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ABSTRACT
The Gram-negative non-motile Klebsiella pneuomoniae is currently a major cause of
hospital-acquired (HA) and community-acquired (CA) infections, leading to great
public health concern globally, while rapid identification and accurate tracing of the
pathogenic bacterium is essential in facilitating monitoring and controlling of
K. pneumoniae outbreak and dissemination. Multi-locus sequence typing (MLST) is
a commonly used typing approach with low cost that is able to distinguish bacterial
isolates based on the allelic profiles of several housekeeping genes, despite low
resolution and labor intensity of the method. Core-genome MLST scheme (cgMLST)
is recently proposed to sub-type and monitor outbreaks of bacterial strains with high
resolution and reliability, which uses hundreds or thousands of genes conserved in all
or most members of the species. However, the method is complex and requires whole
genome sequencing of bacterial strains with high costs. Therefore, it is urgently
needed to develop novel methods with high resolution and low cost for bacterial
typing. Surface enhanced Raman spectroscopy (SERS) is a rapid, sensitive and cheap
method for bacterial identification. Previous studies confirmed that classification and
prediction of bacterial strains via SERS spectral analysis correlated well with MLST
typing results. However, there is currently no similar comparative analysis in
K. pneumoniae strains. In this pilot study, 16 K. pneumoniae strains with different
sequencing typings (STs) were selected and a phylogenetic tree was constructed
based on core genome analysis. SERS spectra (N = 45/each strain) were generated for
all the K. pneumoniae strains, which were then comparatively classified and predicted
via six representative machine learning (ML) algorithms. According to the results,
SERS technique coupled with the ML algorithm support vector machine (SVM)
could achieve the highest accuracy (5-Fold Cross Validation = 100%) in terms of
differentiating and predicting all the K. pneumoniae strains that were consistent to
corresponding MLSTs. In sum, we show in this pilot study that the SERS-SVM based
method is able to accurately predict K. pneumoniae MLST types, which has the
application potential in clinical settings for tracing dissemination and controlling
outbreak of K. pneumoniae in hospitals and communities with low costs and high
rapidity.
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INTRODUCTION
The Gram-negative non-motile bacterium Klebsiella pneumoniae was first isolated from a
pneumonia patient in 1875 by Edwin Klebs and further characterized by Carl Friedlander
in 1882 (Köhler & Mochmann, 1987). Although K. pneumoniae is an opportunistic
pathogen, the bacterium is able to cause infection in multiple sites in human beings such as
lungs, bloodstream, and liver, etc., leading to pneumonia, sepsis, and liver abscess (Ballén
et al., 2021; Heiden et al., 2020). Due to the increased antibiotic resistance of the pathogen,
multidrug resistant K. pneumoniae could cause extremely difficult-to-treat infections due
to limited therapeutic options (Liu et al., 2022). In addition, previous studies show that the
bacterium is mainly responsible for hospital-acquired (HA) and community-acquired
(CA) infections, primarily among immunocompromised patients, the elderly, and the
newborns (Meng et al., 2019). Therefore, it is important to rapidly and accurately identify
K. pneumoniae strains with genotyping methods so as to tracking the transmission routes
of the pathogen in hospital and/or community settings, which will facilitate the prevention
and control of the bacterial pathogen.

Bacterial genotyping is mainly used in microbiology for epidemiological surveillance,
which is important to identify bacterial outbreaks and is able to track the origin and
spreading of infectious agents (Ochoa-Díaz, Daza-Giovannetty & Gómez-Camargo, 2018).
Currently, methods of bacterial genotyping include pulsed field gel electrophoresis
(PFGE), multiple-locus variable number tandem repeat analysis (MLVA), multi-locus
sequence typing (MLST), core-genome MLST (cgMLST), and core single nucleotide
polymorphism (coreSNP), etc. (Gona et al., 2020; Zhou et al., 2017), among which PFGE,
core-genome MLST (cgMLST), and core single nucleotide polymorphism (coreSNP) are
the three most frequently used methods for the typing of K. pneumoniae strains (Gona
et al., 2020). As a traditional but standard method, MLST was first proposed in 1998 and
has been widely applied in characterizing bacterial strains via house-keeping genes,
through which distinct alleles for each housekeeping gene are assigned and all alleles from
all the chosen house-keeping genes are combined together to define the allelic profile that
is also known as sequence type (ST) (Maiden et al., 2013). MLST only uses a short list of
housekeeping genes and the analytical results have low resolution, while cgMLST is a novel
molecular typing method with high-resolution that is based on whole genomic sequencing,
which has high accuracy in bacterial typing and tracing and is gaining more acceptance in
sequence typing analysis (Yan et al., 2021). However, these typing methods suffer their
own limitations such as complex procedures, high costs, and low discrimination capacity,
etc., which greatly hinders their practical use in real-world settings like clinical laboratory
diagnosis. Therefore, novel methods are urgently needed to type and track the
transmission of bacterial pathogens rapidly and accurately.

Surface enhanced Raman spectroscopy (SERS) is a highly sensitive and non-invasive
method that has been employed for identifying bacterial species, antibiotic resistance, and
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virulence phenotypes through the combination of computational methods such as
clustering algorithms and machine learning methods (Liu et al., 2022; Lyu et al., 2023;
Usman et al., 2022; Wang et al., 2021). Therefore, the technique holds the potential in
discriminating bacterial strains with different sequence typing. A previous study has
already showed that SERS spectral analysis had advantages over traditional genotyping
methods for epidemiological surveillance of bacterial infections in terms of rapidity,
automation and reliability (Lu et al., 2013). A pilot study also confirmed that the label-free
SERS technique could identify antibiotic resistant isolates of three MLST-predefined living
Escherichia coli groups (Cheong et al., 2017). However, there is, so far, limited studies focus
on using label-free SERS technique for bacterial molecular typing in Klebsiella genus. A
couple of studies provided preliminary but conflict results when comparing Raman
spectroscopy with molecular typing for bacterial pathogens from the genus Klebsiella,
which suggests that further studies are needed to compare the two methods (Dieckmann
et al., 2016; Overdevest et al., 2014).

In order to elucidate the capacity of SERS technique in discriminating and predicting
K. pneumoniae strains with different STs, we selected 16 Klebsiella pneumoniae strains
with distinct STs that were isolated from clinical samples. SERS technique was then applied
to these K. pneumoniae strains to generate average SERS spectrum for each ST type.
Classification analysis viaOrthogonal Partial Least Squares-Discriminant Analysis (OPLS-
DA) showed that SERS spectra belonging to different K. pneumoniae strains could cluster
into different groups, while machine learning analysis confirmed the support vector
machine (SVM) algorithm can achieve accurate prediction of K. pneumoniae strains with
different STs, which is consistent with MLST analysis. Taken together, in this pilot study,
we show that the SERS-SVM based method is able to accurately recognize K. pneumoniae
MLST types for the first time, which has the application potential in clinical settings for
tracing dissemination and controlling outbreak of K. pneumoniae strains in hospitals and
communities with low costs, short time and high accuracy (Fig 1).

METHODS AND MATERIALS
Collection of K. pneumoniae strains
K. pneumoniae strains were obtained from the Clinical Microbiology Laboratory at
Guangdong Provincial People’s Hospital, Guangzhou, Guangdong Province, China.
All the bacterial strains were grown overnight in commercial Luria Bertani (LB) liquid
medium to the exponential growth phase and bacterial cells were collected by
centrifugation at 4,500 rpm for 8 min followed by keeping the pellet and discarding the
supernatant. The pellet was re-suspended in 2 mL of distilled deionized water (ddH2O).
Bacterial concentration was determined by plate-counting test performed on blood agar
plates incubated at 37 �C for 24 h wherever needed. All experiments in contact with
bacteria were sterilized via autoclaving at 121 �C for 30 min.

Whole genome sequencing of K. pneumoniae strains
The Illumina MiSeq Instrument was used for paired-end (PE) sequencing, and the
sequencing mode was set to be PE300. All the reads obtained by sequencing were evaluated
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via FastQC Software (version: 0.11.9; https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) for sequencing quality control, and then the software Trimmomatic
(version: 0.39) was used to remove sequences with a probability of higher than 1% of
wrong bases, sequences rich in adapters and sequences with too many N bases (Bolger,
Lohse & Usadel, 2014). Finally, the SPAdes software (version: 3.1.2) was used for reads
assembly, and all the contigs less than 200 bp were removed, and finally assembled whole
genomes of K. pneumoniae strains with high-quality were obtained for further analysis
(Bankevich et al., 2012). All the 16 K. pneumoniae genome assembled from raw reads have
been submitted to NCBI server (BioProject ID: PRJNA960686).

Core-genome and phylogenetic analyses
The genome annotation software PROKKA (Version: 1.13) was used to annotate the whole
genome sequences of 16 K. pneumoniae strains (Seemann, 2014). Then, Roary (Version:
3.13.0), a software enabling rapid large-scale prokaryotic pan-genome analysis, was used
for core genome analysis with a minimum percentage identity of 95%, and a total of 3,364
core genes were generated by analyzing the 16 K. pneumoniae strains (Page et al., 2015).
FastTree (Version: 2.1.12) was then run with “-nt” and “-gtr” settings to produce a
phylogenetic tree in Newick format (Price, Dehal & Arkin, 2009). Finally, the Newick tree
file produced by FastTree was imported into the webserver interactive Tree of Life (iTOL6)
for phylogenetic tree visualization (Letunic & Bork, 2021).

Figure 1 Schematic illustration of the experimental and computational workflow of this study, which
involves bacterial culture, genome sequencing, sequence typing, SERS spectral collection, and
computational analysis of SERS spectra generated from K. pneumoniae strains with different
STs. Full-size DOI: 10.7717/peerj.16161/fig-1
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Multi-locus sequence typing (MLST)
Based on the whole genome sequencing result, MLST software (version: 2.23.0) was used
to scan the overlapping parts of the seven conserved housekeeping genes (gapA, infB, mdh,
pgi, phoE, rpoB, tonB) within the assembled genome sequences of 16 K. pneumoniae
strains. Through comparing the seven housekeeping genes in all the K. pneumoniae
strains, sequence typing was determined. The seven conserved housekeeping genes are
provided by the Public Databases for Molecular Typing and Microbial Genome Diversity
(PubMLST).

Preparation of silver nanoparticles (AgNPs)
The preparation of silver nanoparticles (AgNPs) was based on a classical and facile
chemical reduction method, which was recorded in details in previous studies (Liu et al.,
2023; Tang et al., 2022). All the AgNPs used in this study were synthesized by ourselves in
the lab at Guangzhou Provincial People’s Hospital, Guangzhou, China. For the
characterization of dimensions and morphology of the AgNPs, please refer to our recent
publication (Lyu et al., 2023).

SERS spectral generation
SERS spectra were collected by using the InVia Reflex Confocal Raman Microscope
(Renishaw, Wotton-under-Edge, UK). The Raman spectroscope was equipped with a
785 nm diode laser, achieving a spectral resolution of less 1 cm−1. A bacteria sample (10 ml)
was mixed with 10 ml of AgNPs and then incubated for 15 min to make sliver nanoparticles
sufficiently interacted with the sample before dropping the mixture on silicon wafer.
The wavelength of the instrument was calibrated automatically using an interior silicon
wafer plus manual adjustment of external silicon wafer by setting the silicon peak at
520 cm–1. Bacterial samples were excited with a near infrared 785 nm diode laser in a range
of 500–1,800 cm−1. The Raman excitation light was focused onto the sample using a
50× objective lens, with a laser power of 150 mW. To ensure the stability and
reproducibility of the results, a fixed integration time of 20 s per spectrum was
implemented. For each K. pneumoniae strain, a total of forty-five spectra were collected
under controlled conditions of constant room temperature, guaranteeing the consistency
of spectral acquisition for each sample (Bashir et al., 2021).

Average SERS spectra and deconvolution analysis
Average intensity of all replicated Raman spectra (N = 45) at each Raman shift was
calculated to generate an average SERS spectrum for one ST typing strain of
K. pneumoniae, and the spectral standard deviation (SD) was calculated and visualized in
the average SERS spectrum for indicating the stability of the experimental data.
The software Origin (Version 2019b; OriginLab, Northampton, MA, USA) was used to
plot average Raman spectra, in which the shaded error band part represented SD.
The wider the error band, the worse the reproducibility. Spectral characteristic peaks were
generated by using LabSpec6 (HORIBA Scientific, Kyoto, Japan). In specificity,
GaussLoren function was used for fitting peaks with parameters set to Level = 15%,

Zhang et al. (2023), PeerJ, DOI 10.7717/peerj.16161 5/21

http://dx.doi.org/10.7717/peerj.16161
https://peerj.com/


Size = 20. All the identified characteristic peaks were shown in the form of dot plot.
Biological meanings of all the characteristic peaks were sourced from literature. Due to the
high similarity of the different ST average Raman spectra, in order to explore the
differences between different spectra, spectral deconvolution was conducted to process the
average Raman spectrum for each ST classification. Specifically, the function of fit peaks
pro in Origin software was used to fit characteristic peaks, and the function Vogit as the
convolution form of Gaussian and Lorentzian functions was used to generate
deconvolution sub-band for each average SERS spectrum.

SERS spectral clustering analysis
Raman spectral clustering aims to divide spectral dataset into different clusters according
to a specific rule. Unsupervised learning algorithms like principal component analysis
(PCA) are often used to analyze spectra by calling PCA function in sci-kit learn (version
0.21.3) data analysis library (Ayala et al., 2018; Bashir et al., 2021). In particular,
fit_transform method was used to fit SERS spectra for different ST typing K. pneumoniae
strains, and the top two principal components PC1 and PC2 with the largest contribution
were selected to describe the overall characteristics of SERS spectra. However, due to the
mild differences between SERS spectra of different ST types, the clustering effects were not
good due to interfering factors that were not relevant to the grouping information.
Therefore, Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) was used
to avoid the influence of interference factors in SERS spectral data on the classification
results. Specifically, the OPLS-DA function from multivariate statistical analysis software
SIMCA (version 13.0, 32 bit) was applied to automatically fit all SERS data from different
ST types, which separated the data that were not relevant to the classification information
from the data matrix. The results of PCA and OPLS-DA clustering methods were shown in
scatter plots, and SERS spectra from K. pneumoniae strains with ST types were marked
with black dashed circles.

Supervised machine learning analysis of SERS spectra
Division of SERS spectra dataset
To achieve rapid and accurate identification of K. pneumoniae strains with different STs,
we compared the prediction performance of six machine learning algorithms, that is,
Adaptive boosting (AdaBoost), Decision Tree (DT), eXtreme Gradient Boosting (XGB),
Quadratic Discriminant Analysis (QDA), Random Forest (RF), and SVM on SERS spectra.
Before conducting data analysis, in order to optimize model training efficiency, we utilized
the train_test_split function to reasonably divide the dataset into training, validation, and
test sets with a ratio of 6:2:2. The training set was employed for constructing the machine
learning model, while the validation set played a pivotal role in assessing the model’s
development process and providing the unbiased estimations. The test set, exclusively
dedicated to evaluating the performance of the final trained model, remained separated
from the model construction process (Tang et al., 2022).
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Model parameter optimization
In order to determine the optimal performance of the final identification model among
different models and within all parameter ranges of the model itself, GridSearch was used
to determine the optimal combination of model parameters, all hyperparameter ranges for
each model pre-defined in the program (Table S1). Specifically, GridSearchCV function
was used to optimize the hyperparameter combination, and the cv parameter was set to 5,
which means that five times of cross validation would be performed. The hyperparameter
combination with the highest average score was taken as the best for the final model
training. We recorded all the parameter combinations for each model and visualized the
gradient model scores.

Model performance evaluation
Quantitative evaluation of model effectiveness is key to determine model performance.
In this study, seven evaluation indexes including Accuracy, Precision, Recall, F1-score,
fitting time, area under the curve (AUC) and five-fold cross validation were used to
evaluate the model performance. For evaluating the predication capacity of machine
learning models, there are four main categories: (1) True Positive (TP); (2) False Negative
(FN); (3) False Positive (FP); and (4) True Negative (TN). The accuracy score describes the
proportion of the predicted correct samples in the total number of samples by calling the
accuracy_score function. The calculation formula is as follows:

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

In order to avoid the unbalance in dataset splitting and due to the unmeasurable of real
predictive ability of the model, Precision and Recall were used for evaluation. Precision was
calculated by calling precision_score (average = ‘micro’) function to indicate how many of
the predicted true samples are true. Recall was calculated by calling recall_score
(average = ‘macro’) to indicate how many true values are recognized by the model in the
actual dataset. The formula for calculating these two indexes is as follows:

Precision ¼ TP
TP þ FN

; Recall ¼ TP
TP þ FP

Precision and Recall are a pair of mutually restrictive metrics, in order to
comprehensively consider the factors of the two metrics, F1-score is used as the weighted
harmonic average of Precision and Recall. The f1_score (average = ‘weighted’) function was
called to measure the model’s ability to find true value. The formula is as follows:

F1 ¼ 2 � Precision � Recall
Precisionþ Recall

The AUC value is the area under the curve of the operating characteristic curve.
Different from the above metrics, this metrics does not depend on the selection of
threshold. The larger the area under the curve is, the better the model effect will be. In this
study roc_auc_score function was used to calculate the value of AUC. The calculation
formula is:
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AUC ¼ 1
2

Xn�1

i¼ 1

TPRiþ1 þ TPRið Þ FPRiþ1 � FPRið Þ

n represents the total number of points on the ROC curve, each point on the curve
represents the classification result of a particular classifier, the coordinates of the last point
on the ROC curve are denoted as (FPRn, TPRn), where FPRn is the False Positive Rate and
TPRn is the True Positive Rate at that point (Wang et al., 2022).

Considering the similar prediction performance of different machine learning models,
in order to improve the efficiency of model identification and reduce computing costs, we
compared the model fitting time on the same dataset, and time function was used to record
the start time and end time of the model training. The less the time, the lower the
computing resources consumed by the model. The calculation formula is:

Times ¼ Timestart � Timeend

RESULTS
Whole genome sequencing and Core-/Pan-genome analysis
Whole genome sequencing
General features of the 16 K. pneumoniae genomes are presented in Table 1, which were
obtained by integrating genome assembly and annotation results. Genome sizes range
from 5.32 to 6.23 Mbps. The number of predicted protein coding sequences (CDSs) in the
16 isolated varied from 4,977 (Strain ID: 2470) to 5,900 (Strain ID: 2497). The overall GC
content in these strains ranges from 56.70% to 57.66% and remains relatively consistent
among different isolates. All strains have a single tmRNA coding gene. There is a slight
variation in the number of ribosome RNA (rRNA) and transfer RNA (tRNA) coding genes
among the strains varies, but without significant differences (Wang et al., 2019).

Core-/Pan-genome analysis
The total pan-genome analysis for the 16 K. pneumoniae strains contain 12,523 coding
sequences (CDSs), among which 3,364 (26.86% of total CDSs) were considered as core
genes across all 16 strains while 9,159 (73.14% of total CDSs) constituted the accessory
fractions, which were unique to each K. pneumoniae genome, respectively.
The K. pneumoniae strain (strain ID: 2500) has the lowest number of the unique genes
(1,522 CDSs) while the K. pneumoniae strain (strain ID: 2497) has the highest number of
unique genes (2,536 CDSs). A Venn diagram was plotted to show the core-genome and
pan-genome analysis for all the studied K. pneumoniae strains (Fig. 2A) while a
phylogenetics tree based on core-genome sequences were generated and visualized
(Fig. 2B). MLST was computationally performed based on whole genome sequences, which
were labelled on the exterior circle of the phylogenetic tree, indicating the phylogenetic
relationship between sequence types.

Zhang et al. (2023), PeerJ, DOI 10.7717/peerj.16161 8/21

http://dx.doi.org/10.7717/peerj.16161
https://peerj.com/


Table 1 Basic information of genome sequencing, assembly, and annotation data for the 16
K. pneumoniae strains.

Strain
ID

Contigs Bases CDS tRNA rRNA tmRNA GC content (%)

1476 202 5,429,699 5,004 83 11 1 57.66

2109 690 5,951,243 5,431 85 11 1 57.47

2130 179 5,634,669 5,255 84 10 1 57.09

2260 98 5,447,909 5,029 85 12 1 57.25

2369 149 5,690,453 5,379 82 12 1 57.01

2424 507 5,745,670 5,254 82 14 1 56.71

2443 245 5,501,232 5,083 84 12 1 57.25

2467 135 5,607,898 5,217 85 16 1 57.05

2468 150 5,534,833 5,100 79 11 1 57.27

2470 57 5,391,662 4,977 79 10 1 57.28

2478 201 5,962,258 5,505 85 12 1 56.67

2481 223 5,921,972 5,531 83 19 1 56.92

2497 222 6,227,838 5,900 89 12 1 56.70

2500 74 5,321,704 4,886 82 13 1 57.45

2501 105 5,364,821 5,021 83 13 1 57.38

2503 226 5,749,244 5,437 80 14 1 57.10

Figure 2 Core-genome and pan-genome analyses of K. pneumoniae strains with different STs. (A)
Venn diagram of shared and unique CDSs among 16 K. pneumoniae strains. (B) Phylogenetic tree
constructed via core genome analysis of 16 K. pneumoniae strains. Computational MLST typing results
were labelled in the exterior circle of the phylogenetic tree adjacent to each K. pneumoniae strain ID in the
interior circle, accordingly. Full-size DOI: 10.7717/peerj.16161/fig-2
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Analysis of average and deconvoluted SERS spectra
An average Raman spectrum was used to reflect the overall distribution trend of SERS
signal intensities for a single K. pneumoniae ST type. We calculated the average signal
intensities of specific ST type at each Raman shift to generate the average Raman spectrum
(Fig. 3A). The Raman signal standard error of each ST type was calculated to describe the
degree of reproducibility of the SERS signal. The narrower the error band, the better the
spectral reproducibility. Due to the high similarity of partial average spectra, such as ST268
and ST866, it is difficult to see the difference between the two spectra by naked eyes only.
Therefore, spectral deconvolution was conducted to fit each spectral characteristic peaks
(Fig. 3B). The distribution and intensity changes of spectral characteristic peaks were
comprehensively considered. It can be seen that the SERS spectral deconvolution curves of
ST268 and ST866 differ obviously in different Raman shift ranges. For example, in the
range of 800–900 cm−1 and 1,650–1,750 cm−1, ST268 has four difference deconvolution
peaks than ST866 (790 cm−1, 850 cm−1, 1,675 cm−1, and 1,695 cm−1). In addition, we
present the fitted spectral peaks in the form of dot matrix (Fig. 3C), and the metabolites
corresponding to the peaks of 16 K. pneumoniae ST types are sourced from literature and
summarized in Table S2.

Figure 3 Average and deconvoluted SERS spectra together with characteristic spectral speaks for each K. pneumoniae strain with a unique
sequence typing. (A) Average SERS spectra of 16 K. pneumoniae strains. (B) Deconvoluted SERS spectral bands. X-axis represents Raman shifts
in the range of 530–1,800 cm−1, while Y-axis represents the relative Raman intensity. (C) Dot matrix indicating the distribution of characteristic
peaks for SERS spectra of K. pneumoniae strains. Full-size DOI: 10.7717/peerj.16161/fig-3
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Clustering analysis of K. pneumoniae SERS spectra
To provide better insight into the SERS spectral analysis of K. pneumoniae strains with
different ST types, we firstly used the unsupervised machine learning algorithm PCA to
observe the natural clustering trends between different ST types. The results showed that
the clustering of SERS spectra for the same ST type was discrete with overlapping among
different ST types. In addition, the PCA method could not quantitatively evaluate the
clustering results. Therefore, we used the supervised learning algorithm OPLS-DA as an
alternative to analyze the SERS spectral of different ST types of K. pneumoniae strains. This
method was used to weaken the spectral fluctuation of the same ST classification and
maximize the difference among the 16 ST types. According the clustering result as shown
in Fig. 4, spectral sample points of different ST types were clustered into different clusters,
and the score of three performance evaluation indices were R2X (cum) = 1.00, R2Y
(cum) = 0.87 and Q2 (cum) = 0.87, indicating that the OPLS-DA algorithm could better
distinguish SERS spectral data of different ST types into separated groups. Through the
clustering analysis via OPLS-DA, it was also revealed that SERS spectra of K. pneumoniae
with different ST types were separable via computational methods, suggesting the intrinsic
spectral differences among these strains. However, clustering analysis cannot provide
prediction results. Therefore, when clustering new unknown SERS spectral data, the
clustering algorithm needs to re-calculate the distribution of each sample point, which
cannot quickly classify new samples.

Machine learning analysis of K. pneumoniae SERS spectra
Parameter optimization
Unlike clustering analysis that cannot provide specific labels for clustered samples,
supervised machine learning analysis is able to generate prediction results with specific

Figure 4 Clustering analysis of SERS spectra of K. pneumoniae strains with different STs through the
(A) PCA algorithm and the (B) OPLS-DA algorithm. The results were visualized in scatterplot. All the
K. pneumoniae strains were labelled with both unique Strain ID and sequencing typing.

Full-size DOI: 10.7717/peerj.16161/fig-4
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labels based on trained models (Cunningham, Cord & Delany, 2008). However, different
prediction results could be generated with different combinations of hyperparameters,
which emphasizes the importance of parameter optimization during modeling training
process (Lameski et al., 2015). In this study, the GridSearch function was used to obtain the
best combination of hyperparameters. According to the GridSearch gradient plots (Fig. 5),
the accuracy score of SVM in all parameter combinations is 1 (Fig. 5E), indicating that
SVM algorithm has excellent analytical ability in small samples of high dimensional data,
which is consistent with previous studies (Cheng et al., 2020). DT, RF and XGB algorithms
also show good analytical ability (Figs. 5B, 5D and 5F), all quickly reaching to an accuracy
score of more than 0.95 within a few parameter ranges, and remaining stable in the
majority of parameter combinations. As for the AdaBoost and QDA algorithms, neither of
the two algorithms scored above 0.8 for all parameter combinations, indicating that these
algorithms need more computing resources.

Comparison of supervised machine learning algorithms
In this study, we compared the performance of six supervised machine learning
algorithms, and explored their ability in identifying ST types by analyzing SERS signal data
from 16 K. pneumoniae. Seven machine learning evaluation metrics were used to evaluate
different models. Computational results were shown in Table 2, according to which the

Figure 5 Parameter optimization of six supervised machine learning algorithms used in this study. (A) AdaBoost. (B) Decision tree. (C)
Quadratic discriminant. (D) Random forest. (E) Support vector machine. (F) Extreme gradient boosting.

Full-size DOI: 10.7717/peerj.16161/fig-5
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SVM model achieves the best performance among all algorithms. All score indices for
SVM are 100%, and the training time of the model is relatively short (Times = 0.50 s),
indicating that the SVM model can accurately and efficiently identify different ST types.
RF, DT and XGB also achieved greater than 90% identification accuracy. The fitting time
of XGBmodel was 21.40 s, which consumed the highest amount of computational resource
among all algorithms. It is worth noting that the fitting time of the DT model is only 0.01 s,
and the identification accuracy was 96.53%, while the five-fold cross validation score was
94.84% with a slight overfitting of the model, which indicated that DT algorithm was a fast
identification method of K. pneumoniae ST types. In contract, the QDA and AdaBoost
algorithms did not achieve good results in the data of this study. The accuracy value of
AdaBoost was only 59.03%, and the five-fold CV score was 70.90%, indicating that the
model was underfitting and the parameter range should be further expanded.

Table 2 Performance comparison of six supervised machine learning algorithms on the prediction
of K. pneumoniae strains with distinct STs based on SERS spectral analysis.

Algorithm ACC Precision Recall F1 5-Fold CV AUC Time (s)

SVM 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0.50

RF 97.92% 97.92% 98.30% 97.88% 97.04% 98.08% 2.60

DT 96.53% 96.53% 96.16% 96.46% 94.98% 96.96% 0.01

XGB 93.75% 93.75% 94.16% 93.73% 94.30% 93.67% 21.40

QDA 76.39% 76.39% 76.96% 74.47% 76.81% 75.54% 0.09

AdaB 59.03% 59.03% 64.61% 52.56% 70.90% 59.00% 5.38

Figure 6 ROC curves for the six machine learning algorithms and the confusion matrix of SVM
algorithm when applied to the SERS spectra of K. pneumoniae strains with different STs. (A)
ROC curve. According to the comparison, SVM achieved the best performance with area under curve
(AUC) = 1.00 than all other algorithms. (B) Confusion matrix. The percentages in the confusion matrix
stand for the correctly classified (diagonal) or mis-classified (off-diagonal) spectra, respectively.

Full-size DOI: 10.7717/peerj.16161/fig-6
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ROC curves compare the sensitivity and specificity of supervised machine learning
methods across a range of values for their predictive capacities, while AUC means overall
accuracies in distinguishing data samples (Liu et al., 2023). As for confusion matrix, it is a
table summarizing classification results of a supervised machine learning algorithm based
on the true class and predicted class (Liu et al., 2022;Wang et al., 2022). In this study, both
ROC curves for all the prediction models and a confusion matrix for the optimal
prediction model SVM were present in Fig. 6. The x-axis represents specificity (false
positive rate, FPR) and the y-axis represents sensitivity (true positive rate, TPR) in ROC
curves. It could be seen that the AUC value of the SVM model is equal to 1.00, suggesting
that the SVM model had highest specificity and sensitivity during strain prediction
(Fig. 6A). As for the confusion matrix, it showed specific performance of the SVM model
on the test dataset, according to which, the identification accuracy of the SVM model for
K. pneumoniae STs was very high, indicating that the optimized SVM model could
accurately recognize K. pneumoniae STs with very low error rates based on SERS spectral
analysis.

DISCUSSION
K. pneumoniae is a common cause of nosocomial and community-acquired infections
(Dieckmann et al., 2016). Classification and prediction of K. pneumoniae strains is crucial
to determine the source and route of contamination. Currently, the classical bacterial
typing methods such as lysozyme typing and serotyping are gradually being replaced by
molecular biological methods (Dieckmann et al., 2016). The strategies of pulsed field gel
electrophoresis (PFGE) and multilocus sequence typing (MLST) are contributing to global
epidemiological and evolutionary studies (Gona et al., 2020). In particular, MLST is an
unambiguous procedure for effectively determining bacterial population structure and
genealogical assignment based on sequence data of standardized fragments of
housekeeping genes (Mammina et al., 2009). However, the procedure of data analysis in
large-scale studies requires high cost and time-consuming, limiting the use of MLST.
Therefore, novel methods which are amenable for achieving rapid and accurate
identification of K. pneumoniae typing need to be developed. In this study, based on the
MLST typing results, we used SERS spectra for verification and analyzed the fingerprints of
different ST types, which showed that the chemometric analysis method was able to
distinguish closely related K. pneumoniae strains with different ST types based on SERS
spectra.

Previous studies have shown that the SERS spectra of different bacteria contain all the
information of all molecules in the bacteria. For bacteria, different morphological or
physiological characteristics have different molecular basis (Lu et al., 2020). Therefore, it is
reasonable to assume that the average SERS spectra can be generated according to the
difference in the distribution of characteristic peaks of different bacterial spectra, and
bacteria of different species and genera can be easily and rapidly distinguished (Wang
et al., 2022). As a proof of concept, we collected the SERS spectra of 16 K. pneumoniae
strains with unique ST types and measured their SERS spectra. Reproducible SERS spectra
(N = 45) were collected for each ST to obtain enough spectra for covering the different
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morphological and physiological characteristics, simultaneously the average SERS spectra
of the different ST types were calculated to avoid the variability of any single spectrum
(Fig. 3A). However, the ST types of K. pneumoniaewere less related, which made it difficult
to distinguish the differences in average spectra between different ST types.

Considering the similarity between the average Raman spectra of multiple ST types,
Pezzotti et al. (2022) used the linear polynomial expression of the Gauss-Lorentzian
function to match the experimental spectra of the minimum scattering based on the
average Raman spectra to generate the deconvolution curve of a series of bacteria in the
experiment. The experimental results showed that although there were some
morphological similarities among seven Candida auris significant differences between the
deconvoluted spectra could be readily identified. Similarly, we fitted peaks to the SERS
spectrum via the Vogit linear function, which show significant vibrational differences
between the different K. pneumoniae ST types (Fig. 3B). For example, in the comparison
between two bacterial types ST268 and ST866, ST268 has two characteristic peaks at
800–900 cm−1, that is, 790 cm−1 (cytosine, uracil) (Witkowska et al., 2017) and 850 cm−1

(DNA/RNA) (Bandeliuk et al., 2022), respectively. while the two characteristic peaks in the
range of 1,650–1,750 cm−1 are 1,675 cm−1 (C=C and C=O stretching vibrations) (Pezzotti,
2021) and 1,695 cm−1 (-C=CA-stretching) (Heidari Torkabadi et al., 2014). The existence
of these four spectral deconvolution peaks could be exploited distinguishing ST268 from
ST866. Although this method is able to show the “phenotypic difference” among different
ST types, it is strongly influenced by the relative intensity of the characteristic peaks of the
SERS spectra, which makes it much less useful in practice. Therefore, machine learning
algorithms based on advanced statistical methods have been used for subsequent spectral
data analysis that greatly improves time efficiency and application potential.

As a supervised clustering analysis algorithm, OPLS-DA is widely applied in the task of
distinguishing SERS spectral data (Liu et al., 2023; Tang et al., 2022). Due to the high
dimensionality of SERS data, Cheng et al. (2022) found that different leukemia cells could
be identified by their intrinsic phenotypic Raman spectra identified via the analysis of
OPLS-DA algorithm. In order to show the differences between different K. pneumoniae ST
types and the internal relationship of the same ST type, we used the OPLS-DA algorithm to
perform cluster analysis on the spectral data of 16 K. pneumoniae ST types (Fig. 4), the
result showed that the spectral sample points of different ST types were clustered into
different clusters, and the model evaluation indices were R2X = 1.00, R2Y = 0.87, and
Q2 = 0.87, indicating that OPLS-DA had a strong ability to distinguish different ST types
of SERS spectra. In order to improve the application of machine learning methods in
different SERS spectra, and realize the “end-to-end” rapid classification and prediction of
spectral data, this study aims to build a spectral identification model suitable for different
ST types, and to achieve rapid diagnosis of bacterial typing.

In a clinical diagnostic study on multidrug-resistant K. pneumoniae, Lyu et al. (2023)
collected 121 strains of K. pneumoniae with different resistance profiles, which achieved a
predictive accuracy of 99.46% by utilizing convolutional neural network (CNN) combined
with attention mechanism. This study confirmed the accuracy and feasibility of SERS
spectroscopy for distinguishing K. pneumoniae with the assistance of machine learning
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algorithms. The high sensitivity of the SERS signal and the interference of factors such as
the coffee ring effect during sample preparation could lead to large differences between
Raman spectra of isotypes (Koya et al., 2019), which will further affect the performance of
the model. Therefore, in order to attain a classification model that exhibits similar high
accuracy and stable performance, the parameter search of the machine learning algorithm
is very important. The GridSearchCVmethod originated from scikit-learn library is able to
rapidly search for the optimal hyperparameters (Gao et al., 2022; Lei et al., 2022). In a
recent study performed by Wang et al. (2022) the GridSearchCV method was utilized to
optimize the parameters of three machine learning models when analyzing the SERS
spectral data of 30 bacteria strains from 9 different genera isolated from clinical samples.
In another study of Raman fingerprint of spoilage fungi, Guo et al. (2021) used a grid
search to optimize the hyperparameters of the model and showed the process with a grid
gradient and the optimized values. In this study, for the six different machine learning
algorithm models used in this study, we set the parameter range of each model separately,
and used the grid search gradient map (Fig. 5) to show the fitting process of each machine
learning model. From the model fitting results, it can be found that the SVM algorithm
(Fig. 5E) maintains 100% identification accuracy in all parameter combinations, indicating
that the SVM model can be well applied to the spectral data analysis of different ST types.
In contrast to previous studies, Ciloglu et al. (2022) employed a non-linear autoencoder
algorithm to extract spectral features when using the SVM algorithm to differentiate
colistin-resistant and susceptible strains of K. pneumoniae. Their autoencoder-SVMmodel
achieved an accuracy of 94%. However, in the course of this study, it was discovered that
the feature extraction process was unnecessary, as the SVM model alone yielded
satisfactory results. The best combination of parameters (Table S1) fitted to each model is
fed into the algorithm for model training, and the test set samples are used to test the real
application performance of each algorithm. Different evaluation metrics are often used to
measure the performance of machine learning (Ma et al., 2023; Tang et al., 2022). In this
study, we comprehensively considered the performance of different algorithms in all
indicators (Table 2), and found that the SVM algorithm scored 100% in all indicators, and
the model fitting time was relatively short. In sum, our results show that SVM is an
efficient and stable algorithm suitable for ST typing of K. pneumoniae, and has potential
application for rapid tracing of the spread and control of K. pneumoniae in hospitals and
communities.

CONCLUSIONS
K. pneumoniae is a major public health concern worldwide due to its high mortality rate in
clinical settings. Rapid and accurate identification and discrimination of different ST types
of K. pneumoniae is crucial for monitoring and controlling the spread of K. pneumoniae.
However, the complexity and high cost of traditional methods make efficient and cheap
bacterial typing methods urgently needed. This study explored the performance of SERS
technology, combining it with multiple advanced machine learning algorithms, for the
identification of 16 different ST-typed K. pneumoniae. Experimental results show that
Raman spectroscopy is sufficient to obtain high-quality bacterial SERS spectra in clinical
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laboratories, and that intrinsic differences between different ST typings are revealed by
averaging SERS spectra and spectral deconvolution. Through OPLS-DA analysis, it is
found that different types of bacterial spectral sample points can be automatically divided
into different clusters. Comparing the performance of different machine learning models,
the SVM algorithm can accurately classify and predict each type of K. pneumoniae, which
is consistent with the MLST results. In summary, this study confirms that SERS technology
combined with machine learning algorithm can accurately predict the ST types of different
K. pneumoniae, and has the potential for clinical application with low cost, high speed and
high accuracy, and lays the foundation for SERS technology in hospital and community
infection detection.
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