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ABSTRACT
Background. Aberrant protein kinase regulation leading to abnormal substrate
phosphorylation is associated with several human diseases. Despite the promise of
therapies targeting kinases, many human kinases remain understudied. Most existing
computational tools predicting phosphorylation cover less than 50% of known human
kinases. They utilize local feature selection based onprotein sequences,motifs, domains,
structures, and/or functions, and do not consider the heterogeneous relationships of
the proteins. In this work, we present KSFinder, a tool that predicts kinase-substrate
links by capturing the inherent association of proteins in a network comprising 85%
of the known human kinases. We also postulate the potential role of two understudied
kinases based on their substrate predictions from KSFinder.
Methods. KSFinder learns the semantic relationships in a phosphoproteome knowledge
graph using a knowledge graph embedding algorithm and represents the nodes in low-
dimensional vectors. A multilayer perceptron (MLP) classifier is trained to discern
kinase-substrate links using the embedded vectors. KSFinder uses a strategic negative
generation approach that eliminates biases in entity representation and combines data
from experimentally validated non-interacting protein pairs, proteins from different
subcellular locations, and random sampling. We assess KSFinder’s generalization
capability on four different datasets and compare its performance with other state-
of-the-art prediction models. We employ KSFinder to predict substrates of 68 ‘‘dark’’
kinases considered understudied by the Illuminating the Druggable Genome program
and use our text-mining tool, RLIMS-P along with manual curation, to search for
literature evidence for the predictions. In a case study, we performed functional
enrichment analysis for two dark kinases - HIPK3 and CAMKK1 using their predicted
substrates.
Results. KSFinder shows improved performance over other kinase-substrate prediction
models and generalized prediction ability on different datasets. We identified literature
evidence for 17 novel predictions involving an understudied kinase. All of these 17
predictions had a probability score ≥ 0.7 (nine at > 0.9, six at 0.8–0.9, and two at
0.7–0.8). The evaluation of 93,593 negative predictions (probability ≤ 0.3) identified
four false negatives. The top enriched biological processes of HIPK3 substrates relate to
the regulation of extracellular matrix and epigenetic gene expression, while CAMKK1
substrates include lipid storage regulation and glucose homeostasis.
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Conclusions. KSFinder outperforms the current kinase-substrate prediction tools
with higher kinase coverage. The strategically developed negatives provide a superior
generalization ability for KSFinder. We predicted substrates of 432 kinases, 68 of which
are understudied, and hypothesized the potential functions of two dark kinases using
their predicted substrates.

Subjects Bioinformatics, Computational Biology, Genomics, Data Mining and Machine Learning
Keywords Kinase-substrate prediction, Dark kinome, Illuminating the druggable genome,
Protein phosphorylation, Text mining, Knowledge graph, Multilayer perceptron, Neural network,
Graph embedding, Link prediction

INTRODUCTION
Phosphorylation, a reversible post-translational modification (PTM), is a common cell
mechanism that regulatesmany cellular processes. Protein kinases are enzymes that catalyze
phosphorylation by transferring a phosphate molecule to the substrate, thereby regulating
the substrate protein’s function (Manning et al., 2002; Ardito et al., 2017). Abnormal kinase
regulation results in dysfunction of the substrate, leading to several known human disease
conditions (Fabbro, Cowan-Jacob & Moebitz, 2015). These include but are not limited to
diabetes, cardiovascular conditions, Alzheimer’s, and different cancer types. Kinases have
thus become a major class of potential therapeutic targets. Despite their important roles,
many human kinases remain understudied and poorly understood (Vlahos, McDowell &
Clerk, 2003). The Illuminating the Druggable Genome program (IDG) launched by NIH
CommonFund lists 134 kinases as understudied druggable proteins (The National Institutes
of Health, 2023). To advance the use of kinases in drug discovery, a better understanding
of their phosphorylation network is essential (Cohen, Cross & Jänne, 2021).

Current approaches
The experimental approaches that are widely used for studying phosphorylation (e.g., mass
spectrometry-based high throughput profiling) provide site-specific phosphorylation
information; however, the identification of the involved kinases is challenging (Engholm-
Keller & Larsen, 2013; Xue & Tao, 2013). There are experimental methods that provide
kinase-specific information, such as kinase activity assays, but they are laborious, expensive,
and time-consuming (Cohen, Cross & Jänne, 2021).Many approaches are also prone to false
predictions due to the in vitro nature of the experiments (Xue & Tao, 2013). Computational
tools offer an alternative that can predict the potential substrates for kinases and limit the
pool of candidates for experimental testing. Several computational tools for predicting
kinase-substrate relationships have been developed in the last couple of decades, but most
of them cover less than half of the known human kinases, and they generally consider
the interaction between the two proteins in a local space, such as linear motif-based,
structure-based, sequence-based, and function-based (Blom et al., 2004; Obenauer, Cantley
& Yaffe, 2003; Xue et al., 2008; Horn et al., 2014; Song et al., 2017).
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Knowledge graph embedding (KGE)
In this study, we used knowledge graph embedding to capture the latent association of
kinases and substrates with other biological entities based on their heterogeneous relations
including functions, biological processes, pathway associations, and the hierarchical
information from Gene Ontology (Ashburner et al., 2000; Gene Ontology Consortium,
2021) and Protein Ontology (Natale et al., 2011). Currently, there are two KGE methods,
LinkPhinder (Nováček et al., 2020) and PredKinKG (Gavali et al., 2022), that study
phosphorylation and they have demonstrated superior performance over other non-
graph-based prediction tools. Knowledge graph representation learning captures the latent
patterns in the heterogeneous network that are generally overlooked by context-based
feature selection procedures. Additionally, the high-level information used in the graph
allows the prediction of direct and indirect phosphorylation links.

LinkPhinder & PredKinKG
LinkPhinder uses protein motifs, kinases, and site-specific information as input to its
knowledge graph and makes predictions using graph embedding (Nováček et al., 2020). In
PredKinKG, Gavali et al. (2022) integrated the phosphorylation interactions at the protein
level, along with functional annotations of proteins, and the hierarchical relationship
of the annotated terms and proteoforms to predict kinase-substrate interaction. The
method employed a two-step approach combining graph embedding with downstream
classification and demonstrated superior performance over LinkPhinder. PredKinKG uses
TripleWalk, a directed random walk algorithm coupled with the Continuous Bag of Words
(CBOW) model for graph embedding, and a random forest machine learning algorithm
for classification (Gavali et al., 2022). Though PredKinKG performs its embedding using
kinase-substrate phosphorylation relations, it predicts the probability of the more general
event of two proteins interacting with each other.Moreover, PredKinKG has an unbalanced
representation of the entities in its negative and positive datasets for the classifier model,
causing unintended bias in the supervised learning process. For instance, the substrate
protein, gelsolin, occurs in 216 triples in the negative set whereas there are only two records
involving the substrate in the positive set. As the negatives are generated computationally by
different strategies, the biases in the entity representation influence the predicted outcomes.
While this bias may not affect the knowledge graph embedding learning because synthetic
negatives are generated randomly via the closed-world assumption (CWA) (Nickel et al.,
2016), it influences the supervised classification model that is trained with the vectors of
the kinases and substrates.

Substrate specificities of serine/threonine kinome
Johnson et al. (2023) employed positional scanning peptide array (PSPA) and profiled the
substrate specificities for 303 human serine/threonine kinases. Using position-specific
scanning matrix and kinome wide dataset, they computationally annotated and ranked
favorable kinases for 89,784 sites on different substrates. In addition to comparing
KSFinder’s performance with LinkPhinder and PredKinKG which report improved
performance over context-based feature selection models, we compare KSFinder’s
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performance with the atlas of kinase-substrate specificity reported by Johnson et al. (2023)
in their recently published work. We will refer to this atlas throughout the rest of the article
as the ‘Ser-Thr-KS atlas’.

KSFinder
In this article, we present KSFinder, a model integrating knowledge graph embedding
(KGE) and a multilayer perceptron (MLP) neural network for uncovering novel kinase-
substrate relationships. Our model differs from PredKinKG by predicting the probability of
phosphorylation rather than interaction and also addresses the bias in the negative dataset
using a combinatorial approach for the negative generation. KSFinder uses ComplEx KGE
algorithm, and a more sophisticated approach for downstream classification using the
multilayer perceptron (MLP) neural network. The classifier was trained on the embedded
vectors of the kinases and substrates extracted from the KGE and learned to discern true
kinase-substrate links in the knowledge graph. We demonstrate KSFinder’s performance
by evaluating it on four datasets and by comparing it with other prediction models,
LinkPhinder, PredKinKG, and Ser-Thr-KS atlas.

Functional analysis
We mine the literature for evidence of novel predictions from KSFinder and assess the
model’s ability to correctly predict kinase-substrate pairs. In a case study, we extracted
the high-confidence substrates for two understudied kinases, HIPK3 and CAMKK1, and
performed functional enrichment analysis. We postulate the potential functional roles
of the two understudied kinases based on the enrichment analysis of their predicted
substrates.

MATERIALS & METHODS
KSFinder includes three major components, a knowledge graph built using data from
different sources, knowledge graph embedding models that learn from the graph data, and
an MLP classifier that discerns true kinase-substrate links (Fig. 1).

Knowledge graph dataset
A knowledge graph dataset (Fig. 1A) constructed by Gavali et al. (2022) with 20 different
relation types and 289,969 distinct entities, including (i) kinase-substrate phosphorylation
interactions from iPTMnet (Hongzhan et al., 2018); (ii) molecular functions, biological
processes, and their hierarchical relationships from Gene Ontology (GO) (Ashburner et
al., 2000; Gene Ontology Consortium, 2021); (iii) associations of protein-pathway, protein-
disease, protein-genetic disorder, disease-pathway, disease-genetic disorder, protein-
complex, complex-pathway, and protein-complex relationships from BioKG (Brian,
Sameh & Vít, 2020); and (iv) protein isoforms and ontology hierarchical relationships
from Protein Ontology (PRO) (Natale et al., 2011) was adopted for this study (Gavali et
al., 2022). This dataset contains 7,432 kinase-substrate relationships and 1,047,686 other
relationships.
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Figure 1 KSFinder - a knowledge-graphmodel for kinase-substrate link prediction. (A) The differ-
ent relationships of the kinases and substrates extracted from various resources are integrated to build a
knowledge graph. (B) Knowledge graph embedding (KGE) algorithms are used to capture the semantics
and assign vectors for the entities. (C) The vectors extracted from the KGE are used to build a multilayer
perceptron (MLP) binary classifier that identifies kinase-substrate links. Created with BioRender.com.

Full-size DOI: 10.7717/peerj.16164/fig-1

Knowledge graph embedding
Four different embedding models (Fig. 1B) were developed using the KGE algorithms
TransE (Antoine et al., 2013), HolE (Nickel, Rosasco & Poggio, 2016), DistMult (Bishan et
al., 2014), and ComplEx (Théo et al., 2016) leveraging the library provided by Ampligraph
(Luca et al., 2021). The 7,432 kinase-substrate edges were split into training, validation, and
test datasets in the ratio of approximately 60:20:20 respectively. The 4,632 kinase-substrate
training triples were integrated with the other 1,047,686 triples. The validation set and test
set had 1,400 triples each.Hyperparameter optimizationwas performed using the validation
dataset to determine the optimal values for each of the model parameters—embedding
size, eta (number of negatives), number of epochs, number of batches, learning rate, loss
function, and regularizer. The values tested during parameter optimization are listed in
Table 1. The negatives were generated using the closed-world assumption strategy (Nickel et
al., 2016) by corrupting the head or tail entity during training. If the corruption resulted in
a true triple, it was removed from the negatives. The optimal epoch for early stopping of the
training was identified using the metric mean reciprocal rank (MRR). During validation,
the positive triple was ranked along with the synthetic negatives by their algorithm scores.
MRR was computed by averaging the reciprocal rank of the true triples in the validation
dataset. The training was stopped when the MRR score did not increase for 3 consecutive
evaluations. As we are interested in predicting potential substrates for the known human
kinases, synthetic negatives for validation were generated by corrupting the tail entities
(substrate proteins).
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Table 1 Hyperparameter optimization values for determining the best performing knowledge graph
embedding model.

Hyperparameter Values

Batch count 8, 12, 16
Embedding size 90, 120, 150
Number of negatives (eta) per positive triple 10, 15, 20
Loss function pairwise, multiclass_nll
Regularization type L1, L2, nuclear 3-norm
Learning rate 0.0001, 0.001

Kinase-substrate relation classifier
Amultilayer perceptron (MLP)-based neural network classifier (Fig. 1C) was trained using
the embedding vectors of the kinases and substrates from the positive and the negative sets
with class labels of 1 and 0 respectively. For each triple, the embedding vector of the kinase
and substrate was retrieved from the KGE model and concatenated. The data was tagged
with an appropriate class label of 1 or 0. Of the four graph embedding algorithms, both
ComplEx and TransE performed equally well. We chose embeddings from the ComplEx
model as it can model one-to-many and both symmetric and asymmetric relationships.
TransE, which captures only asymmetric relationships, performed well probably due to the
fact that >99% of the relations in our network are asymmetric. The 4,632 kinase-substrate
pairs from the training dataset along with 1,400 kinase-substrate pairs from the validation
dataset used in the graph embedding model were used as the positive data for training the
classifier.

Hyperparameter optimization was performedwith 10-fold cross-validation to determine
the optimal number of nodes in the hidden layer, the optimizer type, the alpha value for
regularization, the learning rate, the activation function, and the maximum number of
iterations. The model used binary cross-entropy loss function to minimize the loss and
the rectified linear unit activation function, ReLU. The output from the neurons was
transformed to probability using the softmax function.

Binary Cross Entropy loss=−
(
1
n

) n∑
i=1

(
yi ∗ log(pi)+

(
1−yi

)
∗ log(1−pi)

)
where yi is the target class label; p is the softmax probability; pi is the probability of the
positive class, 1; and (1−pi) is the probability of the negative class, 0.

Softmax function=
ezi∑k
j=1ezj

where zi is the output from the neural network for class, i; k is 2, the number of classes; zj
is the output for each class.

We retained the positive test set used in the graph embedding model as the test set
for the classifier model. This was done to avoid potential data leaks from the embedding
training to the classifier test set.
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As there are no standardized datasets for negative kinase-substrate pairs, and because
many true kinase-substrate relationships are unknown, compiling a high-quality negative
dataset was challenging.

PredKinKG negative dataset
To construct a negative dataset, PredKinKG represented the proteins in the embedding
space by their cellular component annotations and computed the cosine similarity between
them. Kinase-substrate pairs that were far away in the embedding space were selected as
negatives because they are likely to be in different subcellular locations and therefore have
a lower chance of interacting (Gavali et al., 2022). PredKinKG also included data from
Negatome (Blohm et al., 2014), a database containing non-interacting protein pairs.

Though PredKinKG applied an effective strategy for generating the negatives, the
triples generated by this approach were not a comprehensive dataset encompassing all
the substrates in the positive group. Moreover, certain proteins were over-represented in
the negative group. Because the classifier model is supervised and trained on the vectors
of the substrates and kinases, an imbalanced representation of the entities in the two sets
would inject unintended biases into the model’s features and thereby the prediction results.
Furthermore, the lack of true negatives makes it imperative to solve any prejudice in data
for building an efficient prediction model.

KS-negative dataset
We constructed an alternative negative dataset (KS-negative) that addresses the limitations
of the PredKinKG negative dataset. The negative kinase-substrate pairs were generated by
a combination of random sampling of kinase-substrate pairs along with selecting negatives
from the PredKinKG dataset and Negatome.

The KS-negative dataset was compiled using the following process (Fig. 2):
1. As the Negatome protein pairs are experimentally supported, they were retained

without any filtering. We observed that there were 16 pairs that overlapped between
our positive set and Negatome. Each of these pairs and the literature citing them were
reviewed manually and the false negative or false positive pairs were removed.

2. Ahashmapwas generated capturing the substrates and the counts of their representation
among the positive triples. For every triple in the positive dataset, a random triple
containing the same kinase was chosen from the PredKinKG’s subcellular location
based negative set. The count of triples with the same substrate as the selected triple
in the negative dataset was compared with the count of the substrate in the hashmap.
If the count of the chosen substrate in the negative exceeded that of the positive, the
triple wasn’t selected. This procedure ensured that the positive and negative sets had
fairly equal counts of the same substrate protein. When this negative set was exhausted
of triples, additional negative pairs were generated by random sampling detailed in the
next step.

3. The list of proteins from the knowledge graph dataset was extracted and the
phosphorylation scores for every kinase-substrate combination were computed using
the ComplEx KGE model. When the comparative score of the triple is higher, it has
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Figure 2 KSFinder negative data generation process. (Step 1) Non-interacting protein pairs from
Negatome dataset are added to the KSFinder negative dataset. (Step 2) From each kinase-substrate positive
pair, the kinase is retrieved. (Step 3) The kinase is passed to the negatives generated by the subcellular
location strategy (PredKinKG negatives). (Step 4) A negative pair containing the kinase is identified and
the substrate protein is retrieved. (Step 5) If the count of the substrate protein in the positive dataset ≥ 0,
the negative pair is added to the KSFinder negative dataset. (Step 6) If the count of the substrate protein
in the positive dataset< 0, the subcellular location strategy negatives are queried for additional negative
substrates. (Step 7) If step 6 finds additional negative substrates for the kinase, steps 4 through 6 are
repeated. (Step 8) If step 6 finds no additional negative substrates for the kinase, a protein is randomly
sampled from the 1000 farthest proteins to the input kinase, from the KG embedding space. (Step 9) The
negative pair is added to the KSFinder negative dataset. Created with BioRender.com.

Full-size DOI: 10.7717/peerj.16164/fig-2

a better chance of being a true phosphorylation triple. The substrate proteins were
sorted in ascending order by their scores, and a random protein was selected from the
first 1,000 proteins on the list. The selected substrate was tested for over-representation
using the process detailed in Step 2.
The final negative dataset thus generated comprised 7,701 records, with pairs from

Negatome, 1,323 pairs created via cellular location strategy, and 6,162 generated via
random sampling. This dataset was split into training and test sets with counts of 6,301
and 1,400 respectively.

We will refer to this dataset as the ‘KS-negative dataset’ throughout the rest of the article.

Evaluation of knowledge graph embedding models
We evaluated the embedding model independent of the downstream classifier. Two
assessments were conducted to evaluate the performance of the four KGE models on two
different datasets, PredKinKG and PredKinKG-B (balanced).

Assessment 1—PredKinKG dataset
The PredKinKG’s negative dataset was randomly sampled for two sets of data with 1,400
triples in each. One set was paired with the 1,400 positive validation triples and the other
was paired with the 1,400 positive test triples. The embedding model assigns higher scores
for triples that it predicts as positive and lower scores for negatives. Since the embedding
model returns raw scores, they were calibrated using the Platt scalingmethod for conversion
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to probability values. The best-performing KGEmodels from each of the four algorithms—
TransE, ComplEx, DistMult, and HolE, as determined by the hyperparameter optimization
were selected and assessed on the 2,800 test triples.

Assessment 2—PredKinKG-B (balanced) dataset
As the negative set generated by PredKinKG over-represents certain entities, we generated
a new dataset by sampling negative triples such that the representation of the entities
(proteins) in the positive and negative sets was balanced. We refer to this dataset as the
PredKinKG-B (balanced) dataset. This test set resulted in 662 triples with 331 in the positive
set and 331 in the negative set. We evaluated the four graph embedding models on this
subset.

Evaluation of the integrated model (KSFinder)
KSFinder was evaluated on four different datasets (Assessment 3 through Assessment 6) to
assess the model’s generalization capability and ensure the model is not prejudiced towards
certain datasets.

Assessment 3—KSFinder dataset
KSFinder was evaluated on a test set containing 1,018 records with an equal proportion
of positives and negatives. From the KS-negative test set, the pairs generated by random
sampling were removed because the embeddings carry the semantics of the graph, and
evaluating those pairs that were generated on the basis of embedding space may result in
inflated scores. The resulting negative test set contained 96 pairs from Negatome and 413
pairs created via cellular location strategy. The positive dataset set used in Assessment 1
was under-sampled for 509 records.

Assessment 4—PredKinKG-B dataset
We evaluated KSFinder on the PredKinKG-B (balanced) dataset used in Assessment 2 and
compared its performance with the stand-alone graph embedding algorithm.

Assessment 5—LinkPhinder dataset
The LinkPhinder benchmark dataset was downloaded from Nováček et al. (2020) to assess
KSFinder’s performance. Since LinkPhinder data is at the phosphorylation site level, a
kinase-substrate relationship may exist in their positive and negative set with varying site
information. As we are interested in the information at the kinase-substrate level, pairs
that have at least one known phosphorylation site were selected for the positive set and
those that have none were chosen for the negative set. The records that overlapped with
KSFinder’s training dataset were filtered out and KSFinder was evaluated on the remaining
dataset. This test set contained 971 pairs each in the positive and negative sets.

Assessment 6—PredKinKG dataset
KSFinder was evaluated on the PredKinKG dataset, the positive and negative test set used
in Assessment 1.
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Comparison of KSFinder with other kinase-substrate prediction
models
We evaluated the LinkPhinder (Nováček et al., 2020) and PredKinKG (Gavali et al., 2022)
models, which report improved performance over other phosphorylation prediction
tools, including NetPhospK, Scansite, NetworKIN, GPS, Phosphopredict, NetPhorest, and
compared their performance with KSFinder.

Assessment 7—Comparison with LinkPhinder
As LinkPhinder predicts site-specific phosphorylation activity, for a fair comparison with
KSFinder, we extracted their prediction scores at the site level and computed the probability
of the kinase phosphorylating the substrate at any site. The prediction score of a k-s pair
was computed by,

Phosphorylation probability of k− s=
n∏

k=1

(1−P(Phos at k))

where n is the number of sites of phosphorylation, k is the site number and P(Phos at k) is
the prediction probability reported by LinkPhinder at k.

Of these predictions, 2,021 kinase-substrate records overlapped with KSFinder’s dataset.
1,027 were positive records and 994 were negative. Using the predicted probabilities
reported by LinkPhinder and true labels from the KSFinder dataset, LinkPhinder’s
performance was assessed.

Assessment 8–Comparison with PredKinKG
We did a direct comparison of PredKinKG with KSFinder using the prediction probability
scores provided by PredKinKG. 14,370 predictions reported by PredKinKG overlapped
with KSFinder’s dataset. Of these, 7,017 were positive and 7,353 were negative.

For Assessment 7 and Assessment 8, we did not exclude the data that was used in the
training set of LinkPhinder or PredKinKG, which gave an advantage to the other models
over KSFinder, as they have a higher chance of accurately predicting the outcomes for the
overlapping records. As no classification threshold was mentioned in the papers, we used
the reported prediction probability values to compute the ROC-AUC and PR-AUC scores
and compared them with the AUC values of KSFinder.

Assessment 9—Comparison with Ser-Thr-KS atlas
Johnson et al. (2023) ranked the 303 serine/threonine kinases for the 89,784 human
phosphosites. We selected the top 15 kinases for each substrate site and computed a
unique set of positive predictions by pairing the kinases and substrates. The negative
predictions were computed by pairing the proteins that ranked greater than 150. Since the
reported ranks are at the site level, if a kinase scored a rank of 15 or less for at least one of
the sites of the substrate, the kinase-substrate pair was retained only in the positive set and
removed from the negative set. The pairs that overlapped with KSFinder’s dataset were
retained. This resulting dataset contained 3,848 positives and 3,708 negatives.
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Literature mining for evidence attribution
We employed KSFinder to predict substrates of the 432 kinases in our knowledge graph, 68
of which are listed as dark kinases by IDG. To further assess the prediction outcomes
from KSFinder, we mined the literature for evidence attribution of predictions for
68 understudied kinases. Because curation of the literature is not comprehensive, we
anticipated that some kinase-substrate relationships that are not present in our dataset
but are predicted by our model may be reported in the literature. We considered kinase-
substrate predictions with a probability score >= 0.7 to be positive predictions and those
with scores <= 0.3 to be negative predictions. RLIMS-P, a rule-based phosphorylation
information extraction text mining tool (Torii et al., 2015), was used to extract kinase and
substrate mentions and relationships from literature in PubMed Central and Medline.

The process for automated query construction and information retrieval and for manual
evidence evaluation is summarized below:
1. The gene names including the synonyms of the proteins in our dataset were retrieved

from UniProt.
2. For every prediction pair, a query was constructed.
3. The query contains two parts, the kinase gene name and substrate gene name separated

by ‘‘AND’’, in the format ‘‘(KINASE GENE) AND (SUBSTRATE GENE)’’
4. If the protein had multiple gene synonyms, each name was separated by an ‘‘OR’’,

in the format ‘‘(KINASE GENE NM1 OR KINASE GENE NM2) AND (SUBSTRATE
GENE NM1 or SUBSTRATE GENE NM2)’’.

5. The constructed query was passed as input to the RLIMS-P tool using the iTextMine
REST API, https://research.bioinformatics.udel.edu/itextmine/api/search/query/rlims
(Ren et al., 2018).

6. Both PMC and Medline were queried with the input query.
7. The response returned by the API was in JSON format. This JSON response was parsed

to retrieve kinase names and substrate names. If the response had at least one matching
kinase gene name and substrate gene name, the prediction was considered valid and
selected for manual review.

8. The positive results from literature mining were reviewed manually to evaluate the
results and provide evidence attribution. We manually identified evidence for a few
dark kinases.

Cases study: enrichment analysis for the understudied kinases—HIPK3
and CAMKK1
The substrates predicted to be phosphorylated by the two kinases, HIPK3 (homeodomain
interacting protein kinase 3) and CAMKK1 (calcium/calmodulin-dependent protein kinase
kinase 1) with high confidence were retrieved by setting the probability threshold cut-off
value of 0.9. Enrichment analysis was performed on the selected substrates using the tool,
DAVID (Database for Annotation, Visualization, and Integrated Discovery tool) (Sherman
et al., 2022). As our model had identified the potential substrates from a fraction of the
known human proteins that are in our knowledge graph, the proteins in the knowledge
graphwere used as the background instead of all humanproteins for the enrichment analysis
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study. The top enriched GO terms in the three categories, biological process, molecular
function, and cellular component, were selected by Benjamini–Hochberg corrected p-value
threshold of 0.1 and by highest fold enrichment. We postulate the potential roles of the
kinases by reviewing their enriched terms and presenting results in the literature supporting
the proposed functions and processes.

Comparison of results from KSFinder and Ser-Thr-KS atlas
We retrieved a unique set of substrates that scored a rank of 15 or lower for HIPK3 and
CAMKK1 separately from the Ser-Thr-KS atlas and compared it with the high-confidence
substrates identified by KSFinder.

RESULTS
Knowledge graph embedding
KGE model hyperparameter optimization and performance
The optimal hyperparameters determined by the grid search technique for the four best
performing KGE models are provided in Table 2.

All the models performed the best at an embedding size of 150, at a learning rate of
0.0001, and with a loss function of multiclass negative loss likelihood. The performance
metrics of the KGE models on the validation data set are shown in Table 3.

The optimal parameters of the best-performing model were determined using the MRR.
TransE scored the highest MRR of 0.1006 and ComplEx ranked next with a score of 0.0923.
Hits@n denotes the proportion of positive triples in the validation dataset (total of 1,400)
that scored at least nth rank relative to the negative triples. The TransE algorithm uses
the sum of head and relation vectors to approximate the vector of the tail entity. Though
TransE captures only asymmetric relationships, it exceeded the MRR score of ComplEx
which captures both symmetric and asymmetric relationships by approximately 0.01. This
could be due to the fact that less than 1% of the relations in our knowledge graph are
symmetric. The DistMult algorithm is similar to ComplEx in its scoring function, where
it uses the dot product of the head and relation to approximate the tail vector. However,
DistMult captures only symmetric relationships and therefore scores relatively lower on
our KG. Holographic Embedding (HolE) is known to capture compositional relations, yet
its best-performing model scored lower than the other three embedding algorithms and
was not optimal for our dataset. These metrics compare the performance of the four KGE
algorithms on the validation dataset using the synthetic negatives generated by the CWA
corruption strategy.

Evaluation of KGE
Assessment 1 and Assessment 2 evaluate the performance of the four KGE models on the
PredKinKG and the PredKinKG-B datasets, respectively. In agreement with theMRR scores
on the validation dataset, the performance of both TransE and ComplEx is superior to the
DistMult and HolE models on the PredKinKG dataset (Table 4). Additionally, the scores
of the ComplEx model were close to those of the TransE model. Similarly, the ComplEx
model has the highest ROC-AUC of 0.751 and is the second in PR-AUC with a score of
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Table 2 Optimal values for the KGE hyperparameters determined by the validation dataset.

Hyperparameter ComplEx TransE DistMult HolE

Batch count 12 12 12 16
Embedding size 150 150 150 150
Number of negatives (eta) per positive triple 15 10 10 20
Loss function multiclass_nll multiclass_nll multiclass_nll multiclass_nll
Regularization type
lambda=1e−05

L1 L1 L1 nuclear 3-norm

Optimizer (Adam)
Learning rate

0.0001 0.0001 0.0001 0.0001

Epochs 4500 2700 7200 5100

Table 3 Performance of the KGEmodels on the validation dataset.

KGEmodel Hits@1 Hits@3 Hits@10 Mean
Reciprocal
Rank (MRR)

TransE 0.0714 0.0943 0.1564 0.1006
ComplEx 0.0614 0.0886 0.1386 0.0923
DistMult 0.0479 0.0814 0.1288 0.0801
HolE 0.0379 0.0679 0.1336 0.0731

Table 4 ROC-AUC and PR-AUC of the four knowledge graph embedding models on PredKinKG and
PredKinKG-B datasets.

Assessment Dataset Metrics TransE DistMult ComplEx HolE

ROC-AUC 0.868 0.861 0.872 0.856
Assessment 1 PredKinKG

PR-AUC 0.871 0.848 0.869 0.85
ROC-AUC 0.74 0.742 0.751 0.739

Assessment 2 PredKinKG-
B PR-AUC 0.713 0.698 0.718 0.723

0.718 when evaluated using the PredKinKG-B dataset (Table 4). It should be noted that the
performance of all four graph embedding models dropped significantly when evaluated
on the PredKinKG-B dataset. The models were good at predicting the relations involving
the pool of proteins in the PredKinKG’s biased negative set but did not generalize well and
scored lower when evaluated on the more balanced dataset.

The ComplEx KGE model performed better than TransE on the PredKinKG-B dataset,
and nearly equal on the PredKinKG dataset. Given the fact that ComplExmodels one-many
relationships and learns semantics irrespective of the relation symmetry, and its relatively
superior performance over other KGEmodels, the vectors embedded by the ComplEx KGE
were selected as features for developing the downstream classification model.

Multilayer perceptron classification
Hyperparameter optimization
The training data for the classifier model consisted of 12,333 records with 6,032 positives
and 6,301 negatives. The 6,043 positives were obtained by combining the training data

Anandakrishnan et al. (2023), PeerJ, DOI 10.7717/peerj.16164 13/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.16164


Table 5 Optimal values for the MLP classifier determined by cross-validation.

Hyperparameter Values

Alpha (L2 regularization term value) 0.0001
1 hidden layer with node count (40,)
Activation function ReLU
Solver Adam
Learning rate Constant (0.0001)

(4,632) and validation data (1,400) used in the graph embedding model. The number
of nodes and optimal hyperparameters at which the MLP classifier performed the best
are summarized in Table 5. These parameter values were determined via the grid search
technique and 10-fold cross-validation of the training data. KSFinder used ReLU, the
rectified linear unit activation function. The prediction probability for phosphorylation
was computed by transforming the output from the neural network for label 1 using the
softmax function.

Evaluation of KSFinder
Figure 3 shows the performance plots of KSFinder on the four different datasets as described
inAssessments 3, 4, 5, and 6. KSFinder exhibits consistent performance onKSFinder dataset,
PredKinKG, and PredKinKG-B datasets with a ROC-AUC value ranging from 0.8 to 0.83
(Fig. 3A), and PR-AUC ranging from 0.795 to 0.85 (Fig. 3B). It demonstrates an acceptable
discriminative capability on the LinkPhinder dataset with a ROC-AUC of 0.747 (Fig. 3A)
and PR-AUC of 0.722 (Fig. 3B).

In comparison with the performance of the stand-alone ComplEx KGE model
(Assessment 2) on the PredKinKG-B dataset, KSFinder showed improved performance
on the same dataset (Assessment 4). These results also demonstrate KSFinder’s relatively
better generalization capability on different datasets than the KGE model.

Comparative assessment results of KSFinder with LinkPhinder, PredKinKG,
and Ser-Thr-KS atlas
Figure 4 shows the performance of KSFinder, LinkPhinder, PredKinKG, and Ser-Thr-KS.
KSFinder outperforms all three prediction models in ROC-AUC (Fig. 4A) and PR-AUC
(Fig. 4B). A challenge with comparative assessment is the models are trained on different
datasets, so a direct comparison was not possible. However, we tried to perform an
impartial comparison by not filtering their training data in the prediction scores reported
by LinkPhinder and PredKinKG. Additionally, we assessed KSFinder on LinkPhinder
and PredKinKG datasets. This two-way comparison provided the opportunity for better
judgment of KSFinder’s generalized performance, which is a shortfall in other prediction
models. As the Ser-Thr-KS atlas is not built on true labels, we could not compare KSFinder’s
performance on their dataset.
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Figure 3 Performance of KSFinder on different datasets. Each curve indicates the performance of KS-
Finder in terms of (A) ROC-AUC and (B) PR-AUC on the four datasets at different thresholds from 0
through 1. The label denotes the assessment number, the dataset, and the corresponding curve.

Full-size DOI: 10.7717/peerj.16164/fig-3

Figure 4 Performance of KSFinder, LinkPhinder, PredKinKG, and Ser-Thr-KS atlas on KSFinder
dataset. Each curve indicates the performance of the four models in terms of (A) ROC-AUC and (B) PR-
AUC on the KSFinder dataset at different thresholds from 0 through 1. The label denotes the assessment
number, the model, and the corresponding curve.

Full-size DOI: 10.7717/peerj.16164/fig-4

Functional analysis
Literature evidence of the predictions
We found literature evidence supporting 17 of our 36,055 positive predictions (score >0.7)
involving the 68 understudied kinases. Of these, nine scored a probability value greater
than 0.9, six a probability value between 0.8 and 0.9, and two a probability value between
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0.7 and 0.8. Three of the 17 were identified via a manual search of literature when studying
HIPK3 and NUAK2 kinases, whereas the remaining 14 were identified by RLIMS-P tool
and manually reviewed for phosphorylation activity. The evidence of the predictions is
summarized in Table 6.

False negative predictions
93,593 of KSFinder’s predictions with a probability value <= 0.3 were assessed and
RLIMS-P identified evidence for four of them. These include the autophosphorylation of
HIPK1 (Ecsedy, Michaelson & Leder, 2003), phosphorylation of MEK1 by BCKDK (Xue et
al., 2017), BCAR1 by PKN3 (Gemperle et al., 2019) and HEY1 by STK38L (López-Mateo et
al., 2016). These positive phosphorylation pairs were incorrectly classified as negatives by
KSFinder.

Of the total 21 phosphorylation pairs identified in the literature, our model identified 17
true positives and 4 false negatives. Excluding the 3 that were identified via manual search
from the 17 true positives and the total, KSFinder scores a sensitivity of 0.78.

Case study
Enrichment analysis of HIPK3
Of the proteins predicted to be phosphorylated by HIPK3, 230 scored a probability value
greater than 0.9. Functional enrichment analysis of the 230 proteins suggests HIPK3’ss
potential role in the extracellular matrix organization and epigenetic regulation of gene
expression (Table 7).

The top enriched biological processes are the intracellular steroid hormone receptor
signaling pathway, positive regulation of extracellular matrix organization, epigenetic
regulation of gene expression, and cellular responses to chemical stimuli. The top
enriched molecular functions of HIPK3 include BH3 domain binding, and cysteine-type
endopeptidase activity involved in the apoptotic signaling pathway which supports HIPK3’s
role in apoptosis. NAD-dependent histone deacetylase activity and primarymiRNAbinding
align with the protein’s proposed role in epigenetic gene expression. The enriched cellular
components support the protein’s role in transcription regulation and cellular response to
chemical stimuli.

Enrichment analysis of CAMKK1
CAMKK1 is a protein belonging to the calcium-triggered signaling cascade involved in a
number of cellular processes. A total of 126 substrates were predicted to be phosphorylated
by CAMKK1 with a probability value greater than 0.9. The functional enrichment results
of CAMKK1 substrates are summarized in Table 8.

The top enriched biological process of CAMKK1 includes synapse organization and
negative regulation of neuron death, glucose homeostasis, regulation of lipid storage, and
fatty acid oxidation. These suggest CAMKK1’s potential role in the regulation of cellular
metabolism and involvement in neuronal development. Tetrahydrobiopterin binding
is the top enriched molecular function of CAMKK1. Tetrahydrobiopterin is an enzyme
cofactor that carries electrons in redox reactions. This molecular function correlates with
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Table 6 Evidence of KSFinder’s novel predictions in the scientific literature.

Kinase
[UniProt ID]

Substrate
[UniProt ID]

Prediction
probability

Information in Literature Method

HIPK3
[Q9H422]

RUNX2
[Q13950]

0.98787 Experimental results support HIPK3 phosphorylation of
Runx2 AD3 residues (313-332) in vitro. Phosphorylation
of Jun and Runx2 by HIPK3 negatively regulates
apoptosis and enhances androgen receptor-mediated
transcriptional activation (Guo et al., 2022; Sierra & Towler,
2010)

Manual Search

HIPK3
[Q9H422]

STAT3
[P40763]

0.98445 Phosphorylation of STAT3 plays a critical role in the
inflammatory response of Allergic Conjunctivitis, and
STAT3 phosphorylation could be downregulated by
inhibiting HIPK3 expression (Guo et al., 2022)

Manual Search

DYRK3
[O43781]

SIRT1
[Q96EB6]

0.9806 DYRK3 promotes cell survival through direct
phosphorylation of SIRT1 at Thr(522) residue and
promotes deacetylation of p53 (Guo et al., 2010)

RLIMS-P

NUAK2
[Q9H093]

MYPT1
[O14974]

0.95275 Myosin phosphatase target subunit 1 (MYPT1) was
identified as a specific substrate for NUAK2 using
an in vitro kinase assay and high-performance liquid
chromatography (HPLC). The literature data suggests
NUAK2 phosphorylation of MYPT1 at different sites elicits
various regulatory functions (Yamamoto et al., 2008)

RLIMS-P

DYRK1B
[Q9Y463]

NKX3.1
[Q99801]

0.94169 DYRK1B phosphorylates the tumor suppressor gene,
NKX3.1 at serine 185 residue, and this is experimentally
validated by in-vitro kinase assay (Song et al., 2015)

RLIMS-P

MARK4
[Q96L34]

MAP2
[P11137]

0.92479 MARK4 phosphorylation of MAP2 and MAP4 regulates cell
polarity (Ahrari, Mogharrab & Navapour, 2020)

RLIMS-P

TLK1
[Q9UKI8]

TLK1
[Q9UKI8]

0.91576 Tousled-like kinases are an evolutionarily conserved
family of proteins. The article demonstrates the
autophosphorylation of TLK1 in Trypanosoma brucei,
a unicellular protozoan parasite, and its interaction with
AUK1, Asf1A, and Asf1B in vivo (Li, Gourguechon & Wang,
2007)

RLIMS-P

TTBK1
[Q5TCY1]

CRMP2
[Q16555]

0.90949 Experimental results show that TTBK1 in HEK293 cells
induced significant Collapsin response mediator protein-2
(CRMP2) phosphorylation at T514. This phosphorylation
may cause neurite degeneration and somal accumulation of
pTau protein in Alzheimer’s disease (Ikezu et al., 2020)

RLIMS-P

TLK2
[Q86UE8]

TLK2
[Q86UE8]

0.90513 The coiled-coil domains of TLK2 mediate dimerization
and are essential for the auto-phosphorylation of TLK2
(Mortuza et al., 2018)

RLIMS-P

PRKACG
[P22612]

GJA1, Connexin-43 (Cx43)
[P17302]

0.88295 ‘‘PKCgamma phosphorylates Cx43 on serine and this causes
disassembly and loss of gap junction Cx43 from the cell
surface.’’ (Wagner et al., 2002)

RLIMS-P

PAK5
[Q9P286]

SATB1
[Q01826]

0.85906 PAK5 phosphorylates SATB1 on Serine 47 residue and this
initiates the epithelial-mesenchymal transition cascade and
regulates metastasis of cervical cancer cells (Huo et al., 2019)

RLIMS-P

MARK4
[Q96L34]

MAP4
[P27816]

0.85578 MARK4 phosphorylation of MAP2 and MAP4 regulates cell
polarity (Ahrari, Mogharrab & Navapour, 2020)

RLIMS-P

(continued on next page)

Anandakrishnan et al. (2023), PeerJ, DOI 10.7717/peerj.16164 17/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.16164


Table 6 (continued)

Kinase
[UniProt ID]

Substrate
[UniProt ID]

Prediction
probability

Information in Literature Method

TAOK2
[Q9UL54]

MKK4
[P45985]

0.85555 ‘‘TAOK2 was found to phosphorylate MKK4/MKK7 and
activate the JNK signaling cascade.’’ (Fang et al., 2020)

RLIMS-P

CDK10
[Q15131]

PKN2
[Q16513]

0.84719 CDK10 phosphorylates PKN2 on threonine 121 and 124
in PKN2’s core RhoA-binding domain, which is essential
for the stabilization of RhoA protein and the actin network
architecture (Guen et al., 2016)

RLIMS-P

MLK2
[Q02779]

SEK1
[P45985]

0.83275 ‘‘Recombinant MST/MLK2 produced in bacteria directly
phosphorylates and activates SEK1/MKK4/JNKK in vitro’’
(Hirai et al., 1997)

RLIMS-P

NUAK2
[Q9H093]

MLC2
[P10916]

0.78413 Phosphorylation of MLC2 by NUAK2 is required for the
proper functioning of myosin in the developing neural
tube; loss of NUAK2 activity has been associated with
anencephaly, a birth defect in which the brain and skull do
not develop fully (Bonnard et al., 2020)

Manual Search

STK3
[Q9Y6E0]

LATS1
[O95835]

0.75175 STK3 phosphorylation of LATS1 is part of the cascade
events in the Hippo signaling pathway (Moon et al., 2019)

RLIMS-P

Table 7 Enrichment analysis of top predicted phosphorylation substrates of HIPK3 kinase.

Category GO ID Term description Fold
enrichment

False
discovery
rate

GO:0030518 Intracellular steroid hormone receptor signaling pathway 11.946 1.73E−02
GO:1903055 Positive regulation of extracellular matrix organization 11.946 8.43E−02
GO:1901522 Positive regulation of transcription from RNA polymerase

II promoter involved in the cellular response to chemical
stimulus

9.955 3.58E−02

GO:0040029 Regulation of gene expression, epigenetic 8.959 8.80E−07
GO:0035067 Negative regulation of histone acetylation 8.533 6.30E−02

Biological
Process

GO:0001836 Release of cytochrome c from mitochondria 7.964 1.72E−03
GO:0051434 BH3 domain binding 12.008 2.03E−02
GO:0005496 Steroid binding 9.607 4.25E−02
GO:0097199 Cysteine-type endopeptidase activity involved in apoptotic

signaling pathway
8.006 7.50E−02

GO:0070878 Primary miRNA binding 7.505 2.26E−02

Molecular
Function

GO:0032041 NAD-dependent histone deacetylase activity (H3-K14
specific)

7.505 2.26E−02

GO:0035976 Transcription factor AP-1 complex 12.046 4.46E−02
GO:0071141 SMAD protein complex 9.637 8.63E−02
GO:0071159 NF-kappaB complex 9.637 8.63E−02
GO:0017053 Transcriptional repressor complex 5.815 5.34E−06

Cellular
Component

GO:0005667 Transcription factor complex 5.163 3.69E−17
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Table 8 Enrichment analysis of top predicted phosphorylation substrates of CAMKK1 kinase.

Category GO ID Term description Fold
enrichment

False
discovery
rate

GO:0010883 Regulation of lipid storage 22.754 5.89E−02
GO:0019395 Fatty acid oxidation 22.754 5.89E−02
GO:0002028 Regulation of sodium ion transport 13.652 1.01E−02
GO:1901215 Negative regulation of neuron death 9.102 5.06E−03
GO:0050808 Synapse organization 9.102 5.89E−02

Biological
Process

GO:0042593 Glucose homeostasis 7.001 8.55E−04
GO:0034617 Tetrahydrobiopterin binding 22.873 3.34E−02
GO:0015631 Tubulin binding 5.967 9.65E−02
GO:0005080 Protein kinase C binding 5.003 8.76E−02
GO:0061629 RNA polymerase II sequence-specific DNA binding

transcription factor binding
3.202 3.34E−02

Molecular
Function

GO:0005516 Calmodulin binding 2.938 4.48E−02
GO:0016234 Inclusion body 9.521 4.13E−02
GO:0012506 Vesicle membrane 8.16 5.76E−02
GO:0031966 Mitochondrial membrane 6.664 4.13E−02
GO:0005901 Caveola 4.998 5.76E−02
GO:0005741 Mitochondrial outer membrane 4.197 4.13E−02

Cellular
Component

GO:0098794 Post synapse 4.032 4.13E−02

the proposed role in cellular metabolism. In concordance with the diverse potential roles
postulated for the kinase, the subcellular location of CAMKK1 is also diverse.

Comparison of results from KSFinder and Ser-Thr-KS
The high-confidence predictions from KSFinder for HIPK3 and CAMKK1 were compared
with the results from the Ser-Thr-KS atlas. Despite the fact that Ser-Thr-KS atlas captures
only direct relationships, and KSFinder uncovers direct and indirect links, approximately
50% of the substrates predicted by KSFinder overlapped with the substrates scored by the
Ser-Thr-KS atlas for HIPK3 and CAMKK1. Per the Ser-Thr-KS atlas, 4,629 phosphosites
are predicted to be potentially phosphorylated by HIPK3. This comprises 2,624 unique
substrates and overlaps with 110 of the 230 high-confidence HIPK3 substrates predicted
by KSFinder. Similarly, for CAMKK1, 64 of the 126 high-confidence substrates predicted
by KSFinder overlaps with 3,650 substrates identified by Ser-Thr-KS atlas.

DISCUSSION
In this work, we presented our predictive model built using the integration of knowledge
graph embedding and a neural network for studying kinase-substrate relationships. We
showed that our model has superior performance over the existing prediction models.
Knowledge graph representation learning has the advantage of capturing implicit relations
in a complex network which is often overlooked by local feature-based selection techniques.
Since the kinase-substrate interaction happens in a complex network of cellular processes,
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this learning technique has the capability of discovering new links that other approaches
fail to uncover. While the embedding method itself achieves good predictive performance,
it cannot generalize on a stringent dataset. We took advantage of the data captured in its
embedding vectors to train a classification model using a neural network and showed that
the overall prediction performance increased when the embedded vectors were utilized as
input features for the final prediction model.

We demonstrated the robustness of our model’s performance through validation with
several different test sets. Though the positive sets used by the different tools overlap,
each tool uses a unique strategy for negative data generation. The performance scores
and predictions by the different models may be biased based on their negative generation
strategy. This study showed that our model’s performance was consistent across datasets,
demonstrating its generalization capability.

KSFinder uses high-level information about the proteins and has the potential to identify
direct and indirect phosphorylation links. The lack of an identifier in the underlying
dataset and the ambiguity stemming from the literature sources makes the classification
of direct and indirect phosphorylation, a challenging task. This ambiguity in identifying
the primary kinase-substrate links in KSFinder’s training dataset is in its prediction results
too. Nonetheless, the indirect predictions made by KSFinder are valuable for our goal of
hypothesizing the functions of understudied kinases. The other kinase-substrate prediction
models, aside from PredKinKG do not use the high-level interaction information and may
be suited less ideally for kinase functional enrichment analysis case study.

KSFinder provides substrate predictions for 432 unique kinases, a much wider range of
kinases than other tools except PredKinKG and we demonstrate improved performance of
KSFinder over PredKinKG.

To evaluate the validity of the predictions generated by our model, we mined the
literature for evidence of positive and negative predictions and reported a sensitivity
score of 0.78 with 14 true positives and 4 false negatives. The high recall of KSFinder in
text-mining evaluation demonstrates its potential to identify positive phosphorylation
links.

HIPK3 is a serine/threonine protein kinase involved in transcription regulation,
apoptosis, and steroidogenic gene expression. Our analysis hints at the protein’s role
in extracellular matrix organization. Deng et al. (2019) demonstrate the upregulation of
pre-HIPK3 in response to adrenaline via the transcription factor, CREB1. The enriched
molecular function and cellular component terms align with the protein’s role in apoptosis.
Though the apoptotic process is directly linked to HIPK3 in our knowledge graph, there
are no explicit links connecting ECM regulation or epigenetic gene expression regulation
roles to HIPK3.

Functional enrichment analysis of CAMKK1 shows the protein’s potential involvement
in synapse organization and negative regulation of neuronal death. In concordance with
our results, the over-expression of CAMKK1 is linked to neurite outgrowth and axon
regeneration in the peripheral nerves (Zhao et al., 2023). Though the only processes
directly linked to CAMKK1 in our KG are protein phosphorylation, intracellular signal
transduction, and positive regulation of kinase activity, our analysis connects CAMKK1
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with neuronal organization. Similarly, we found evidence supporting CAMKK1’s role in
glucose uptake in skeletal muscles, a function relating to the proposed role of CAMKK1 in
glucose homeostasis (Carol et al., 2007).

A limitation of our model is that it has been trained only on approximately 13% of
the known human proteins, which comprise the known kinases, their phosphorylation
substrates, and their interacting protein partners. Therefore, our model can perform link
predictions for kinase-substrate relations involving only these proteins in the knowledge
graph. Additionally, though our model utilizes the functional properties of the kinases and
substrates, it does not consider the sequence, structure, or site-specific information of the
proteins. In a future study, embeddings generated by capturing sequence and structural data
along with the functional information of the proteins may be used to predict site-specific
phosphorylation residues and reveal novel links in the kinome-phosphorylation site graph.

CONCLUSIONS
Here, we show that an integrated model built using knowledge graph embedding and
a neural network classifier predicts kinase-substrate relations with high sensitivity. This
approach first captures the semantics in the protein phosphorylation network in its
embedding vectors and then uses the vectors to train a binary classifier and discern
kinase-substrate pairs. The integrated model not only outperforms the stand-alone KGE
model but also exhibits robust performance on different datasets. It also shows superior
performance over other kinase-substrate prediction tools and provides prediction coverage
for 432 human kinases of which 68 are understudied. Future work will aim at expanding the
protein network which is currently limited to 13% of the human proteins and at including
sequence and structural information in the embedded vectors.
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