored hostplant in Iowa (Schlicht
et al., 2007). The eastern tailed-blue and least skipper are equally short-winged. However, the
eastern tailed-blue exhibits more conspicuous nectaring and breeding behavior, as males patrol
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240 and females oviposit high on flower buds of favored host plants like the long-stemmed

241 Lespedeza capitata (Opler et al., 2010), which was prevalent along our study transects (Iowa
242 DNR MSIM program, unpublished data). Conversely, the weak-flying least skipper often

243 remains low amongst grasses (Opler et al., 2010). Two very closely related species (orange
244 sulphur and clouded sulphur) produced nearly identical detection probabilities, consistent with
245  their similar size, behaviors, and interrelatedness (Wheat & Watt, 2008; Opler et al., 2010;

246 Dwyer et al., 2015). Likewise, the brightly colored, wide-ranging viceroy’s detection rate was
247  exceeded only by that of its larger, Mullerian co-mimic: the monarch (Ritland & Brower, 1991;
248 Ritland, 1995).

250 Various studies have demonstrated that the Pollard-Yates line transect is susceptible to sampling
251 bias resulting from differences in detectability (Dennis et al., 2006; Kéry & Plattner, 2007;

252 Moranz, 2010; Isaac et al., 2011). Althoughwedidnotfindtherexpected variationvin

253 detectability close to the line (<2.5 m), we did find considerable differences in interspecific

254  detectability when considering detections at distances exceeding the boundaries of the standard
255 Pollard-Yates transect (>2.5 m). Moranz (2010) and Isaac et al. (2011) provided the groundwork
256 for utilizing distance data with Pollard-Yates transects to estimate population-density. This study
257 adds to the existing literature by providing species-specific and methodological considerations

258 for when sampling bias may be most prevalent. For example, Whenitargetingismallerbutterflies

265 Conclusions
266 In our study, there was minimal variation in detectability at the width (5 m) employed by the

267 traditional Pollard-Yates transect. @onSequehtlymfixcdswidtinransceisassumingipenice:

268  detection may be adequate for estimating population densities if the target species are large and
269mmecommonlysfoundd However, if the research objective is to adequately sample the buttertly

270 community or to target smaller, less common species, then incorporating distance sampling may
271 nbenecessary: Narrow transects might not adequately sample large habitat blocks, and avoidance
272 behavior by faster species (e.g., viceroy) might lead to poor counts. By'broadening transects'and
273 incorporating distance sampling, researchers are likely to detect rarer species and provide more
274 robust estimates of population densities, which may have important implications for conservation
275 actions that rely on accurate population and community estimatest Given the interspecific

276 variation in detectability in our study and other studies (Moranz, 2010; Isaac et al., 2011), and
277  the observer variation summarized by Kéry and Plattner (2007) and Isaac et al. (2011), we

278 recommend incorporating distance sampling whenever possible, especially when transects that
279 are >5 m wide.
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Line transects are straightforward in their implementation and can be used to repeatedly sample
butterflies at multiple sites across a broad region in a short window of time. Distance sampling
can be easily incorporated into the line-transect framework and analyzed using Program Distance
(Buckland, 2006), which provides density estimates and associated measures of precision. As
such, distance sampling, especially when used in conjunction with other methods like mark-
recapture, represents an effective tool to survey butterflies and guide the management and
conservation of butterfly populations.
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Figure 1

Butterfly density estimates from two survey techniques

Species-specific butterfly densities (number/ha) are compared for eight lowa butterflies.
Densities were derived from Pollard-Yates line transects and transects incorporating distance

sampling (with truncation at 5 m), in lowa in 2014. Vertical bars depict 95% confidence

intervals.
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Table 1(on next page)

Top models for eight butterfly species in lowa, 2014

For each species, we report the median wing length, model type, Akaike Information Criterion
corrected for small sample size (AlCc), species-specific detection probability (p), and
associated coefficient of variation (CV). Included with model type is the expansion term, with
the number of expansion adjustments in parentheses. Estimates are from distance sampling
analyses where data were truncated at a distance of 5.0 m. Only the best model is shown for

each species and was used for all inferences (see text for details).
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Table 1:

Top models for eight butterfly species in lowa, 2014. For each species, we report the median
wing length, model type, Akaike Information Criterion corrected for small sample size (AICc),
species-specific detection probability (p), and associated coefficient of variation (CV). Included
with model type is the expansion term, with the number of expansion adjustments in parentheses.
Estimates are from distance sampling analyses where data were truncated at a distance of 5.0 m.

Only the best model is shown for each species and was used for all inferences (see text for

details).
. . . . . .
Species (median wing Model, expansion (no. adjustments of AICc P CV (%)
length) orders)
Least skipper (2.55 mm)  Hazard rate key, cosine (1) 583.26 0.53 16.75
rEn":;t)em tailed-blue (2.35 ;e rm key, simple polynomial (2) 39376 057 1191
Little yellow (3.80 mm)  Hazard rate key, cosine (1) 408.28 0.67 16.19
Cabbage white (5.15 mm) Hazard rate key, cosine (4) 182.47 0.61 16.18
Orange sulphur (5.25 mm) Hazard rate key, cosine (1) 33496 0.66 13.45
Clouded sulphur (5.40 Hazard rate key, Hermite polynomial 33513 0.66  15.69
mm) (4)
Viceroy (7.45 mm) Uniform key, simple polynomial (2)  127.34 0.76 16.71
Monarch (10.5 mm) Hazard rate key, cosine (1) 54498 0.79 16.19

Species are ordered by increasing median wing length (mm) (Opler et al. 2010).
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