

Determining Minnesota bee species' distributions and phenologies with the help of participatory science

Colleen D. Satyshur^{Corresp. 1}, Elaine C. Evans^{2,3}, Britt M. Forsberg², Thea A. Evans¹, Robert B. Blair⁴

¹ Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States

² University of Minnesota Extension, University of Minnesota, St. Paul, Minnesota, United States

³ Department of Entomology, University of Minnesota, St. Paul, Minnesota, United States

⁴ Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, Minnesota, United States

Corresponding Author: Colleen D. Satyshur

Email address: csatyshu@umn.edu

The Minnesota Bee Atlas project contributed new information about bee distributions, phenologies, and community structure by mobilizing participatory science volunteers to document bees statewide. Volunteers submitted iNaturalist (© California Academy of Sciences 2016) photograph observations, monitored nest-traps for tunnel-nesting bees, and conducted roadside observational bumble bee surveys. By pairing research scientists and participatory science volunteers, we overcame geographic and temporal challenges to document the presence, phenologies, and abundances of species. Minnesota Bee Atlas project observations included new state records for *Megachile inimica*, *Megachile frugalis*, *Megachile sculpturalis*, *Osmia georgica*, *Stelis permaculata*, and *Bombus nevadensis*, nesting phenology for 17 species, a new documentation of bivoltinism for *Megachile relativa* in Minnesota, and over 500 observations of the endangered species *Bombus affinis*. We also expanded known ranges for 16 bee species compared with specimens available from the University of Minnesota (UMN) Insect Collection. Surveys with standardized effort across the state found ecological province associations for six tunnel-nesting species and lower bumble bee abundance in the Prairie Parkland ecological province than the Laurentian Mixed Forest or Eastern Broadleaf Forest ecological provinces, indicating potential benefit of a focus on bumble bee habitat management in the Prairie Parkland. Landcover analysis found associations for four tunnel-nesting species, as well as a possible association of *B. affinis* with developed areas. These data can inform management decisions affecting pollinator conservation and recovery of endangered species. By engaging over 2500 volunteers, we also promoted conservation action for pollinators through our educational programs and interactions.

1 Determining Minnesota bee species' distributions and 2 phenologies with the help of participatory science

3

4

5 Colleen D. Satyshur¹, Elaine C. Evans^{2,3}, Britt M. Forsberg³, Thea A. Evans¹, Robert B. Blair⁴

6

7 ¹ Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA

8 ² Department of Entomology, University of Minnesota, St. Paul, MN, USA

9 ³ University of Minnesota Extension, University of Minnesota, St. Paul, MN, USA

10 ⁴ Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul,
11 MN, USA

12

13 Corresponding Author:

14 Colleen Satyshur¹

15 100 Ecology Building, 1987 Upper Buford Circle, St. Paul, MN, 55108, USA

16 Email address: csatyshu@umn.edu

17

18 Abstract

19 The Minnesota Bee Atlas project contributed new information about bee distributions,
20 phenologies, and community structure by mobilizing participatory science volunteers to
21 document bees statewide. Volunteers submitted iNaturalist (© California Academy of Sciences
22 2016) photograph observations, monitored nest-traps for tunnel-nesting bees, and conducted
23 roadside observational bumble bee surveys. By pairing research scientists and participatory
24 science volunteers, we overcame geographic and temporal challenges to document the presence,
25 phenologies, and abundances of species. Minnesota Bee Atlas project observations included new
26 state records for *Megachile inimica*, *Megachile frugalis*, *Megachile sculpturalis*, *Osmia georgica*,
27 *Stelis permaculata*, and *Bombus nevadensis*, nesting phenology for 17 species, documentation of
28 bivoltinism for *Megachile relativa* in Minnesota, and over 500 observations of the endangered
29 species *Bombus affinis*. We also expanded known ranges for 16 bee species compared with
30 specimens available from the University of Minnesota (UMN) Insect Collection. Surveys with
31 standardized effort across the state found ecological province associations for six tunnel-nesting
32 species and lower bumble bee abundance in the Prairie Parkland ecological province than the
33 Laurentian Mixed Forest or Eastern Broadleaf Forest ecological provinces, indicating potential
34 benefit of a focus on bumble bee habitat management in the Prairie Parkland. Landcover analysis
35 found associations for four tunnel-nesting species, as well as a possible association of *B. affinis*
36 with developed areas. These data can inform management decisions affecting pollinator
37 conservation and recovery of endangered species. By engaging over 2500 volunteers, we also
38 promoted conservation action for pollinators through our educational programs and interactions.

39

40 Introduction

41 While bees are widely recognized for their important role in food security and the maintenance
42 of ecological integrity (Klein et al., 2007; Ollerton, Winfree & Tarrant, 2011), the monitoring
43 and baseline information necessary for regional bee conservation is often missing (Cardoso et al.,
44 2011; Lebuhn et al., 2013). Without such data on species distributions, habitat associations, and
45 phenology, it is difficult to understand if or how bee communities are changing or how to enact
46 conservation practices. Knowing species distributions and estimates of abundance can help
47 prioritize management and conservation efforts (Cardoso et al., 2011). For example, species with

48 small geographic distributions are at higher risk of extinction (Gaston & Fuller, 2009). Habitat
49 associations are also important because bees are often closely tied to plant communities (Potts et
50 al., 2003; Sheffield & Heron, 2019) and habitat needs such as nest sites (Potts et al., 2003;
51 Harmon-Threatt, 2020). In addition, establishing phenology baselines is important to
52 understanding the ecological role of bee species and how climate change impacts ecosystems
53 now and in the future (Burkle, Marlin & Knight, 2013; Ogilvie & Forrest, 2017).

54

55 The importance of baseline information has led to calls for developing national survey and
56 monitoring programs to support state-based pollinator conservation plans (Woodard et al., 2020).
57 While recent efforts list over 500 bee species in Minnesota (Portman et al., in press), the
58 distribution, population, and life history traits such as nesting phenology, often remain unknown.
59 There are four distinct ecological provinces in the state: Prairie Parklands (PP), Tallgrass Aspen
60 Parklands (TAP), Eastern Broadleaf Forest (EBF), and Laurentian Mixed Forest (LMF). The
61 effort and funds required to survey these ecologically different areas of the state for insect
62 pollinators is a challenge. Additionally, commonly used methods for studying insects require
63 extensive specimen collection and taxonomic expertise for species-level identification for most
64 groups, which can also be expensive (Woodard et al., 2020).

65

66 Inviting the public to participate in scientific research can help overcome geographic and
67 temporal challenges of bee monitoring. Here use the term participatory science (sometimes
68 called citizen science or community science) to indicate volunteer participants who are not
69 monetarily compensated. Participatory science contributions can provide complementary and
70 widespread records across locations and time, contributing observations earlier in the season and
71 of a significantly broader distribution than professional datasets alone (van der Wal et al., 2015;
72 Soroye, Ahmed & Kerr, 2018; Dubaić et al., 2022). Structured participatory science projects in
73 North America and Europe have also produced data of sufficient quality to be used in
74 monitoring, conservation, and management (Kremen, Ullman & Thorp, 2011; Appenfeller, Lloyd
75 & Szendrei, 2020; Koffler et al., 2021), documented natural history traits such as nesting and
76 seasonality (Lye et al., 2012; Maher, Manco & Ings, 2019; Olsen et al., 2020) and increased
77 conservation action (Ganzevoort & van den Born, 2021; Griffin et al., 2021).

78

79 In this study, we leveraged the power of participatory science to investigate bee distribution,
80 nesting phenology, and community structure across the state of Minnesota in the U.S. We
81 engaged volunteers in three tiers of sampling rigor: 1) casual observations of all bee species using
82 the mobile app and website iNaturalist.org (© California Academy of Sciences 2016), 2) nest-
83 trap surveys of tunnel-nesting bees, and 3) observational bumble bee surveys. The three tiers of
84 sampling rigor represent increasing levels of volunteer training and commitment and yielded
85 different data types. The iNaturalist observations required minimal training and flexible volunteer
86 time commitment. While not appropriate for all bee species, the use of crowd-sourced
87 identifications efficiently provided presence data for bee species amenable to identification from
88 photographs, particularly bumble bees. The nest-trap surveys required more training and a
89 season-long commitment from volunteers. They provided distribution, ecological association,
90 nesting phenology, and nesting biology data for a subset of bees that are often not well
91 represented in other survey methods (Westphal et al., 2008; Staab et al., 2018). Volunteers who
92 worked on bumble bee surveys had in-depth training on bumble bee identification and sampling
93 methods and committed to a more time-intensive sampling protocol. Bumble bee surveys used
94 equal sampling effort across observations to provide abundance and distribution data, as well as
95 indication of habitat associations. Together, these data will inform statewide pollinator

96 conservation plans and contribute to baseline assessments for evaluating the status of pollinators
97 in Minnesota in the future.

98

99 Materials & Methods

100 The Minnesota Bee Atlas participatory science project operated between 2016–2020. We
101 recruited volunteers statewide (Fig. 1) by advertising to local volunteer groups and conservation
102 organizations, on social media, and through University of Minnesota web pages. Volunteers had
103 various affiliations including the Minnesota Master Naturalist program, Minnesota Department of
104 Natural Resources Scientific and Natural Area stewards, Environmental Learning Centers, nature
105 centers, county natural resource departments, Soil and Water Conservation Districts, native plant
106 nurseries, and federal agencies including the U.S. Forest Service and the U.S. Fish and Wildlife
107 Service. Approximately 150 volunteers participated in the two structured sampling tiers each
108 field season, and as of March 2021, 2300 volunteers submitted observations to iNaturalist.

109

110 iNaturalist

111 The broadest and simplest level of participation relied on the mobile app and website iNaturalist.
112 This global public biodiversity portal enables individuals to upload locations and evidence of
113 living things, including photos or recordings, which are then identified by the observer, other
114 users, or an algorithmic suggestion based on existing research-grade observations. Each
115 identification is qualified based on a data validation system and considered research-grade if an
116 observation is not of a captive or cultivated species, has a date, photo and location, and two-thirds
117 of users agree on genus and species-level identification. This is not foolproof, as there are no
118 required credentials to add identification, but the quality of identification typically grows over
119 time as additional users join the platform and as additional experts in bee identification
120 participate. We examined a subset of research-grade observations from genera that are difficult to
121 identify to species (i.e., *Andrena*, *LasioGLOSSUM*, *Nomada*). These records were verified by
122 reliable bee taxonomists, including John Ascher, Jason Gibbs, and Zach Portman. Once
123 identifications reach research-grade, records feed into databases such as GBIF (www.gbif.org).
124 We trained participants who attended workshops to add bee observations to iNaturalist and to
125 identify bees to groups, usually family.

126

127 Tunnel-nesting bees

128 Tunnel-nesting bees nest in above-ground tunnels in wood or plant stems. Each female builds her
129 own nest then plugs the tunnel entrance when the nest is completed, leaving the young to
130 develop on their own. Different species use different materials for nest plugs. Many species will
131 also nest in artificial nest-traps which can be used to survey species. In this study, participants
132 hung and monitored wood nest-traps in semi-natural habitats on private or public lands from
133 April to October. Nest-trap design and nest plug descriptions were adapted from The Bees'
134 Needs (Rose, Scott & Bowers, 2015, V. Scott, personal communication, Feb. 2016). We drilled
135 five tunnels of six different diameters (3.18 mm, 4.76 mm, 6.35 mm, 7.94 mm, 9.53 mm, and
136 11.11 mm) into blocks of untreated pine or Douglas fir with a cedar shingle roof (Appendix 1).
137 We use the term “nest” to mean a tunnel that produced a particular bee species. Different species
138 sometimes build sequential nests in the same tunnel. Occasionally, different individuals from the
139 same species may nest within the same tunnel, but for this study we assumed individuals of the
140 same species within a tunnel were from the same mother.

141

142 With the goal of surveying the whole state, we actively recruited volunteers to hang nest-traps in
143 rural areas and in areas with less existing data. Volunteers attended in-person or online training

144 and received a written instruction manual with photographs of different plug materials. They
145 placed nest-traps in a semi-sunny location facing east or south at a height of 1 to 2 m, with the
146 flexibility to find a mounting site that fit their habitat. Volunteers reported plugged tunnels or
147 other nest evidence every 2-3 weeks via the project web page. Bee Atlas staff provided feedback
148 on observations via email and newsletters. In 2016, 2017 and 2018, we sent out 120, 129, and
149 141 nest-traps respectively and 116, 127, and 140 were returned, respectively, for a return rate of
150 98%. Nest-traps were distributed across 60 of the 87 Minnesota counties and all four ecological
151 provinces, including 69 in the LMF, 224 in the EBF, 87 in the PP, and two in the TAP ecological
152 provinces (Fig. 1). The Minnesota Department of Natural Resources approved research permit
153 numbers 2016-29, 2016- 4R, 201705, 2017-9R, 201822, and 2018-15R for nest-traps placed in
154 State Parks, State Forests, Scientific and Natural Areas and Wildlife Management Areas.
155

156 We received one homemade nest-trap bundle made from *Phragmites* stems from one volunteer in
157 Brown County each year between 2016 and 2018. In 2019, the final year, we sent 11 additional
158 nest bundles made with hollow or pithy plant stems to selected volunteers to observe nesting with
159 different natural substrates. We made each bundle from stems of one of six native plant species;
160 *Asclepias incarnata*, *Silphium perfoliatum*, *Arnoglossum atriplicifolium*, *Helianthus giganteus*,
161 *Vernonia fasciculata*, or *Liatris ligulistylis*, and placed bundles inside a plastic sleeve with an
162 overhanging roof made from a 32 oz beverage bottle. We sealed the backs of the stems with
163 cotton balls and latex. The number of stems per bundle varied due to the size differences between
164 stems. Monitoring protocols were like those used for wood nest-traps.
165

166 In the late fall, volunteers returned nest-traps and stem bundles to the University of Minnesota for
167 overwintering and rearing in a temperature-controlled growth chamber as described in Satyshur
168 et al. (2021). After a four-month period at 5°C, we stimulated emergence by increasing the
169 temperature in steps to a high of 30°C. We covered each nest tunnel entrance with test tubes and
170 removed emerging insects daily. Some bees appeared to have already emerged by fall 2016, so in
171 2017 and 2018, we swapped out a few nest-traps with similar plugs in mid-summer and reared
172 them in the lab at ambient temperature. We (CS, TE) identified bees to species using keys and
173 comparisons with previously identified specimens (Sandhouse, 1939; Mitchell, 1962; Sheffield et
174 al., 2011; Arduser, 2018; Andrus, Droege & Griswold, 2020a,b,c; Griswold et al., 2020; Nelson
175 & Droege, 2020a,b; Orr et al., 2020). Jason Gibbs, Michael Orr, Ryan Oram, and Sam Droege
176 confirmed identification of more difficult specimens. We identified wasps using keys (Gibson,
177 Huber & Woolley, 1997; Triplehorn, 2005; Heraty, 2008). John Lumen identified all
178 Ichneumonidae and provided consultation on Chalcidoidea. *Kocourekia cf. debilis* was identified
179 to species using Cao et al. (2017) and verified by Jorge González and Mike Gates. We deposited
180 voucher specimens in the UMN Insect Collection. We included locations of specimens in the
181 UMN Insect Collection database when mapping species distributions. Many UMN Insect
182 Collection specimens did not have latitude or longitude associated with their records. In such
183 cases, we used the location description to estimate the most accurate position possible. We chose
184 the approximate center of geographic areas such as cities and state parks. If only county location
185 was available, we placed the specimen in the county center and identified the records as such.
186

187 We examined nesting phenology using volunteer-submitted nest plug observations. For each nest
188 tunnel that produced bee offspring, project staff evaluated observations and assigned a quality
189 value based on clarity and frequency of observations. Nest tunnels with high or medium quality
190 values were used in phenological estimations, with 65.1% of observations meeting those criteria.
191 Because volunteers checked every two to three weeks, we could determine that nest completion
192 occurred in the interval between the last date that the volunteer recorded an empty tunnel and the

193 first date with a complete nest plug. We assumed nests were equally likely to be completed on
194 any particular day in an interval and assigned each day an equal probability. We summed these
195 probabilities over all nests with sufficient quality observations and determined the median date.
196 We also calculated the 0.25 and 0.75 quartile values, which bound a central period when nests
197 were most likely completed.
198

199 **Bumble bees**

200 We trained volunteers in survey methods and skills to distinguish bumble bees from other insects,
201 determine sex, identify readily distinguishable bumble bee species, and photograph bumble bees
202 to enable identification. Based on regional collections, we estimated that 90% of observations
203 would be readily distinguishable species (*Bombus impatiens* Cresson, 1863, *Bombus bimaculatus*
204 Cresson, 1863, *Bombus griseocollis* (De Geer, 1773), or *Bombus ternarius* Say, 1837). We
205 adapted survey methods from previous state-wide bumble bee surveys that used lethal collection
206 methods (Golick & Ellis, 2006; McFarland, Richardson & Zahendra, 2015; Richardson et al.,
207 2019). Due to volunteer preferences and the presence of federally protected *Bombus affinis*
208 Cresson, 1863, we used observational data instead of specimen collections. Forty-four volunteers
209 observed bees at five stops along 39.5-kilometer routes between 10 a.m. and 6 p.m. on days with
210 little or no precipitation, temperatures greater than 15.6 C, and wind speeds less than 32.2 kph.
211 We requested volunteers survey along their route three times each year, between late June and
212 mid-August with at least two weeks between visits. Volunteers surveyed 45 of 90 available routes
213 between 2016 and 2020, with 37 routes with three completed route runs per year, and 17 routes
214 surveyed for three or more years (Fig. 1, Table 1). Routes were based on established North
215 American Breeding Bird Survey routes (USGS Patuxent Wildlife Research Center, 2017)
216 because of their accessibility and systematic spread across different ecological areas. For
217 analysis, we combined the single route from the TAP ecological province with routes from the PP
218 ecological province due to the low sample size in this province and ecological similarity.
219 Volunteers chose five stops along a route by finding flower patches with bee activity located at
220 least 1.61km (1 mile) from each other. On average, survey stops were 5.23 kilometers apart from
221 each other. Volunteers examined flower patches within 150 meters of the survey stop, collecting
222 bumble bees from flowers into jars for ten minutes of collecting time, noting the flower's identity.
223 Volunteers placed bees in coolers with ice to avoid risk of bees overheating and to ease
224 photography. Volunteers counted and released readily identifiable individuals and photographed
225 a subset of bees including all bees that were not readily identifiable and all individuals of
226 conservation concern (*B. affinis*, *Bombus terricola* Cresson, 1863, *Bombus pensylvanicus* (De
227 Geer, 1773) and all subgenus Psithyrus other than *Bombus citrinus* (Smith, 1854)) as listed by the
228 International Union for the Conservation of Nature (Hatfield et al., 2015). Volunteers submitted
229 data through the Bee Atlas website. We (EE) verified identifications for all photo-specimens.
230 Most specimens (89%) were identified by volunteers, with 10% of specimens verified with
231 photographs, and 1% unverifiable. Two species, *Bombus vagans* Smith, 1854 and *Bombus*
232 *sandersoni* Franklin, 1913, were grouped because most observations did not include identifying
233 features that enabled species verification.
234

235 **Statistical analysis**

236 We used R (R Core Team, 2022) and Rstudio (Rstudio Team, 2022) for all statistical analyses.
237 We examined differences among ecological provinces for tunnel-nesting bees and bumble bees
238 using generalized linear mixed-effect models in the glmmTMB R package (Brooks et al., 2017)
239 with post-hoc comparisons of estimated marginal means using the R package emmeans (Lenth et
240 al., 2023). We checked all model residuals for overdispersion and heteroscedasticity. We
241 compared overall frequency of tunnel use by nesting bees across the LMF, EBF, and PP with a

negative-binomial model to account for the high numbers of zeros in the data. We did not include the TAP since there were only two nest-traps in that province. We also used negative binomial to model annual nest counts per nest-trap per species by ecological province, with year and location as random effects. The location variable grouped nest-traps that were within one kilometer of one another. We selected the following nest-building species for this analysis based on presence in 30 or more nest-traps (10% or more of all nest-traps): *Heriades carinata* Cresson, 1864, *Megachile campanulae* (Robertson, 1903), *Megachile pugnata* Say, 1837, *Megachile relativa* Cresson, 1878, *Megachile rotundata* (Fabricius, 1787), *Osmia lignaria* Say, 1837, *Osmia pumila* Cresson, 1864, and *Osmia tersula* Cockerell, 1912. We did not include parasitic species in this analysis due to their correlation with their host species. *Megachile campanulae* and *O. pumila* were not recorded by nest-traps in the LMF and were analyzed for PP and EBF only. We created models for bumble bees with log-transformed abundance of bumble bees per route per year as the response variable and ecological province as the predictor with year and route as random effects. After preliminary analysis, we removed year as a random effect due to singularity. We limited data to include only routes to those with three completed route runs (a set of five 10-minute observations) survey dates within a year, which equaled 150 minutes of survey time, to ensure equal sampling across routes. We included all observations of bumble bees.

We summarized land cover in areas surrounding nest-traps and bumble bee routes using the 2016 National Land Cover Database (NLCD) (Dewitz, 2019). We verified land-cover categories by examining aerial photographs. Land use surrounding one nest-trap that was near the border with Canada was supplemented with visual assessment from satellite photos because NLCD data was only available for half of the buffer area surrounding the nest-trap site. For tunnel-nesting bees, we examined land cover within a radius of 250 m of nest-traps (Gathmann & Tscharntke, 2002; Steffan-Dewenter et al., 2002). For bumble bees, we examined land cover within a 2 km radius of the center of bumble bee routes (Hagen, Wikelski & Kissling, 2011; Rao & Strange, 2012). We simplified NLCD land-cover classes to groupings that we consider to be biologically relevant to bee distribution (Holzschuh, Steffan-Dewenter & Tscharntke, 2010; Westerfelt, Weslien & Widenfalk, 2018; Lanterman et al., 2019). We combined deciduous, mixed, and evergreen forest into the forested category, all developed categories into one developed category, grasslands/herbaceous and pasture/hay into the grasslands category, and woody wetlands and emergent herbaceous wetlands into the wetlands category. Crops, open water, and barren were not combined with any other categories. Land use surrounding nest-traps consisted of 28% forested, 20% grasslands, 18% developed, 12% crops, 14% wetlands, 6% open water, and 0.3% barren. Land use surrounding bumble bee routes consisted of 74% crops, 8% wetlands, 7% forested, 7% developed, 3% open water, 1% grassland, and 0.01% barren.

We examined the relationship of bees to land cover categories using redundancy analysis (RDA) with presence-absence for tunnel-nesting bees and constrained correspondence analysis (CCA) with abundance for bumble bees using the vegan R package (Oksanen et al., 2020). For the RDA, we used forward selection using permutation tests with 1,000 permutations to select the final model. We removed the land uses crops, wetlands, open water, and barren from the final model due to lack of significance. For the CCA, we removed the variable wetlands due to multicollinearity (variance inflation factor >20), and the variables open water and barren due to poor correlation (intra-set correlations with axes 1,2, or 3 <0.4), and species accounting for less than 5% of the inertia for CCA 1 and 2 (*Bombus borealis* Kirby, 1837, *B. citrinus*, *Bombus insularis* (Smith, 1861), *Bombus rufocinctus* Cresson, 1863, and *B. vagans* group). Significance of the overall CCA and ordination axes was determined with a Monte Carlo permutation test with 999 randomizations.

291

292 **Results**293 **iNaturalist**

294 People will continue contributing observations to iNaturalist indefinitely, but as of 9 March 2021,
295 the Minnesota Bee Atlas project included 18,956 records of bees from 2300 observers. Of these
296 observations, 65.3% (12,384) were research-grade, slightly higher than the 60.8% rate of
297 research-grade observations for bees worldwide in the same period (Appendix 2). Research-grade
298 observations contained 33 genera (7 taken to subgenera) and 128 species. Of the top ten most
299 common species identified to research-grade, nine were bumble bees (*Bombus*), and the tenth was
300 the western honey bee (*Apis mellifera* Linnaeus 1758). Bumble bees and honey bees combined
301 made up about 85% of the research-grade records. Other commonly recorded species included:
302 *Agapostemon virescens* (Fabricius, 1775) (192 records), *Melissodes bimaculatus* (Lepeletier,
303 1825) (165), *Halictus ligatus* Say, 1837 (123), and *Megachile latimanus* Say, 1823 (118). Some
304 bees were notably absent in iNaturalist, particularly those in the family Halictidae (19 species
305 were represented in iNaturalist of the 134 species known to be in Minnesota) (Portman et al.
306 2023).

307

308 The iNaturalist data includes research grade records from 79 of the 87 counties in Minnesota
309 (Fig. 1). *Bombus affinis*, the federally endangered rusty patched bumble bee, was frequently
310 identified in iNaturalist data (over 500 observations). Public participants also documented
311 declining bumble bee species (*B. terricola* and *B. pensylvanicus*), an introduced species
312 (*Megachile sculpturalis* Smith, 1853), a newly documented-Minnesota species (*Bombus*
313 *nevadensis* Cresson, 1874) (Portman & Dolan, 2022), and a rarely recorded species (*Bombus*
314 *frigidus* Smith, 1854).

315

316 **Tunnel-nesting bees**

317 From the 383 nest-traps in this study, we reared a total of 18,382 specimens, which emerged from
318 1821 nest tunnels. Specimens included 3488 solitary nest-building wasps, 1387 parasitic wasps,
319 and 7123 bees from 32 species (Table 2, Appendix 3). Five bee species were cleptoparasitic,
320 species that lay eggs in a host bee's nest. Less than one percent of bee-occupied nest tunnels were
321 of introduced species. The bee species that occupied the greatest number of nest tunnels were *O.*
322 *lignaria* (484), *Heriades carinata* (375), *O. pumila* (173), *Megachile pugnata* (151), *Megachile*
323 *relativa* (132), and *Megachile campanulae* (128). The Minnesota Bee Atlas project also
324 documented rarely collected species, including *Megachile lapponica* Thomson, 1872 and
325 *Hylaeus nelumbonis* (Robertson, 1890), and four species, *Megachile inimica* Cresson, 1872,
326 *Megachile frugalis* Cresson, 1872, *Osmia georgica* Cresson, 1878 and *Stelis permaculata*
327 Cockerell, 1898, that were new records for the state (Satyshur et al., 2021, 2022). The Minnesota
328 Bee Atlas specimens added six additional species to the UMN Insect Collection, Minnesota's
329 statewide repository.

330

331 The 14 stem bundles produced a total of 382 specimens, including 31 solitary nest-building
332 wasps, 10 parasitic wasps, and 336 bees. There were 13 species of bees, including one
333 cleptoparasitic species. The bundles of *Phragmites* stems sent by the volunteer in Brown County
334 contained nests of *Heriades carinata*, *Megachile campanulae*, *Megachile brevis* Say, 1837,
335 *Megachile rotundata*, *Megachile mendica* Cresson, 1878 and *Stelis coarctatus* Crawford, 1916.
336 Of the bundles sent out in 2019, *Hylaeus mesillae* (Cockerell, 1896) emerged from a bundle of
337 *Liatris ligulistylis* stems in Hennepin County. A bundle of *Asclepias incarnata* stems in St. Louis
338 County produced *Heriades carinata*, *Hoplitis albifrons* (Kirby, 1837), *Hylaeus verticalis*

339 (Cresson, 1869), *Megachile pugnata*, *Megachile relativa*, and *O. tersula*. Two nest-building bee
340 species were only found in bundles: *Megachile brevis* and *Hoplitis albifrons*.

341

342 We displayed species distributions by mapping nest frequency across ecological provinces (Fig.
343 2, Fig. 3, Table 2). Comparison of nest frequency by province showed that total nest-building bee
344 tunnel use per trap was similar across the LMF, EBF, and PP ($X^2 = 2.27$, df = 2, $p = 0.3216$) with
345 a mean \pm SE of 4.9 ± 1.5 in the LMF, 4.2 ± 1.2 in the EBF, 3.6 ± 1.4 in the PP (Table 3). *Osmia*
346 *tersula* and *Megachile relativa* nests were significantly more frequent in the LMF than in the
347 EBF or PP (Table 3). *Osmia lignaria* nested significantly more frequently in the LMF and EBF
348 than in the PP. *Osmia pumila* nested significantly more frequently in the EBF than the PP and
349 was absent from the LMF. *Heriades carinata*, *Megachile campanulae*, and *Megachile*
350 *pugnata* nested significantly more frequently in the PP and EBF than the LMF. Nests
351 of *Megachile inermis* Provancher, 1888, *Hylaeus annulatus* (Linnaeus, 1758) and *Hylaeus*
352 *verticalis* were infrequent (present in less than 10% of nest-traps) but primarily occurred in the
353 LMF. *Megachile rotundata*, *Megachile mendica*, *Hylaeus leptocephalus* (Morawitz,
354 1871), and *Hylaeus mesillae* nests were infrequent, but were primarily found in the southern half
355 of the state across both the PP and EBF. *Megachile centuncularis* (Linnaeus, 1758) and *Heriades*
356 *variolosa* (Cresson, 1872) were also infrequent but found mostly in the PP. The TAP had very
357 few nest-traps, with only one or two nests for the species that were found there (*O. lignaria*, *O.*
358 *tersula*, *Megachile relativa*, *Megachile pugnata*, and *Heriades carinata*). The distributions of the
359 cleptoparasitic bees *Coelioxys moesta* Cresson, 1864, *Coelioxys alternata* Say, 1837, *Coelioxys*
360 *modesta* Smith, 1854 and *S. coarctatus* tracked, to a smaller extent, those of their hosts,
361 *Megachile relativa*, *Megachile pugnata*, *Megachile campanulae*, and *Heriades carinata*,
362 respectively.

363

364 Tunnel-nesting bee abundance and land use were significantly correlated for the first two RDA
365 axes according to the permutation test. Axes RDA1 (eigenvalue=0.05, $F=14.69$, $p<0.001$)
366 and RDA2 (eigenvalue=0.02, $F=4.99$, $p<0.001$) of the redundancy analysis explained a
367 cumulative 97% of the variation (Fig. 4). RDA1 primarily distinguished between grasslands and
368 forest covers and RDA2 primarily distinguished between developed and grasslands (Table 4).
369 *Heriades carinata* and *Megachile pugnata* were associated with grassland land cover (Fig. 4).
370 *Megachile campanulae* was associated with developed land cover. *Osmia lignaria* was associated
371 with forested land cover.

372

373 Nest phenology data from 1041 bee tunnels representing 17 species was of sufficient quality
374 to include in a summary (Fig. 5). *Osmia* completed nests earliest, with *O. lignaria* in May,
375 followed by *O. pumila* and then *O. tersula* near the end of June. *Osmia georgica* had only one
376 nest, which was completed between the middle of May and the end of June. *Megachile* nests
377 were primarily completed between 15 June and 15 August, with most *Megachile campanulae*,
378 *Megachile pugnata*, and *Megachile relativa* completing nests near mid-July, most *Megachile*
379 *inermis* and *Megachile rotundata* completing nests in late July, and most *Megachile mendica*
380 completing nests near mid-August. We reared *Megachile relativa* from nest-traps that were
381 brought into the lab during mid-summer, showing this species can have two generations per year
382 in Minnesota and may have two nesting phenology peaks. *Megachile centuncularis* and
383 *Megachile frugalis* are represented by only one nest each in late July to August. For *Megachile*
384 *inimica* and *Megachile lapponica*, we have a last empty date but no full plug date, which only
385 indicates nests were completed after about July 7 and 18 respectively. *Heriades* species primarily
386 completed nests between 23 June and 15 August, with *Heriades carinata* slightly earlier than
387 *Heriades variolosa* and *Heriades leavitti* Crawford, 1913.

388

389 **Bumble bees**

390 Volunteers recorded 9186 individuals belonging to 17 bumble bee species during 1330 10-minute
391 observations at survey stops. Volunteers observed zero bumble bees at 220 out of 1330 survey
392 stops. Volunteers observed no bees across all five survey stops along a route for 10 route runs,
393 representing seven different routes. Several species of conservation concern were documented,
394 including 17 *B. affinis* along four routes, 103 *B. terricola* along 14 routes, and 22 *B.*
395 *pensylvanicus* along 11 routes (Table 5). Patterns of abundance from survey routes added
396 information on regional prevalence of bumble bee species in comparison to historic and
397 biodiversity portal records that did not include survey effort (Fig. 6, Fig. 7). For example, while
398 *B. rufocinctus* was present in records from all four ecoregions, surveys showed that *B.*
399 *rufocinctus* was most abundant in the EBF. The composition and total bumble bee abundance
400 varied among ecological provinces (Table 5). The most common bumble bees in the EBF were *B.*
401 *impatiens* (1,781), *B. bimaculatus* (1,109), *B. vagans* group (756), and *B. griseocollis* (733). The
402 most common bumble bees in the PP were *B. griseocollis* (102), *B. bimaculatus* (77), and *B.*
403 *impatiens* (55). *Bombus ternarius* (1466) and *B. vagans* (1116) group were the most common
404 bumble bees in the LMF. Total bumble bee abundance within a route in a year differed among
405 ecological provinces ($X^2=11.65$, $df=2,78$, $p< 0.01$) with bee abundance per route lower in the PP
406 than the EBF or the LMF (Fig. 8, Table 6).

407

408 Bumble bee species abundance and land use were significantly correlated for the first three
409 canonical axes according to the Monte Carlo permutation test. Bumble bee species Axes CCA1
410 (eigenvalue=0.56, $F=49.60$, $p<0.001$) and CCA2 (eigenvalue=0.10, $F=8.92$, $p<0.001$) of the
411 correspondence analysis explained a cumulative 90% of the variation (Fig. 4). CCA1 primarily
412 distinguished between crops and forest covers and CCA2 primarily distinguished between
413 developed and forest covers (Table 4). Habitat associations for species with lower abundances
414 may be due to chance (Legendre & Legendre, 2012), leading to caution interpreting habitat
415 associations for these species due to their low abundances: *B. affinis* (17), *B. insularis* (2), *B.*
416 *pensylvanicus* (22), and *Bombus flavidus* Eversmann, 1852 (36). *Bombus fervidus*, *B.*
417 *griseocollis*, and *B. bimaculatus* were associated with crop and grassland land covers (Fig. 4).
418 *Bombus pensylvanicus* was possibly associated with developed and crop land covers. *Bombus*
419 *vagans* group, *Bombus perplexus* Cresson, 1863, *B. ternarius*, and *B. terricola* were associated
420 with forest land cover. *Bombus impatiens*, *Bombus auricomus* (Robertson, 1903), and possibly *B.*
421 *affinis* were associated with developed land cover.

422

423 **Discussion**

424 The Minnesota Bee Atlas project was made possible by the contributions of over 2500 volunteers
425 across three sampling protocols who recorded 30%, or 151, of the approximately 500 bee species
426 known in Minnesota (Portman et al., in press). Each sampling protocol contributed different and
427 complementary data, indicating that multiple sampling levels would be useful in future bee
428 monitoring projects. Through iNaturalist, volunteers reported new locations for *B. affinis*, as well
429 as recording several other rare bumble bees and the first state record of an adventive species.
430 Nest-traps in this project produced baseline range data for 31 species including four new state
431 records and expanded the known range for 16 of those species. We also found ecological
432 province associations for six tunnel-nesting species and landcover associations for four species.
433 Volunteer-collected data provided relative nesting seasonality of bee species and indicated some
434 species with multiple generations per year. Bumble bee surveys examined abundances across
435 ecological provinces, indicating potential benefit of a regional focus on bumble bee habitat

436 management, as well as possible habitat associations for species of conservation concern. The
437 ecological associations and patterns of abundance discovered by the Minnesota Bee Atlas can
438 inform management decisions to improve pollinator conservation actions and recovery of
439 endangered species.

440

441 **iNaturalist**

442 There are strengths and limitations to using iNaturalist to study bees. One clear strength is the
443 large number of observers, which increases the chances of finding rare species (Donnelly et al.,
444 2014; Wilson et al., 2020), especially bumble bees, which were most frequently photographed
445 and identified in our project. Many bumble bee species are becoming less abundant and
446 experiencing reductions in their geographic ranges, making information about their status
447 particularly important for conservation efforts (Goulson, Lye & Darvill, 2008; Hatfield et al.,
448 2015; Beckham & Atkinson, 2017). New location information for *B. affinis* is important for
449 recovery plans for this endangered bee (U.S. Fish and Wildlife Service, 2021). The iNaturalist
450 records of *B. frigidus* and *B. nevadensis*, which were not found in the more structured surveys,
451 also illustrate the utility of the large number of observers and widespread observations on the
452 platform.

453

454 A second strength of iNaturalist is that observations are rapidly available, making the platform
455 useful for monitoring adventive species that can be quickly identified to research grade.
456 Previously documented in neighboring states (Parys, Tripodi & Sampson, 2015), *Megachile*
457 *sculpturalis*, an introduced species with an expanding range, was recorded for the first time in
458 Minnesota in the first year of the Bee Atlas project. Although it was only recorded once in the
459 Minnesota Bee Atlas iNaturalist project, it is a large and easily recognized bee, and opportunistic
460 participatory science platforms have been important to monitoring its spread in Europe (Le Féon
461 et al., 2018; Flaminio et al., 2021; Dubaić et al., 2022). The fact that *Megachile sculpturalis* has
462 only been recorded once in the five years of the project may indicate that it is reaching either the
463 northern or western limits of its range in North America, or it could indicate the low population
464 densities typical of the early stages of colonization (Dubaić et al., 2022). Increased monitoring
465 effort is needed to assess its status and potential impact. With outreach to engage public interest,
466 the Minnesota Bee Atlas iNaturalist project may be able to produce accurate and up to date
467 distribution maps for *Megachile sculpturalis*, allowing biologists to determine its spread in the
468 state.

469

470 One limitation of iNaturalist is that observations do not reflect relative abundance. Larger bees
471 comprise the majority of observations, both non-research and research-grade, with over half of
472 non-research grade observations from the families Apidae and Megachilidae. Among the larger
473 bees, a subset of more easily identified bees, bumble bees and honey bees, make up 85% of
474 research-grade observations. This is consistent with other opportunistic participatory science
475 programs, which either focus on bumble bees exclusively or broad bee groupings (Beckham &
476 Atkinson, 2017; Maher, Manco & Ings, 2019; Flaminio et al., 2021; Griffin et al., 2021). In
477 strong contrast, sweep netting collections in this region show high abundances of bees from the
478 family Halictidae (Lane et al., 2020; Evans et al., 2022). For many other bee groups, and
479 especially smaller species, existing identification methods require expert examination of physical
480 specimens to assign species-level identifications (Le Féon et al., 2016; Woodard et al., 2020;
481 Flaminio et al., 2021). iNaturalist records alone should not be used to describe the structure of the
482 bee community as they do not provide a complete view of species diversity. However, likelihood
483 of identification may be improved with training to improve photo quality.

484

485 **Tunnel-nesting bees**

486 Nest traps and stem bundles combined with iNaturalist observations enhanced our understanding
487 of species distributions in Minnesota for 32 tunnel-nesting species. For 16 species, our project
488 expanded the known geographic extent of their distribution in the state compared to the UMN
489 Insect Collection. We documented that the ranges of five cleptoparasitic bee species mimicked
490 that of their hosts but with a smaller geographic spread. This may indicate the range in which the
491 host bees are doing particularly well and can support these parasitic bees (Sheffield et al., 2013).
492 The collection of four new species records for the state along with rarely collected species is
493 consistent with Westphal et al. (2008), who found numerous species in nest-traps in Europe that
494 were not recorded with any other sampling methods. It may also reflect our expansion of
495 collection efforts over the whole state or possible recent changes in species ranges.
496

497 Clarifying distributions allows us to start associating bees with climates and habitats, as well as
498 providing baseline data for future comparisons. By using standardized, repeatable methods to
499 survey the whole state simultaneously, we were able to compare nest frequency and explore
500 ecological province and landcover associations. Province associations could be due to climatic or
501 plant community differences. For example, both factors may influence the distribution of
502 *Megachile relativa*. This species can have lower supercooling points than *Megachile rotundata*,
503 which allowed *Megachile relativa* to survive winter outdoors in Alberta, Canada (Krunic & Salt,
504 1971) and may contribute to its northern distribution and association with the LMF in this study.
505 The LMF plant community could also contribute to this observed association. The LMF is
506 characterized by broad areas of conifer forest, mixed hardwood and conifer forests, and conifer
507 bogs and swamps (Hanson & Hargrave, 1996), despite our finding of no association of
508 *Megachile relativa* with forested land cover, previous observations showed that this species
509 preferred nest sites at woodland edges in Wisconsin (Medler & Koerber, 1958). Other bee species
510 showed associations that were counter to our expectations based on current knowledge of their
511 biology. We expected the resin-collecting bee, *Heriades carinata*, to nest more frequently in the
512 LMF due to the dominance of many resin-producing trees in the LMF, including *Pinus*, *Abies*,
513 *Picea*, and *Populus* spp. (Minnesota Department of Natural Resources, 2022) and accounts of
514 conifer resin use in this genus (Medler & Lussenhop, 1968; Maciel de Almeida Correia, 1977).
515 However, we found that *Heriades carinata* nested more frequently in the PP and EBF and was
516 associated with grassland land cover. Resin preference remains unknown and could include
517 plants common to the PP, EBF and grasslands. Alternatively, resin availability may not be a
518 limiting factor in their distribution. Westerfeld, Weslien and Widenfalk (2018) found that nest
519 abundance of a pollen generalist, *Hylaeus annulatus*, was predicted both by nesting substrate
520 availability and food resources, while nest abundance of a pollen specialist, *Megachile lapponica*,
521 was predicted more by its food source alone. Another resin-collecting bee, *Megachile*
522 *campanulae*, was associated with developed land cover in our study. This bee has been associated
523 with plants in the genus *Campanula* and high abundance of the weedy plant *Campanula*
524 *rapunculoides* in developed areas could be a driver in their nesting success. We found
525 significantly higher nest frequency for *Megachile pugnata* in the PP and EBF, while the UMN
526 Insect Collection also includes many specimens from the LMF. This discrepancy could be due to
527 different collecting efforts or could reflect previous landscapes or distributions (Gardner &
528 Spivak, 2014). We found an association of *Megachile pugnata* with grassland land cover, which
529 could explain their higher frequency in the PP and the EBF. The lack of land cover associations
530 for five of the nine tunnel-nesting bee species tested in this study may indicate that a single broad
531 land cover category does not capture the habitat elements to which many tunnel-bees are
532 responsive. In addition, it should be noted that the distributions of *O. lignaria* and *Megachile*

533 *rotundata* may be influenced by human management, including commercial sales, in addition to
534 climatic differences and plant communities.

535

536 Although nest-traps have been shown to be a reliable and unbiased way to assess ecological
537 association of tunnel-nesting bee species (Staab et al., 2018), nest-traps typically only sample a
538 portion of the tunnel-nesting bee community (Westphal et al., 2008; Prendergast et al., 2020).
539 Several factors may have contributed to the non-detection of tunnel-nesting bee species in this
540 study, which should not be interpreted as absence. Some nests produced no identifiable offspring
541 due to parasitism or other causes. These nests were left out of all analyses. As we saw in this
542 study, some tunnel-nesting bee species in Minnesota may have more than one generation per
543 year. Species emerging before our fall nest trap collection would not be captured if they did not
544 re-nest in the traps. Rare species take more effort to detect, and even with our full coverage of the
545 state, three years of sampling, and focus on natural habitats, we may have sampled too small a
546 proportion of bees to reliably find some rare species, or species that prefer rare habitats. It is also
547 possible that species may utilize nest-traps less frequently in areas with more suitable natural
548 nesting substrates (Westphal et al., 2008; Carper & Bowers, 2017), which is a complicating factor
549 for this sampling method. However, in this study, overall bee nest frequency was statistically
550 similar across all ecological provinces, forested or otherwise.

551

552 Solid wood traps may not be an acceptable or preferred nest substrate for some tunnel-nesting bee
553 species. Although *Osmia* and *Megachile* are often considered tunnel-nesting genera, a proportion
554 of species in both genera nest in the ground, and we would not have expected them in this study
555 (Cane, Griswold & Parker, 2007; Sheffield et al., 2011; Rightmyer, Griswold & Brady, 2013)
556 Similarly, bees in the genus *Ceratina* Latreille are obligate stem excavators and would not be
557 expected (Rehan & Richards, 2010; Vickruck et al., 2011). Two species that we collected rarely
558 in the Bee Atlas, *Hylaeus mesillae* and *Anthophora terminalis* (Cresson, 1869), were common in
559 UMN Insect Collection records, suggesting that wood block nest-traps are a less effective
560 sampling method for these species. *Anthophora terminalis* is known from fallen or rotting wood
561 substrates (Cockerell, 1903; Sladen, 1919; Medler, 1964), as are *Megachile frigida* Smith, 1853
562 and *Osmia bucephala* Cresson, 1864 (Stephen, 1956; Krombein, 1967) which we did not collect.
563 Pithy or hollow stems of many plant species are also used as nest substrates (Satyshur & Evans,
564 2021) and might be preferred by some bees. Our stem bundles did not produce enough bee nests
565 to distinguish any preference between plant stem species but did produce two bee species not
566 collected in our wood nest-traps: *Megachile brevis* and *Hoplitis albifrons*. *Hoplitis* species and
567 *Hylaeus messillae* are frequently found in stems (Parker & Bohart, 1966; Medler & Lussenhop,
568 1968) but were rare in this study. *Megachile brevis* is known from a wide variety of substrates
569 including dead stems, ground, leaves and under chips (Michener, 1953). Some Minnesota
570 species not found in this study are known from stems, such as *Megachile montivaga*
571 Cresson, 1878 (Orr, Portman & Griswold, 2015) and *Osmia atriventris* Cresson, 1864 (Fye,
572 1965). Future studies of tunnel-nesting bees are likely to sample a larger proportion of the
573 community by using both wood and stem substrates. A more targeted study, returning to known
574 collection areas and looking for species that have not been recorded in Minnesota in recent years
575 is warranted.

576

577 In addition to distribution data, we collected data on nesting phenology, which returned a date
578 range when stem nesting bee species are likely to complete nesting and indicated the relative
579 seasonality of species. Volunteer observations also allowed us to catch *Megachile relativa*
580 emerging both mid-summer and the following spring. This agrees with the bivoltine life cycle for
581 *Megachile relativa* found in Wisconsin (Medler & Koerber, 1958) and expands the known range

582 of bivoltinism into Minnesota. It is important to remember that the phenology event volunteers
583 recorded was nest plugs, which are made after a nest is completed. Therefore, the bee's active
584 period likely begins several weeks earlier. Despite this, in 10 of the 17 species we have data for,
585 nest plugs were observed several days to several weeks earlier than the range of collection dates
586 for the same species in the UMN Insect Collection (Fig. 5). This could be due to the large
587 increase in records and full season of data collection made possible by participatory science
588 (Soroye, Ahmed & Kerr, 2018; Dubaić et al., 2022). Another possibility is that earlier recorded
589 activity periods are the result of advancing phenology with climate change. Bartomeus et al.
590 (2011) compared collection dates of museum specimens from different historical periods with
591 modern collections for 10 bee species in northeastern North America, including two of the
592 species in this project. They found an average phenological advance of 10.4 days. The
593 phenological data we have recorded helps define these bees' temporal habitats and lays the
594 groundwork for assessing changes.
595

596 **Bumble Bees**

597 The bumble bee surveys of the Minnesota Bee Atlas project used consistent survey effort across
598 routes, providing the opportunity to examine patterns of bumble bee abundances and species
599 associations with land use, all of which have been difficult to do from museum collections or
600 biodiversity portal observations alone. We have reliable information on ranges of Minnesota
601 bumble bees due to numerous records of bumble bee species courtesy of the Bumble Bees of
602 North America database (Richardson, 2021). Our surveys not only confirm ranges, such as the
603 northern distributions of *B. ternarius*, *B. terricola*, *B. borealis*, *B. flavidus*, and *B. perplexus*, but
604 also provide insight into bumble bee community structure. For example, although *B. griseocollis*
605 is present throughout the state, they are the dominant bumble bee community members in only
606 two of the three examined ecological provinces (PP and EBF). Further exploration could reveal
607 specific ecological drivers of this pattern. Although we identified many of the submitted
608 photographs for *B. vagans* and *B. sandersoni* to species level to create maps showing their
609 distributions, *B. vagans* had to be combined with *B. sandersoni* for comparisons of abundance
610 and habitat associations, since many observations could not be distinguished. Future volunteer
611 surveys may be able to distinguish these species as the quality of cameras available to volunteers
612 increases. Minnesota bumble bees not found on survey routes include *B. frigidus*, *Bombus huntii*
613 Greene 1860, *Bombus variabilis* (Cresson, 1872), *Bombus ashtoni* (Cresson, 1864) (sometimes
614 considered to be conspecific with *Bombus bohemicus* Seidl, 1837), *Bombus fraternus* (Smith,
615 1854), and *B. nevadensis*. This is likely because these species are extremely rare, their range
616 barely extends into Minnesota, or because they are not usually found on roadsides.
617

618 Bumble bee abundance information gathered by the bumble bee surveys provides important
619 baseline information and informs management decisions to support bumble bees. Many studies of
620 bumble bee decline rely on relative rather than absolute abundances of bumble bees (Colla &
621 Packer, 2008; Koch, 2011; Cameron et al., 2011). While this approach helps us understand shifts
622 in communities, it does not answer questions about overall declines in abundance, a key
623 conservation concern. By using consistent survey effort, we can examine differences in overall
624 bumble bee abundance in different ecological regions and the data we gathered can be compared
625 to future surveys to provide insight into changes in bumble bee abundances. The observed lower
626 bumble bee abundance in the PP could indicate lower bumble bee abundance in that ecological
627 province overall, could indicate differences in the attractiveness of roadside habitat to foraging
628 bumble bees between ecological provinces due to concentration or dilution effects with varying
629 floral abundance in non-roadside habitats, or could be an artifact of the smaller number of routes
630 that were run in this ecological province. Our volunteers did not gather information on the floral

631 cover at survey sites, but volunteers in the PP more frequently reported difficulty finding areas
632 with flowers along their assigned routes. A recent study in the same area in restored prairies
633 found abundant bumble bee populations, indicating that the PP is not depauperate of bumble bees
634 across habitats (Lane et al., 2020). There is potential to improve the ecological benefits of
635 roadside habitat in the PP by increasing floral availability and abundance.

636

637 Association of bumble bee species with surrounding land cover can help assess habitat needs of
638 different bumble bee species. While our survey routes were limited to roadside habitats, the
639 predominant land uses surrounding our survey routes varied, providing an opportunity to examine
640 the influence of land use on bumble bees. Many of the associations we found are similar to those
641 found in an examination of land cover and the probability of bumble bee occurrence in Vermont
642 (Richardson et al., 2019). We both found *B. vagans* group, *B. ternarius*, and *B. terricola* to be
643 positively associated with forested land cover, *B. fervidus*, *B. griseocollis*, and *B. bimaculatus* to
644 be positively associated with crop and grassland land covers, and *B. impatiens* to be positively
645 associated with developed land cover. Our study included several species not present in the
646 Vermont survey. The positive association of *B. pensylvanicus* with developed and crop land
647 covers and *B. auricomus* and possibly *B. affinis* with developed land cover provide new insight
648 into possible habitat associations for these species.

649

650 Most recent records for *B. affinis* have been contributed by the public and are associated with
651 urban areas in Minnesota, Wisconsin, Iowa, and Illinois (U.S. Fish and Wildlife Service, 2021). It
652 is not clear whether this phenomenon is due to more people in urban areas looking for rare
653 species and contributing records to public monitoring or whether *B. affinis* is associated with
654 developed areas. Since our survey routes were spread throughout the state across a wide range of
655 habitats, our finding of a possible association between *B. affinis* and developed land cover
656 indicates that the phenomenon may not be entirely due to increased participation in monitoring in
657 urban areas. Historically, *B. affinis* nests have been noted to be associated with urban areas,
658 constructing their nests near houses (Medler, 1963). The possible association of a federally
659 protected endangered species with developed land has important implications for conservation
660 strategies, which often take advantage of publicly owned land. Conservation efforts on private,
661 multi-use property have additional complications (Kamal, Grodzińska-Jurczak & Brown, 2015).

662

663 **Conclusions**

664 Through four field seasons and participation from over 2500 volunteers, the Minnesota Bee Atlas
665 used uniform methods to survey bees across Minnesota. Our findings include 1) documentation
666 of rare and endangered bees of conservation concern, 2) extension of known ranges for tunnel-
667 nesting species, 3) bee associations with ecological provinces, 4) nesting phenology data for
668 tunnel-nesting species, 5) state-wide abundance patterns for bumble bees in roadside habitats, and
669 6) habitat associations for bumble bee and tunnel-nesting bee species. In addition, we
670 documented new state records and gathered baseline, replicable data on tunnel-nesting bees and
671 bumble bees across the state. An added benefit of our program is the increased awareness of
672 pollinator conservation among our volunteers, who continue to contribute to other participatory
673 science projects, submit thousands of iNaturalist records, and lead their own outreach efforts.

674

675 Our findings support several habitat management recommendations. Broad-scale land use
676 changes have occurred over the last 150 years leading to reduction of natural habitat to less than
677 2% across all ecological provinces due to conversion to cropland and managed forests (Wendt,
678 1988), impacting both nesting and foraging habitats for bees (Benton, Vickery & Wilson, 2003;
679 Holzschuh, Steffan-Dewenter & Tscharntke, 2010; Le Féon et al., 2010). With similar

680 abundances of tunnel-nesting bees in the prairie and two forested ecological provinces, and with a
681 variety of habitat associations among species, a broad range of regions and habitats are suitable
682 targets for tunnel-nesting bee habitat enhancement. Providing a variety of stem and wood nesting
683 substrates mimicking natural density may support nesting. Interpreting our findings from bumble
684 bee abundance patterns, we found a need for increased floral availability in roadside habitat in the
685 PP ecological province to support bumble bees, which could also support other pollinators.
686

687 The baseline data we provided can be compared with future surveys using comparable methods
688 to examine trends in populations of tunnel-nesting bees and bumble bees, with the understanding
689 that the distributions we have documented have been influenced by current land use and climate
690 as well as historic land use changes. These comparisons can help assess the impact of subsequent
691 pollinator conservation efforts as well as long-term stressors such as climate change. We
692 recommend the following improvements to survey methods: 1) Publicizing information about
693 *Megachile sculpturalis* and other easily identified introduced species and engaging iNaturalist
694 users in tracking their spread in the state, 2) using stem substrates in conjunction with wood
695 substrates for nest-traps to increase the number of species captured, 3) targeted nest-trap surveys
696 in regions and habitats that were underrepresented in this project, 4) the inclusion of a wider
697 variety of habitat types in surveys to improve assessment of the bumble bee community, and 5)
698 additional participant training to assess habitat in survey locations to help identify habitat
699 improvements needed to support bumble bees in different regions.
700

701 Overall, the Bee Atlas project shows the strength of involving the public in scientific research to
702 cover the geographic range of a state with methods that enable comparison of relative and
703 absolute abundance in different habitats and to document species that have not been discovered
704 using other methods. Coupled with professional experts, trained volunteers provided vital
705 information that University researchers alone would have been unable to collect, showing the
706 value of public participation in bee research and monitoring.
707

708 Acknowledgements

709 Thank you to all our volunteers who hosted nest blocks, adopted bumble bee survey routes,
710 submitted pictures to iNaturalist, and helped with nest block construction, bee rearing and
711 pinning in the lab. We could not have done this without you. We thank V. Scott and A. Rose of
712 the Bees' Needs project of Colorado for initial conversations and initial plug material photos.
713 Thank you to Jason Gibbs for confirming identifications for new state records, Ryan Oram for
714 verifying representatives of *Hylaeus*, Michael Orr and Sam Droege for confirming identification
715 of *Anthophora terminalis*, John Luhmen for identifying Ichneumonid specimens and providing
716 consultation on Chalcidoidea identification, and Jorge González and Mike Gates for confirming
717 *Kocourekia cf. debilis* identification. Thank you to Clarence Lehman for consultation and editing,
718 and Robin Thomson for curation of the University of Minnesota Insect Collection. The feedback
719 of three anonymous reviewers helped polish the manuscript.
720

721 References

722 Andrus R, Droege S, Griswold T. 2020a. Draft Guide to the Anthophora of North America.
723 Available at https://www.discoverlife.org/mp/20q?guide=Anthophora_female (accessed
724 December 1, 2019).

725 Andrus R, Droege S, Griswold T. 2020b. *Hylaeus* Female. Available at
726 https://www.discoverlife.org/mp/20q?guide=Hylaeus_female (accessed December 1, 2019).

728

729 Andrus R, Droege S, Griswold T. 2020c. Draft Guide to the Male *Osmia* of Eastern North
730 America. Available at https://www.discoverlife.org/mp/20q?guide=Osmia_male (accessed
731 December 1, 2019).

732

733 Appenfeller LR, Lloyd S, Szendrei Z. 2020. Citizen science improves our understanding of the
734 impact of soil management on wild pollinator abundance in agroecosystems. *PLOS ONE*
735 15:e0230007. DOI: 10.1371/journal.pone.0230007.

736

737 Arduser M. 2018. *Hylaeus* species of the tallgrass prairie and greater midwest. [unpublished
738 work, Revised May 7, 2018].

739

740 Bartomeus I, Ascher JS, Wagner D, Danforth BN, Colla S, Kornbluth S, Winfree R. 2011.
741 Climate-associated phenological advances in bee pollinators and bee-pollinated plants.
742 *Proceedings of the National Academy of Sciences* 108:20645–20649. DOI:
743 10.1073/pnas.1115559108.

744

745 Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting Linear Mixed-Effects Models Using lme4.
746 *Journal of Statistical Software* 67:1–48. DOI: 10.18637/jss.v067.i01.

747

748 Beckham JL, Atkinson S. 2017. An updated understanding of Texas bumble bee (Hymenoptera:
749 Apidae) species presence and potential distributions in Texas, USA. *PeerJ* 5:e3612. DOI:
750 10.7717/peerj.3612.

751

752 Benton TG, Vickery JA, Wilson JD. 2003. Farmland biodiversity: is habitat heterogeneity the
753 key? *Trends in Ecology & Evolution* 18:182–188. DOI: 10.1016/S0169-5347(03)00011-9.

754

755 ter Braak CJF. 1986. Canonical Correspondence Analysis: A New Eigenvector Technique for
756 Multivariate Direct Gradient Analysis. *Ecology* 67:1167–1179. DOI: 10.2307/1938672.

757

758 Brooks M E, Kristensen K, Benthem K J ,van, Magnusson A, Berg C W, Nielsen A, Skaug H J,
759 Mächler M, Bolker B M. 2017. glmmTMB Balances Speed and Flexibility Among Packages for
760 Zero-inflated Generalized Linear Mixed Modeling. *The R Journal* 9:378. DOI: 10.32614/RJ-2017-
761 066.

762

763 Burkle LA, Marlin JC, Knight TM. 2013. Plant-Pollinator Interactions over 120 Years: Loss of
764 Species, Co-Occurrence, and Function. *Science* 339:1611–1615. DOI:
765 10.1126/science.1232728.

766

767 Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL. 2011. Patterns
768 of widespread decline in North American bumble bees. *Proceedings of the National Academy of
769 Sciences* 108:662–667. DOI: 10.1073/pnas.1014743108.

770

771 Cane JH, Griswold T, Parker FD. 2007. Substrates and Materials Used for Nesting by North
772 American Osmia Bees (Hymenoptera: Apiformes: Megachilidae). *Annals of the Entomological
773 Society of America* 100:350–358. DOI: 10.1603/0013-8746(2007)100[350:SAMUFN]2.0.CO;2.

774

775 Cao H-X, Salle JL, Fornoff F, Guo P-F, Zhu C-D. 2017. Notes on Kocourekia Bouček
776 (Hymenoptera: Eulophidae: Tetrastichinae) with description of a new species from China.
777 *Zootaxa* 4317:391. DOI: 10.11646/zootaxa.4317.2.13.

778

779 Cardoso P, Erwin TL, Borges PAV, New TR. 2011. The seven impediments in invertebrate
780 conservation and how to overcome them. *Biological Conservation* 144:2647–2655. DOI:
781 10.1016/j.biocon.2011.07.024.

782

783 Carper AL, Bowers MD. 2017. *The conservation value of woody debris for cavity-nesting bees on Boulder County Open Space*. Final Report. Available at <https://assets.bouldercounty.gov/wp-content/uploads/2018/01/woody-debris-for-bees.pdf> (accessed December 1, 2020).

784

785

786 Cockerell WP. 1903. The Nesting of a Carpenter Bee. *Birds and Nature in Natural Colors*
787 14:127–128.

788

789

790 Colla SR, Packer L. 2008. Evidence for decline in eastern North American bumblebees
791 (Hymenoptera: Apidae), with special focus on *Bombus affinis* Cresson. *Biodiversity and*
792 *Conservation* 17:1379–1391. DOI: 10.1007/s10531-008-9340-5.

793

794 Dewitz J. 2019. National Land Cover Database (NLCD) 2016 Products (ver. 2.0, July 2020):
795 U.S. Geological Survey data release.

796

797 Donnelly A, Crowe O, Regan E, Begley S, Caffarra A. 2014. The role of citizen science in
798 monitoring biodiversity in Ireland. *International Journal of Biometeorology* 58:1237–1249. DOI:
799 10.1007/s00484-013-0717-0.

800

801 Dubaić JB, Lanner J, Rohrbach C, Meimberg H, Wyatt F, Čaćija M, Galešić M, Ješovnik A,
802 Samurović K, Plečaš M, Raičević J, Četković A. 2022. Towards a real-time tracking of an
803 expanding alien bee species in Southeast Europe through citizen science and floral host
804 monitoring. *Environmental Research Communications* 4:085001. DOI:
805 10.1088/2515-7620/ac8398.

806

807 Evans E, Ascher J, Cariveau DP, Spivak M. 2022. A Century of Change for Prairie Bees and
808 Their Floral Associations. *Prairie Naturalist Special Issue* 1:78-102.

809

810 Flaminio S, Ranalli R, Zavatta L, Galloni M, Bortolotti L. 2021. Beewatching: A Project for
811 Monitoring Bees through Photos. *Insects* 12:841. DOI: 10.3390/insects12090841.

812

813 Fye RE. 1965. Biology of Apoidea Taken in Trap Nests in Northwestern Ontario (Hymenoptera).
814 *The Canadian Entomologist* 97:863–877. DOI: 10.4039/Ent97863-8.

815

816 Ganzevoort W, van den Born RJG. 2021. Counting Bees: Learning Outcomes from Participation
817 in the Dutch National Bee Survey. *Sustainability* 13:4703. DOI: 10.3390/su13094703.

818

819 Gardner JD, Spivak M. 2014. A Survey and Historical Comparison of the Megachilidae
820 (Hymenoptera: Apoidea) of Itasca State Park, Minnesota. *Annals of the Entomological Society*
821 *of America* 107:983–993. DOI: 10.1603/AN14023.

822

823 Gaston KJ, Fuller RA. 2009. The sizes of species' geographic ranges. *Journal of Applied*
824 *Ecology* 46:1–9. DOI: <https://doi.org/10.1111/j.1365-2664.2008.01596.x>.

825

826 Gathmann A, Tscharntke T. 2002. Foraging Ranges of Solitary Bees. *Journal of Animal Ecology*
827 71:757–764.

828

829 Gibson GAP, Huber JT, Woolley JB. 1997. *Annotated Keys to the Genera of Nearctic*
830 *Chalcidoidea (Hymenoptera)*. NRC Research Press. DOI: 10.1139/9780660166698.

831

832 Golick DA, Ellis MD. 2006. An Update on the Distribution and Diversity of *Bombus* in Nebraska
833 (Hymenoptera: Apidae). *Journal of the Kansas Entomological Society* 79:341–347. DOI:
834 10.2317/0508.5.1.

835

836 Goulson D, Lye G, Darvill B. 2008. The decline and conservation of bumblebees. *Annual*
837 *Review of Entomology* 53:191–208. DOI: 10.1146/annurev.ento.53.103106.093454.

838

839 Griffin B, LaTora AG, Bhattarai U, Braman SK. 2021. Knowledge Gleaned from the First Great
840 Georgia Pollinator Census. *Journal of Entomological Science* 57:39–63. DOI: 10.18474/JES21-
841 05.

842

843 Griswold T, Ikerd H, Droege S, Pascarella JB, Pickering J. 2020. Draft Guide to the Female
844 *Osmia* of Eastern North America. Available at https://www.discoverlife.org/mp/20q?guide=Osmia_female (accessed December 1, 2019).

845

846 Hagen M, Wikelski M, Kissling WD. 2011. Space Use of Bumblebees (*Bombus* spp.) Revealed
847 by Radio-Tracking. *PLoS ONE* 6:1–10. DOI: 10.1371/journal.pone.0019997.

848

849 Hanson DS, Hargrave B. 1996. Development of a multilevel Ecological Classification System for
850 the state of Minnesota. *Environmental Monitoring and Assessment* 39:75–84. DOI:
851 10.1007/BF00396137.

852

853 Harmon-Threatt A. 2020. Influence of Nesting Characteristics on Health of Wild Bee
854 Communities. *Annual Review of Entomology* 65:39–56. DOI: 10.1146/annurev-ento-011019-
855 024955.

856

857 Hatfield R, Colla S, Jepsen S, Richardson LL, Thorp R, Foltz Jordan S. 2015. *IUCN*
858 *Assessments for North American *Bombus* spp.* December 2014, 1–56. Available at
859 <https://xerces.org/sites/default/files/publications/14-065.pdf> (Accessed January 22, 2022).

860

861 Heraty J. 2008. Identification Atlas of the Vespidae (Hymenoptera, Aculeata) of the Northeastern
862 Nearctic region - Edited by M. Buck, S.A. Marshall and D.K.B. Cheung. *Systematic Entomology*
863 33:579–580. DOI: 10.1111/j.1365-3113.2008.00431.x.

864

865

866 Holzschuh A, Steffan-Dewenter I, Tscharntke T. 2010. How do landscape composition and
867 configuration, organic farming and fallow strips affect the diversity of bees, wasps and their
868 parasitoids? *Journal of Animal Ecology* 79:491–500.

869

870 Kamal S, Grodzińska-Jurczak M, Brown G. 2015. Conservation on private land: a review of
871 global strategies with a proposed classification system. *Journal of Environmental Planning and
872 Management* 58:576–597. DOI: 10.1080/09640568.2013.875463.

873

874 Klein A-M, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke
875 T. 2007. Importance of pollinators in changing landscapes for world crops. *Proceedings of the
876 Royal Society B: Biological Sciences* 274:303–313. DOI: 10.1098/rspb.2006.3721.

877

878 Koch JB. 2011. The decline and conservation status of North American bumble bees. Master's
879 Thesis. Utah State University.

880

881 Koffler S, Barbiéri C, Ghilardi-Lopes NP, Leocadio JN, Albertini B, Franco TM, Saraiva AM.
882 2021. A Buzz for Sustainability and Conservation: The Growing Potential of Citizen Science
883 Studies on Bees. *Sustainability* 13:959. DOI: 10.3390/su13020959.

884

885 Kremen C, Ullman KS, Thorp RW. 2011. Evaluating the Quality of Citizen-Scientist Data on
886 Pollinator Communities. *Conservation Biology* 25:607–617. DOI: 10.1111/j.1523-
887 1739.2011.01657.x.

888

889 Krombein KV. 1967. *Trap-nesting wasps and bees: life histories, nests, and associates*.
890 Washington: Smithsonian Press.

891

892 Krunic MD, Salt RW. 1971. Seasonal changes in glycerol content and supercooling points of
893 Megachile rotundata (F.) and M. relativa Cress. *CANADIAN JOURNAL OF ZOOLOGY - BACK
894 YEAR PROJECT* 49:663–666. DOI: 10.1139/z71-104.

895

896 Lane IG, Herron-Sweet CR, Portman ZM, Cariveau DP. 2020. Floral resource diversity drives
897 bee community diversity in prairie restorations along an agricultural landscape gradient. *Journal
898 of Applied Ecology* 57:2010–2018. DOI: 10.1111/1365-2664.13694.

899

900 Lanterman J, Reeher P, Mitchell RJ, Goodell K. 2019. Habitat Preference and Phenology of
901 Nest Seeking and Foraging Spring Bumble Bee Queens in Northeastern North America
902 (Hymenoptera: Apidae: Bombus). *The American Midland Naturalist* 182:131–159. DOI:
903 10.1674/0003-0031-182.2.131.

904

905 Le Féon V, Aubert M, Genoud D, Andrieu-Ponel V, Westrich P, Geslin B. 2018. Range
906 expansion of the Asian native giant resin bee Megachile sculpturalis (Hymenoptera, Apoidea,
907 Megachilidae) in France. *Ecology and Evolution* 8:1534–1542. DOI: 10.1002/ece3.3758.

908

909 Le Féon V, Henry M, Guilbaud L, Coiffait-Gombault C, Dufrêne E, Kolodziejczyk E, Kuhlmann M,
910 Requier F, Vaissière BE. 2016. An expert-assisted citizen science program involving agricultural

911 high schools provides national patterns on bee species assemblages. *Journal of Insect
912 Conservation* 20:905–918. DOI: 10.1007/s10841-016-9927-1.

913

914 Le Féon V, Schermann-Legionnet A, Delettre Y, Aviron S, Billeter R, Bugter R, Hendrickx F,
915 Burel F. 2010. Intensification of agriculture, landscape composition and wild bee communities: A
916 large scale study in four European countries. *Agriculture, Ecosystems & Environment* 137:143–
917 150. DOI: 10.1016/j.agee.2010.01.015.

918

919 Lebuhn G, Droege S, Connor EF, Gemmill-Herren B, Potts SG, Minckley RL, Griswold T, Jean
920 R, Kula E, Roubik DW, Cane J, Wright KW, Frankie G, Parker F. 2013. Detecting insect
921 pollinator declines on regional and global scales. *Conservation Biology: The Journal of the
922 Society for Conservation Biology* 27:113–120. DOI: 10.1111/j.1523-1739.2012.01962.x.

923

924 Legendre P, Legendre L. 2012. *Numerical ecology*. Amsterdam; Boston, Oxford: Elsevier.

925

926 Lenth RV, Bolker B, Buerkner P, Giné-Vázquez I, Herve M, Jung M, Love J, Miguez F, Riebl H,
927 Singmann H. 2023. emmeans: Estimated Marginal Means, aka Least-Squares Means.

928

929 Lye GC, Osborne JL, Park KJ, Goulson D. 2012. Using citizen science to monitor Bombus
930 populations in the UK: nesting ecology and relative abundance in the urban environment.
931 *Journal of Insect Conservation* 16:697–707. DOI: 10.1007/s10841-011-9450-3.

932

933 Maciel de Almeida Correia M de L. 1977. Sur l'origine des résines employées par *Heriades
934 truncorum* L. (Hymenoptera, Megachilidae) pour la construction de ses nids. *Apidologie* 8:101–
935 109.

936

937 MacIvor JS, Packer L. 2016. The Bees among Us: Modelling Occupancy of Solitary Bees. *PLOS
938 ONE* 11:e0164764. DOI: 10.1371/journal.pone.0164764.

939

940 Maher S, Manco F, Ings TC. 2019. Using citizen science to examine the nesting ecology of
941 ground-nesting bees. *Ecosphere* 10. DOI: 10.1002/ecs2.2911.

942

943 McFarland KP, Richardson LL, Zahendra S. 2015. Vermont Bumblebee Atlas. Vermont Center
944 for Ecostudies - Vermont Atlas of Life. Available at <https://val.vtecostudies.org/projects/bumblebee-atlas/> (accessed November 28, 2022).

945

946 Medler JT. 1963. *Bumblebees of Wisconsin: (hymenoptera: apidae)*. Wisconsin: Agricultural
947 Experiment Station, University of Wisconsin.

948

949 Medler JT. 1964. A Note on *Megachile (Sayapis) pugnata pugnata* Say in Trap-nests in
950 Wisconsin (Hymenoptera: Megachilidae). *The Canadian Entomologist* 96:918–921. DOI:
951 10.4039/Ent96918-6.

952

953 Medler JT, Koerber TW. 1958. Biology of Megachile Relativa Cresson (Hymenoptera,
954 Megachilidae) in Trap-Nests in Wisconsin. *Annals of the Entomological Society of America*
955 51:337–344. DOI: 10.1093/aesa/51.4.337.

956

957

958 Medler JT, Lussenhop JF. 1968. *Leafcutter bees of Wisconsin*. Research Division, College of
959 Agricultural and Life Sciences, University of Wisconsin.

960

961 Michener CD. 1953. The Biology of a Leafcutter Bee (*Megachile brevis*) and Its Associates.
962 *University of Kansas Science Bulletin* 35:98.

963

964 Minnesota Department of Natural Resources. 2022. Laurentian Mixed Forest Province. Available
965 at <https://www.dnr.state.mn.us/ecs/212/index.html> (accessed December 1, 2022).

966

967 Mitchell TB. 1962. *Bees of the Eastern United States*. North Carolina Agricultural Experiment
968 Station.

969

970 Nelson RA, Droege S. 2020a. Guide to the Female Megachile of Eastern North America.
971 Available at https://www.discoverlife.org/mp/20q?guide=Megachile_female (accessed December
972 1, 2019).

973

974 Nelson RA, Droege S. 2020b. Guide to the Male Megachile of Eastern North America. Available
975 at https://www.discoverlife.org/mp/20q?guide=Megachile_male (accessed December 1, 2019).

976

977 Ogilvie JE, Forrest JR. 2017. Interactions between bee foraging and floral resource phenology
978 shape bee populations and communities. *Current Opinion in Insect Science* 21:75–82. DOI:
979 10.1016/j.cois.2017.05.015.

980

981 Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin P, O'Hara RB,
982 Simpson G, Solymos P, Stevens MHH, Szöcs E, Wagner H. 2020. Vegan community ecology
983 package version 2.5-7. November 2020.

984

985 Ollerton J, Winfree R, Tarrant S. 2011. How many flowering plants are pollinated by animals?
986 *Oikos* 120:321–326. DOI: 10.1111/j.1600-0706.2010.18644.x.

987

988 Olsen K, Holm TE, Pape T, Simonsen TJ. 2020. Natural history museum collection and citizen
989 science data show advancing phenology of Danish hoverflies (Insecta: Diptera, Syrphidae) with
990 increasing annual temperature. *PLOS ONE* 15:e0232980. DOI: 10.1371/journal.pone.0232980.

991

992 Orr M, Andrus R, Droege S, Griswold T. 2020. Guide to the Male Anthophora of North America.
993 Available at https://www.discoverlife.org/mp/20q?guide=Anthophora_male (accessed December
994 1, 2019).

995

996 Orr MC, Portman ZM, Griswold TL. 2015. *Megachile (Megachile) montivaga* (Hymenoptera:
997 Megachilidae) nesting in live thistle (Asteraceae: *Cirsium*). *Journal of Melittology*:1. DOI:
998 10.17161/jom.v0i48.4847.

999

1000 Palmer MW. 1993. Putting Things in Even Better Order: The Advantages of Canonical
1001 Correspondence Analysis. *Ecology* 74:2215–2230. DOI: 10.2307/1939575.

1002

1003 Parker FD, Bohart RM. 1966. Host-parasite associations in some twig-nesting Hymenoptera
1004 from western North America. *Pan-Pacific Entomologist* 42:91–98.

1005

1006 Parys KA, Tripodi AD, Sampson BJ. 2015. The Giant Resin Bee, *Megachile sculpturalis* Smith:
1007 New Distributional Records for the Mid- and Gulf-south USA. *Biodiversity Data Journal*:e6733.
1008 DOI: 10.3897/BDJ.3.e6733.

1009

1010 Portman ZM, Dolan C. 2022. Documenting *Bombus nevadensis* in Minnesota, with some notes
1011 on discerning it from *B. auricomus* (Hymenoptera: Apidae). :2022.05.23.493105. DOI:
1012 10.1101/2022.05.23.493105.

1013

1014 Portman ZM, Gardner J, Lane I, Gergets N, Petersen J, Ascher JS, Arduser M, Evans E, Boyd
1015 C, Thomson R, Cariveau D. in press. A checklist of the bees (Hymenoptera: Apoidea) of
1016 Minnesota. *Zootaxa*.

1017

1018 Potts SG, Vulliamy B, Dafni A, Ne'eman G, Willmer P. 2003. Linking Bees and Flowers: How Do
1019 Floral Communities Structure Pollinator Communities? *Ecology* 84:2628–2642. DOI:
1020 10.1890/02-0136.

1021

1022 Prendergast KS, Menz MHM, Dixon KW, Bateman PW. 2020. The relative performance of
1023 sampling methods for native bees: an empirical test and review of the literature. *Ecosphere* 11.
1024 DOI: 10.1002/ecs2.3076.

1025

1026 R Core Team. 2022. R: A language and environment for statistical computing. R Foundation
1027 for Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/>.

1028

1029 Rao S, Strange JP. 2012. Bumble Bee (Hymenoptera: Apidae) Foraging Distance and Colony
1030 Density Associated with a Late-Season Mass Flowering Crop. *Environmental Entomology*
1031 41:905–915. DOI: 10.1603/EN11316.

1032

1033 Rehan SM, Richards MH. 2010. Nesting biology and subsociality in *Ceratina calcarata*
1034 (Hymenoptera: Apidae). *The Canadian Entomologist* 142:65–74. DOI: 10.4039/n09-056.

1035

1036 Richardson LL. 2021. Bumble Bees of North America. Available at
1037 <https://www.lefrichardson.org/bbna.html> (Accessed January 22, 2022).

1038

1039 Richardson LL, McFarland KP, Zahendra S, Hardy S. 2019. Bumble bee (*Bombus*) distribution
1040 and diversity in Vermont, USA: a century of change. *Journal of Insect Conservation* 23:45–62.
1041 DOI: 10.1007/s10841-018-0113-5.

1042

1043 Rightmyer MG, Griswold T, Brady SG. 2013. Phylogeny and systematics of the bee genus
1044 *Osmia* (Hymenoptera: Megachilidae) with emphasis on North American *Melanosmia*: subgenera,
1045 synonymies and nesting biology revisited. *Systematic Entomology* 38:561–576. DOI:
1046 10.1111/syen.12013.

1047

1048 Rose AP, Scott VL, Bowers MD. 2015. The Bees' Needs: using citizen scientists to explore
1049 backyard native bee and wasp diversity. *Informal Learning Review* 132:3–5.
1050

1051 RStudio Team. 2022. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL
1052 <http://www.rstudio.com/>.
1053

1054 Russo L. 2016. Positive and Negative Impacts of Non-Native Bee Species around the World.
1055 *Insects* 7:69. DOI: 10.3390/insects7040069.
1056

1057 Sandhouse GA. 1939. *The North American bees of the genus Osmia (Hymenoptera: Apoidea)*.
1058 Washington, D.C.: The Entomological society of Washington.
1059

1060 Satyshur C, Evans E. 2021. How to create habitat for stem-nesting bees. University of
1061 Minnesota Extension. Available at <https://beelab.umn.edu/create-nesting-habitat>.
1062

1063 Satyshur C, Evans T, Forsberg B, Blair R. 2021. Minnesota State Records for Osmia georgica,
1064 Megachile inimica, and Megachile frugalis (Hymenoptera, Megachilidae), Including a New Nest
1065 Description for Megachile frugalis Compared with Other Species in the Subgenus Sayapis. *The*
1066 *Great Lakes Entomologist* 53.
1067

1068 Satyshur C, Evans T, Forsberg B, Gibbs J. 2022. First Records of Stelis permaculata Cockerell
1069 (Hymenoptera: Megachilidae) in Minnesota, United States of America and Manitoba, Canada.
1070 *The Great Lakes Entomologist* 54.
1071

1072 Sheffield CS, Heron JM. 2019. The bees of British Columbia (Hymenoptera: Apoidea,
1073 Apiformes). *Journal of the Entomological Society of British Columbia* 115:44–85.
1074

1075 Sheffield CS, Pindar A, Packer L, Kevan PG. 2013. The potential of cleptoparasitic bees as
1076 indicator taxa for assessing bee communities. *Apidologie* 44:501–510. DOI: 10.1007/s13592-
1077 013-0200-2.
1078

1079 Sheffield C, Ratti C, Packer L, Griswold T. 2011. Leafcutter and mason bees of the genus
1080 Megachile Latreille (Hymenoptera: Megachilidae) in Canada and Alaska. *Canadian Journal of*
1081 *Arthropod Identification* 18:1–107. DOI: 10.3752/cjai.2011.18.
1082

1083 Sladen FWL. 1919. NOTES ON THE CANADIAN REPRESENTATIVES OF BRITISH SPECIES
1084 OF BEES. *The Canadian Entomologist* 51:124–130. DOI: 10.4039/Ent51124-6.
1085

1086 Soroye P, Ahmed N, Kerr JT. 2018. Opportunistic citizen science data transform understanding
1087 of species distributions, phenology, and diversity gradients for global change research. *Global*
1088 *Change Biology* 24:5281–5291. DOI: 10.1111/gcb.14358.
1089

1090 Staab M, Pufal G, Tscharntke T, Klein A. 2018. Trap nests for bees and wasps to analyse
1091 trophic interactions in changing environments—A systematic overview and user guide. *Methods*
1092 *in Ecology and Evolution* 9:2226–2239. DOI: 10.1111/2041-210X.13070.
1093

1094 Steffan-Dewenter I, Münzenberg U, Bürger C, Thies C, Tscharntke T. 2002. Scale-Dependent
1095 Effects of Landscape Context on Three Pollinator Guilds. *Ecology* 83:1421–1432. DOI:
1096 10.2307/3071954.

1097

1098 Stephen WP. 1956. Notes on the Biologies of *Megachile Frigida* Smith and *M. Inermis*
1099 Provancher (Hymenoptera: Megachilidae). *The Pan-Pacific Entomologist* 32.

1100

1101 Triplehorn CA. 2005. *Borror and DeLong's introduction to the study of insects*. Australia:
1102 Thomson, Brooks/Cole.

1103

1104 U.S. Fish and Wildlife Service. 2021. Recovery Plan for the Rusty Patched Bumble Bee
1105 (*Bombus affinis*). Midwest Regional Office, Bloomington, MN.

1106

1107 USGS Patuxent Wildlife Research Center. 2017. North American Breeding Bird Survey.
1108 Available at <https://www.pwrc.usgs.gov/bbs/RouteMap/Map.cfm> (Accessed January 1, 2015)

1109

1110 Vickruck JL, Rehan SM, Sheffield CS, Richards MH. 2011. Nesting biology and DNA barcode
1111 analysis of *Ceratina dupla* and *C. mikmaqi*, and comparisons with *C. calcarata* (Hymenoptera:
1112 Apidae: Xylocopinae). *The Canadian Entomologist* 143:254–262. DOI: 10.4039/n11-006.

1113

1114 van der Wal R, Anderson H, Robinson A, Sharma N, Mellish C, Roberts S, Darvill B,
1115 Siddharthan A. 2015. Mapping species distributions: A comparison of skilled naturalist and lay
1116 citizen science recording. *Ambio* 44:584–600. DOI: 10.1007/s13280-015-0709-x.

1117

1118 Wendt, KM and Coffin, BA. 1988. Natural vegetation of Minnesota at the time of
1119 the Public Land Survey, 1847-1907. Biological Report No. 1. Minnesota Department of
1120 Natural Resources, St. Paul, Minnesota.

1121

1122 Westerfelt P, Weslien J, Widenfalk O. 2018. Population patterns in relation to food and nesting
1123 resource for two cavity-nesting bee species in young boreal forest stands. *Forest Ecology and*
1124 *Management* 430:629–638. DOI: 10.1016/j.foreco.2018.08.053.

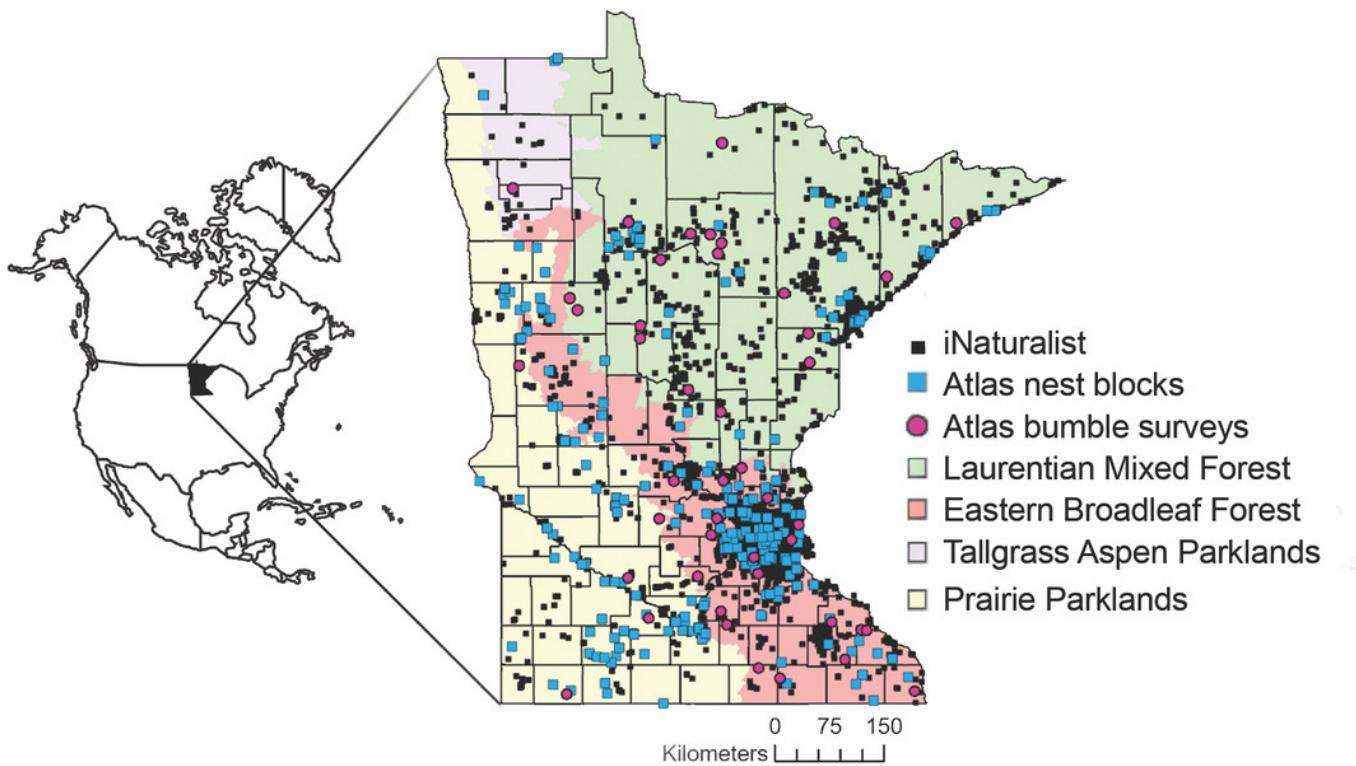
1125

1126 Westphal C, Bommarco R, Carré G, Lamborn E, Morison N, Petanidou T, Potts SG, Roberts
1127 SPM, Szentgyörgyi H, Tscheulin T, Vaissière BE, Woyciechowski M, Biesmeijer JC, Kunin WE,
1128 Settele J, Steffan-Dewenter I. 2008. Measuring Bee Diversity in Different European Habitats and
1129 Biogeographical Regions. *Ecological Monographs* 78:653–671. DOI: <https://doi.org/10.1890/07-1292.1>.

1131

1132 Wilson JS, Pan AD, General DEM, Koch JB. 2020. More eyes on the prize: an observation of a
1133 very rare, threatened species of Philippine Bumble bee, *Bombus irisanensis*, on iNaturalist and
1134 the importance of citizen science in conservation biology. *Journal of Insect Conservation*
1135 24:727–729. DOI: 10.1007/s10841-020-00233-3.

1136


1137 Woodard SH, Federman S, James RR, Danforth BN, Griswold TL, Inouye D, McFrederick QS,
1138 Morandin L, Paul DL, Sellers E, Strange JP, Vaughan M, Williams NM, Branstetter MG, Burns
1139 CT, Cane J, Cariveau AB, Cariveau DP, Childers A, Childers C, Cox-Foster DL, Evans EC,
1140 Graham KK, Hackett K, Huntzinger KT, Irwin RE, Jha S, Lawson S, Liang C, López-Uribe MM,

1141 Melathopoulos A, Moylett HMC, Otto CRV, Ponisio LC, Richardson LL, Rose R, Singh R,
1142 Wehling W. 2020. Towards a U.S. national program for monitoring native bees. *Biological*
1143 *Conservation* 252:108821. DOI: 10.1016/j.biocon.2020.108821.

Figure 1

Locations of Minnesota Bee Atlas observations.

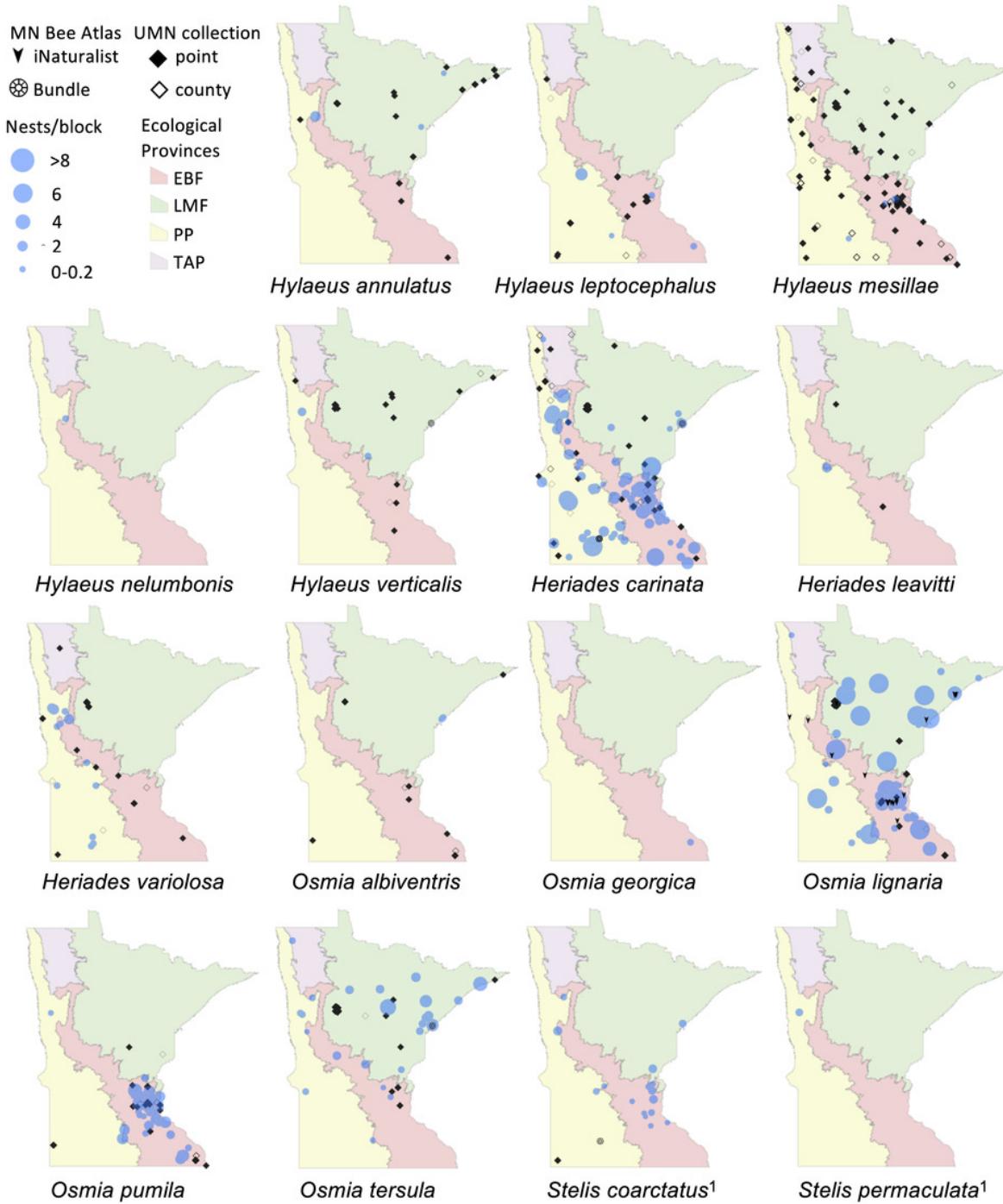

Observations include research grade iNaturalist observations of bees between 29 July 2005 and 9 March 2021, nest traps and stem bundles monitored from 2016 to 2019, and bumble bee routes surveyed from 2016 to 2020. Observations took place across Minnesota's four ecological provinces. Maps in this study were created using Esri ArcGIS Online with MN DNR layer: Ecological Sections of Minnesota; and Esri layers: United States State Boundaries 2018, World Ocean Reference (English), Ocean/World_Ocean_Base. Provinces and Territories of Canada.

Figure 2

Species distribution maps of tunnel nesting bees in the genera *Heriades*, *Hylaeus*, *Osmia* and *Stelis* found from the Minnesota Bee Atlas nest traps.

Data from nest traps and bundles (2016-2019) are shown as bee nests per trap, with traps grouped within 1 km locations and accounting for different numbers of traps per location. For clarity, trap locations with no nests of a species are not shown. Additional locations depicted are research-grade iNaturalist observations through October 2020 and specimens from a 2019 version of the UMN Insect Collection database, overlaid over Minnesota's four major ecological provinces. If UMN Insect Collection specimens did not have associated latitude and longitude, we used the location description to estimate the most accurate position possible. We chose the approximate center of geographic areas such as cities and state parks. If only county location was available, we placed the specimen in the county center and identified the records as such. Locations of cleptoparasitic bees are nests of their hosts from which they emerged.¹ Cleptoparasite on *Heriades*.

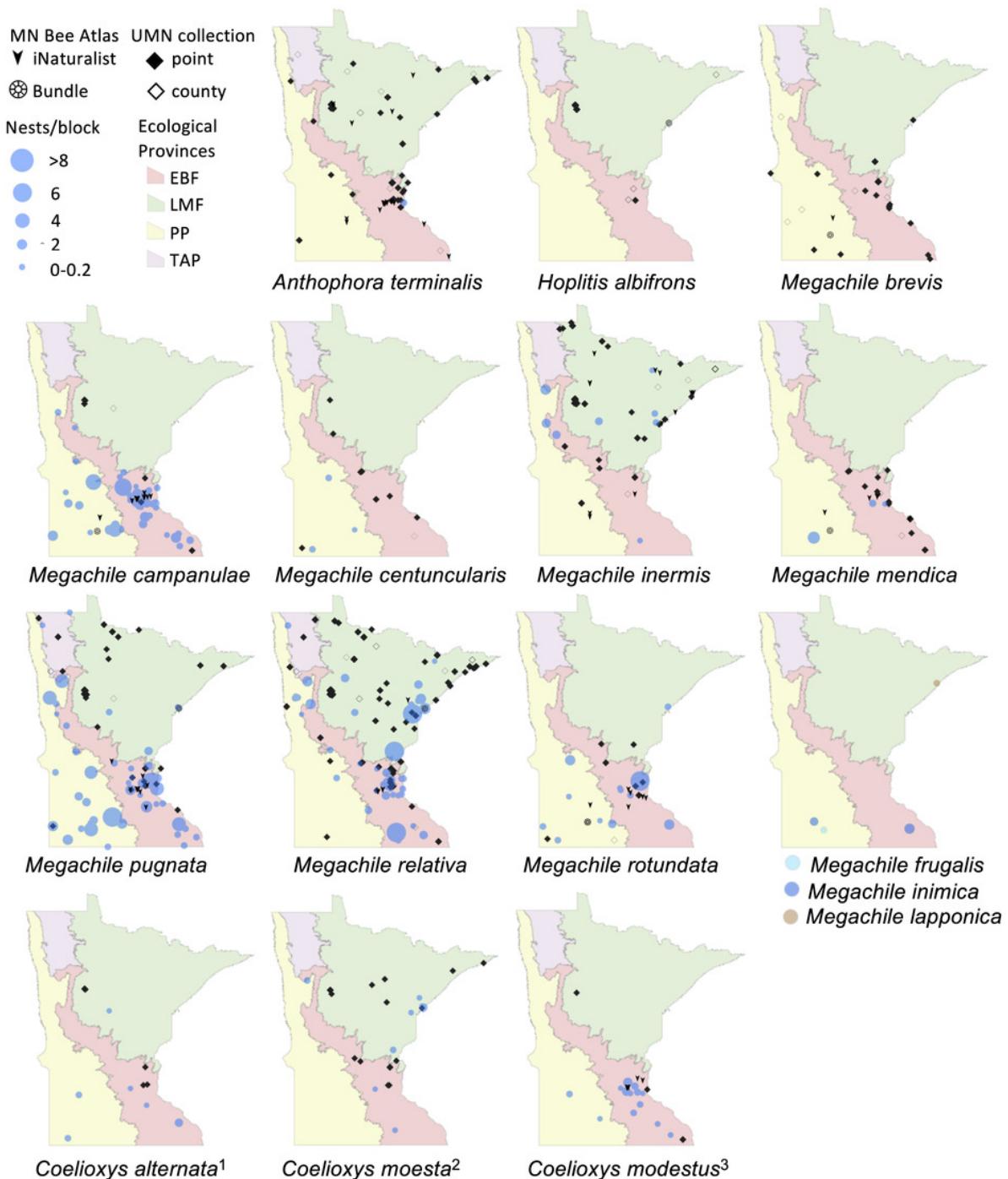


Figure 3

Species distribution maps of tunnel nesting bees in the genera *Anthophora*, *Hoplitis*, *Megachile* and *Coelioxys*, found from the Minnesota Bee Atlas nest traps.

Data from nest traps and bundles (2016-2019) are shown as bee nests per trap, with traps grouped within 1 km locations and accounting for different numbers of traps per location. For clarity, trap locations with no nests of a species are not shown. Additional locations depicted are research-grade iNaturalist observations through October 2020 and specimens from a 2019 version of the UMN Insect Collection database, overlaid over Minnesota's four major ecological provinces. If UMN Insect Collection specimens did not have associated latitude and longitude, we used the location description to estimate the most accurate position possible. We chose the approximate center of geographic areas such as cities and state parks. If only county location was available, we placed the specimen in the county center and identified the records as such. Locations of cleptoparasitic bees are nests of their hosts from which they emerged.

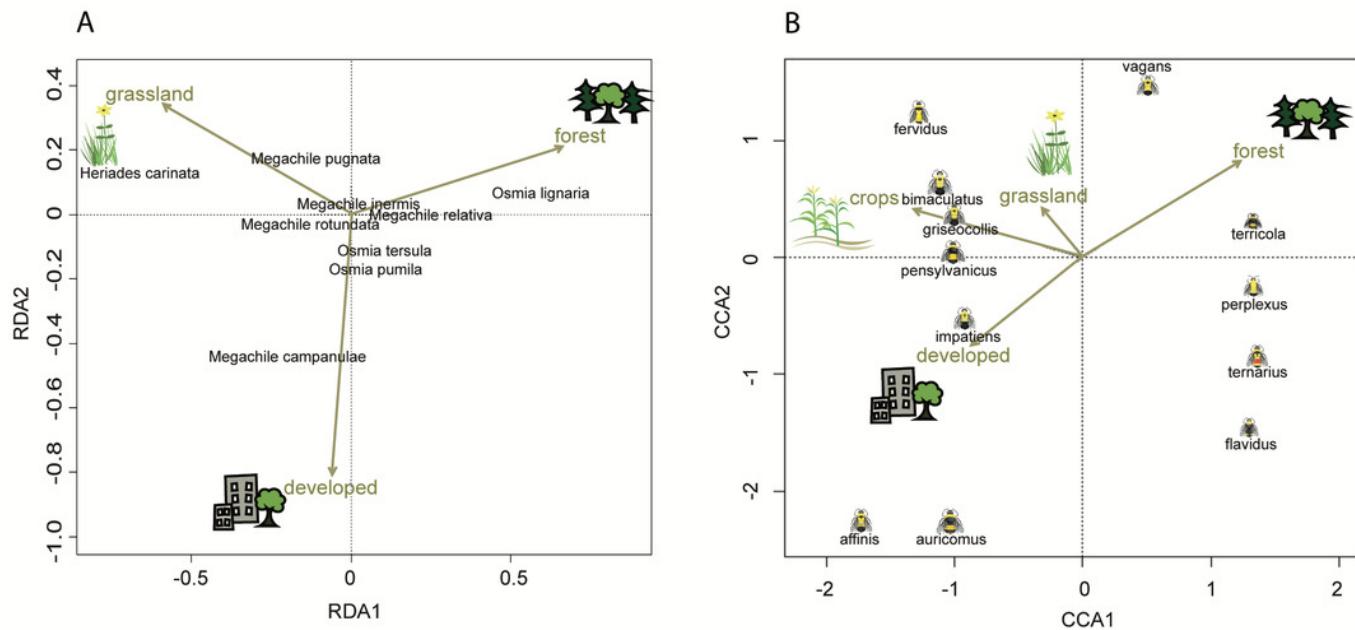

¹ Cleptoparasite on *M. pugnata*. ² Cleptoparasite on *M. relativa*. ³ Cleptoparasite on *M. campanulae*.

Figure 4

Ordination showing the relationship of land cover to tunnel-nesting bee presence and bumble bee abundance.

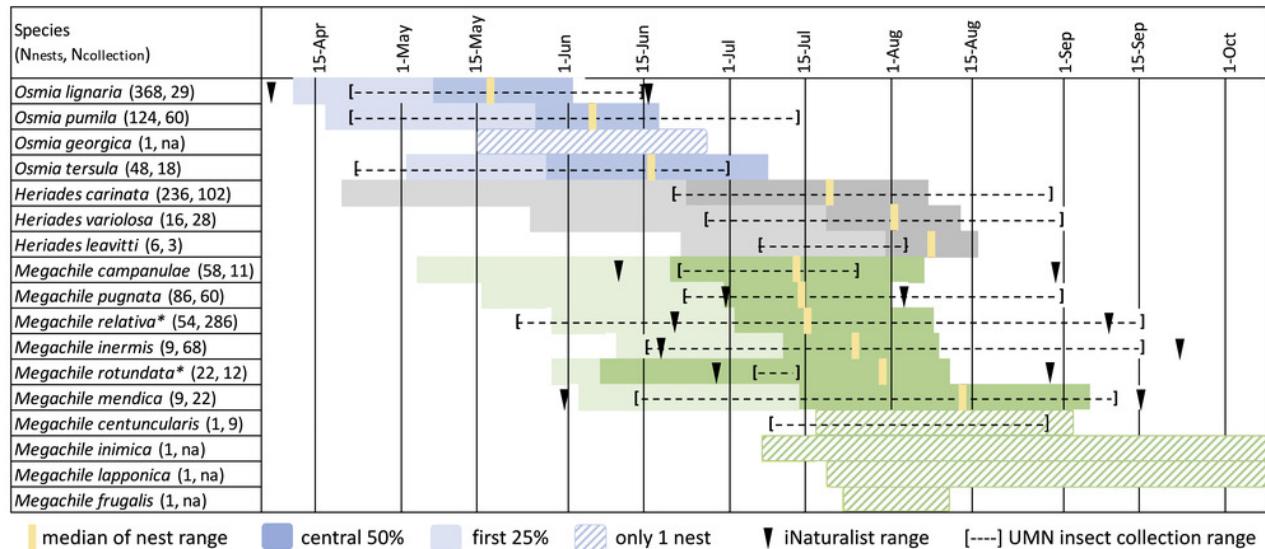

The location of each point relative to the arrows indicates the land cover variable associated with that species (Palmer 1993). Arrow length indicates the importance of the habitat variable in predicting the variability in the model (ter Braak 1986). Arrow direction indicates the strength of correlation with the axes with a small angle between arrow and axis indicating high correlation. A. Redundancy analysis (RDA) axes 1 and 2 show the relationship of tunnel-nesting bees to land cover within 250 m of nest trap locations. B. Constrained correspondence analysis (CCA) axes 1 and 2 show the relationship of bumble bee species to land cover within 2 km of survey locations. Axis 1 eigenvalue=0.56, $F=49.60$, $p<0.001$, axis 2 eigenvalue=0.10, $F=8.92$, $p<0.001$.

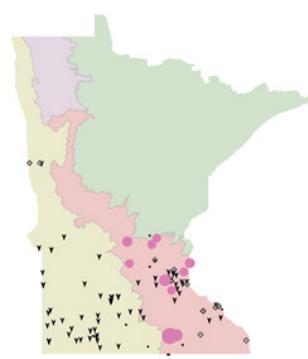
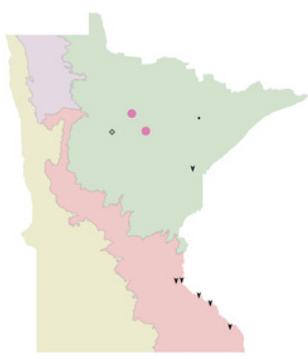
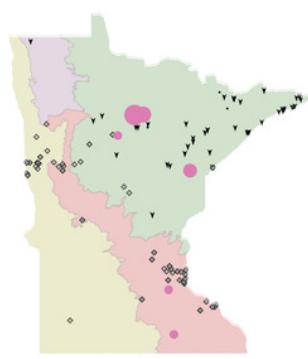
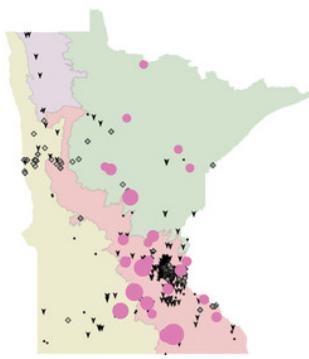
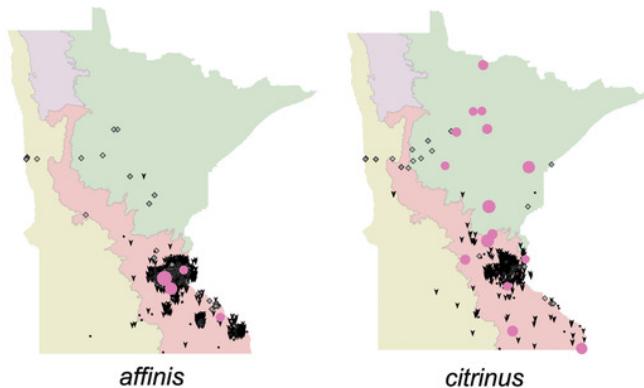
Figure 5

Phenology of tunnel-nesting bee nest completion.

We calculated nest completion date ranges, equal to the last empty tunnel date until the first full plug date, for all nests with observation quality rated "medium" or "high". Each day in the nest completion date range was assigned equal probability. These probabilities were summed over all nests with sufficient quality observations and the median value was determined, indicating the date where nests were equally likely to be completed before or after. We also calculated the 0.25 and 0.75 quartile values, which bound the central 50% when most nests were likely completed. Because bees may be active for several weeks before nests are completed and plugged, we want to emphasize the beginning of the period and indicate the earliest 25% of ranges with light shading. The genus *Osmia* is shaded in blue, *Heriades* in gray, *Megachile* in green. Each species name is followed by parenthesis in which we list the number of nests used to calculate phenology from Minnesota Bee Atlas nest traps from 2016-2018, then the number of UMN insect collections specimens. * Indicates species with more than one generation per year in Minnesota.

Figure 6

Species distribution maps for bumble bee species found during Minnesota Bee Atlas surveys with maximum average abundances between 1 and 25 bees per route per year.

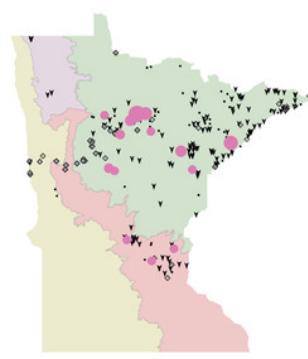
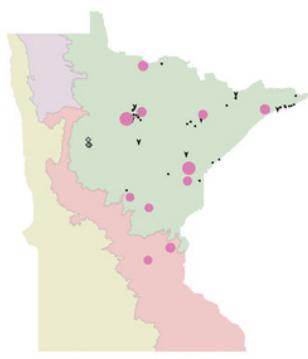
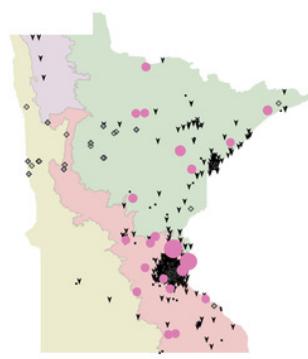
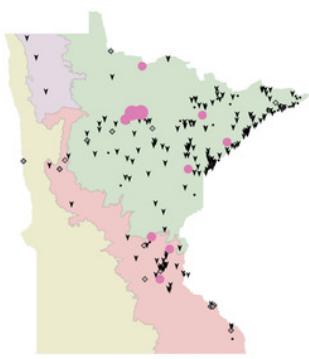
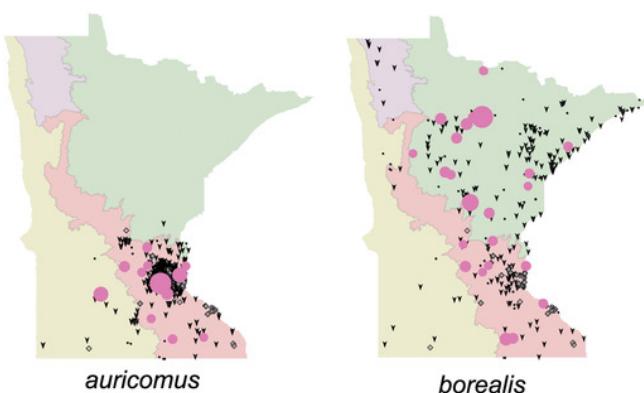





The Atlas observations are overlaid over Minnesota's four major ecological provinces. We summarized survey information as the total abundance per species per route per year and displayed the average abundance per route per year for routes that were sampled over multiple years. A. Species with maximum abundances of 10 or fewer. B. Species with maximum abundances between 11 and 25. Additional records displayed are from iNaturalist from 2014 to 2020, Bumble Bee Watch from 2010 to 2022, and specimen-based Minnesota records from the Bumble Bees of North America database from 1889 to 2020 (Richardson 2021). * Species abundances for *B. sandersoni* are likely lower due to exclusion of records that could not be distinguished between *B. vagans* and *B. sandersoni*.

A

- ▼ iNaturalist
- Bumble Bee Watch
- ◊ Bumble Bees of North America
- Ecological Provinces
 - EBF
 - LMF
- PP
- TAP

Bee Atlas Surveys
Average per route per year

- 10
- 8
- 5
- 3
- 1

B

- ▼ iNaturalist
- Bumble Bee Watch
- ◊ Bumble Bees of North America
- Ecological Provinces
 - EBF
 - LMF
- PP
- TAP

Bee Atlas Surveys
Average per route per year

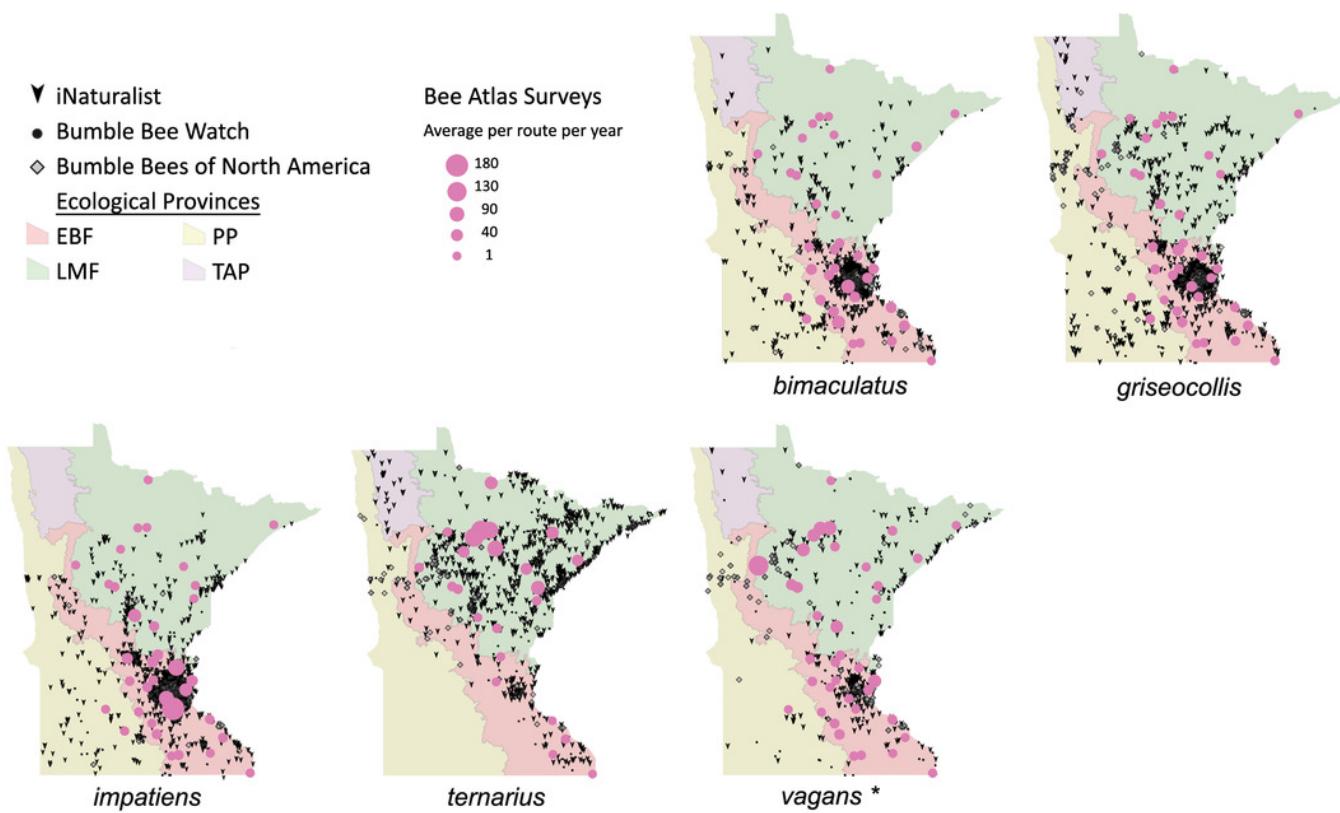

- 25
- 20
- 13
- 7
- 1

Figure 7

Species distribution maps for bumble bees found during Minnesota Bee Atlas surveys with maximum average abundances per route per year between 25 and 180.

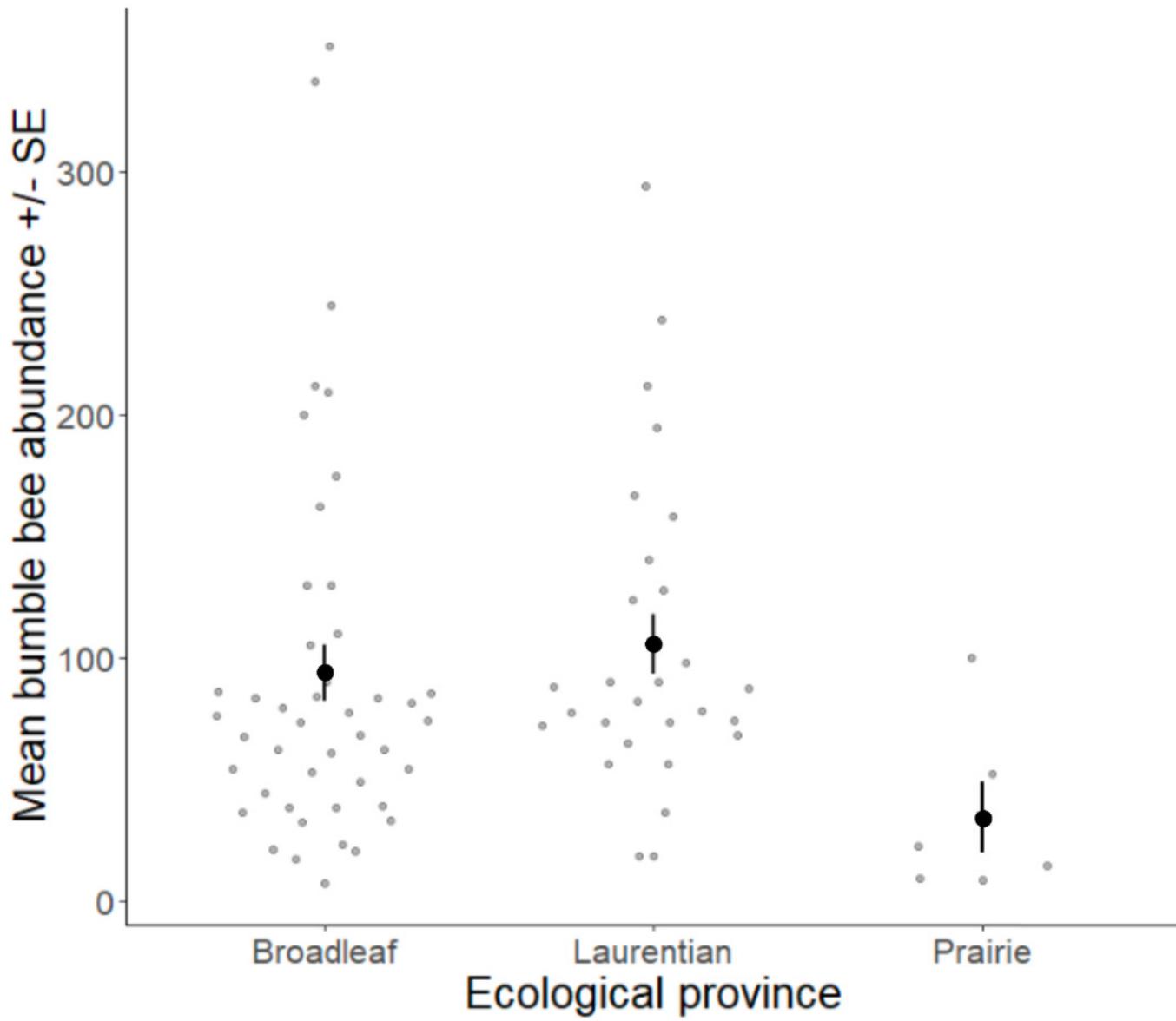

These observations are overlaid over Minnesota's four major ecological provinces. Additional records displayed are from iNaturalist from 2014 to 2020, Bumble Bee Watch from 2010 to 2022, and specimen-based Minnesota records from the Bumble Bees of North America database from 1889 to 2020 (Richardson 2021). * Species abundances for *B. vagans* are likely lower than expected due to exclusion of records that could not be distinguished between *B. vagans* and *B. sandersoni*.

Figure 8

Bumble bee abundance across the Eastern Broadleaf Forest, Laurentian Mixed Forest, and Prairie Parkland ecological provinces.

Bumble bee abundance is shown as the average abundance per route per year for routes with three completed survey dates within a year. A single route from the TAP ecological province was combined with routes from the PP ecological province due to the low sample size in this province and ecological similarity.

Table 1(on next page)

Bumble bee survey routes.

Volunteers adopted routes and completed surveys (three route runs with five 10-minute observations per route run) along routes between 2016 and 2020 across the Prairie Parkland (PP), Laurentian Mixed Forest (LMF), and Eastern Broadleaf Forest (EBF). Only one route was adopted in the Tallgrass Aspen Parklands province. This route is included in totals for the Prairie Parkland for routes adopted but did not have any completed surveys. Land cover was determined within 2 km of routes using the 2016 National Land Cover Database (NLCD) (Dewitz 2019) verified by examining aerial photographs.

1

Ecological province	Routes adopted	Total complete surveys	Surveys in 2016, 2017, 2018, 2019, or 2020	Dominant, secondary land covers
Prairie Parkland	6	6 on 4 routes	0, 2, 1, 2, 1	crops, wetlands
Laurentian Mixed Forest	18	28 on 14 routes	2, 6, 6, 6, 8	wetlands, forest
Eastern Broadleaf Forest	21	45 on 19 routes	5, 8, 10, 11, 11	crops, forest
Overall	45	79 on 37 routes	7, 16, 17, 19, 20	

2

Table 2(on next page)

Number of tunnels in trap nests that produced tunnel-nesting bee species in the four ecological provinces of Minnesota.

Between 2016 and 2019 volunteers placed 69 nest traps in the Laurentian Mixed Forest (LMF), 224 traps in the Eastern Broadleaf Forest (EBF), 87 traps in the Prairie Parkland (PP), and two traps in the Tallgrass Aspen Parkland (TAP).

1

Species	Total tunnels	PP	EBF	LMF	TAP	Native/Introduced
<i>Anthophora terminalis</i>	1		1			native
<i>Hylaeus annulatus</i>	5	3		2		native
<i>Hylaeus leptocephalus</i>	8	5	3			introduced (Russo, 2016)
<i>Hylaeus mesillae</i> (group)	6	1	5			native
<i>Hylaeus nelumbonis</i>	1	1				native
<i>Hylaeus</i> sp.(<i>modesta</i> / <i>sp.A</i>)	3		3			
<i>Hylaeus verticalis</i>	4	2		2		native
<i>Coelioxys alternata</i> *	8	3	4	1		native, *on <i>M. pugnata</i>
<i>Coelioxys modesta</i> *	30	2	28			native, *on <i>M. campanulae</i>
<i>Coelioxys moesta</i> *	11	1	2	8		native, *on <i>M. relativa</i>
<i>Heriades carinata</i>	375	117	221	36	1	native
<i>Heriades leavitti</i>	5		5			native
<i>Heriades variolosa</i>	22	18	4			native
<i>Megachile brevis</i> ^b	1	1				native
<i>Megachile campanulae</i>	128	34	94			native
<i>Megachile centuncularis</i>	3	3				~ introduced (Sheffield et al., 2011)
<i>Megachile frugalis</i>	1	1				native
<i>Megachile inermis</i>	27	3	15	9		native
<i>Megachile inimica</i>	5	2	3			native
<i>Megachile lapponica</i>	1			1		native
<i>Megachile mendica</i>	10	5	5			native
<i>Megachile pugnata</i>	151	62	79	9	1	native
<i>Megachile relativa</i>	132	11	57	62	2	native
<i>Megachile rotundata</i>	36	14	20	2		introduced (Russo, 2016)
<i>Osmia albiventris</i>	2			2		native
<i>Osmia georgica</i>	1		1			native
<i>Osmia lignaria</i>	484	43	245	195	1	native
<i>Osmia pumila</i>	173	1	172			native
<i>Osmia tersula</i>	77	5	9	61	2	native
<i>Stelis coarctatus</i> *	42	4	33	5		native, *on <i>H. carinata</i>
<i>Stelis permaculata</i> *	3	3				native, *on <i>H. carinata</i>
<i>Hoplitis albifrons</i> ^b	1			1		native
Total nests	1757	345	1009	396	7	

2 * Cleptoparasitic species: number of nests parasitized. ^b Species only found in stem bundles
 3

Table 3(on next page)

Results of linear mixed effects models of the influence of ecological provinces on frequency of tunnel-nests.

Species presented are a subset of all species collected representing those collected from more than 10% of nest blocks, representing species in the genera *Heriades*, *Osmia*, and *Megachile*. Significant results are indicated in bold. Means and standard errors are calculated from the raw data. *Post hoc* tests are the results of estimated marginal means comparisons.

EBF=Eastern Broadleaf Forest, PP=Prairie Parklands, LMF=Laurentian Mixed Forest

1

species	mean nest frequency per block +/- s.e.				χ^2	df	p-value	Post hoc tests	
	EBF	PP	LMF	direction					p-value
<i>H. carinata</i>	1.02 ± 0.12	1.34 ± 0.21	0.52 ± 0.20	χ^2	6.05	2	<0.05	EBF = PP	0.2439
								EBF > LMF	0.0352
								PP > LMF	0.0152
<i>O. lignaria</i>	1.13 ± 0.23	0.5 ± 0.25	2.9 ± 0.70	χ^2	9.22	2	<0.01	EBF >- PP	0.0447
								EBF =- LMF	0.1113
								LMF > PP	0.0027
<i>O. pumila</i>	0.79 ± 0.12	0.01 ± 0.01	NA	χ^2	6.03	1	<0.01	EBF > PP	0.0001
<i>O. tersula</i>	0.04 ± 0.02	0.06 ± 0.03	0.90 ± 0.20	χ^2	52.84	2	<0.01	EBF = PP	0.7153
								LMF > EBF	<0.0001
								LMF > PP	<0.0001
<i>M. campanulae</i>	0.42 ± 0.05	0.38 ± 0.12	NA	χ^2	0.40	2	1	EBF = PP	0.53
<i>M. pugnata</i>	0.37 ± 0.08	0.72 ± 0.19	0.12 ± 0.06	χ^2	8.66	2	<0.05	EBF = PP	0.1205
								EBF > LMF	0.0475
								PP > LMF	0.0043
<i>M. relativa</i>	0.27 ± 0.09	0.13 ± 0.05	0.91 ± 0.30	χ^2	9.26	2	<0.001	EBF = PP	0.3295
								LMF > EBF	0.0126
								LMF > PP	0.0047

2

3

Table 4(on next page)

Biplot scores for constraining variables of land cover related to presence of tunnel-nesting bee species or bumble bee species abundance.

The forest category combines deciduous, mixed, and evergreen forest. All levels of development were combined into the developed category. The grassland category includes grasslands/herbaceous and pasture/hay. Correlations with absolute values >0.5 are bolded.

1

Tunnel-nesting bees	RDA1	RDA2	RDA3
developed	-0.07	-.99	-0.02
forest	0.82	0.25	-0.51
grassland	-0.73	0.42	-0.53

Bumble bees	CCA1	CCA2	CCA3	CCA4
developed	-0.55	-0.48	-0.67	-0.12
crops	-0.84	0.26	0.41	0.23
forest	0.79	0.53	-0.31	-0.10
grassland	-0.20	0.27	0.24	-0.91

2

Table 5(on next page)

Bumble bee species total abundance and abundance within three ecological provinces.

Eastern Broadleaf Forest (EBF), Laurentian Mixed Forest (LMF), and Prairie Parkland (PP).

Species are ordered from greatest to least total abundance.

1

Bombus species	Total	EBF	LMF	PP
<i>ternarius</i> (Say, 1873)	2069	602	1466	1
<i>impatiens</i> (Cresson, 1863)	1975	1781	140	54
<i>vagans</i> group ^a	1904	756	1116	32
<i>bimaculatus</i> (Cresson, 1863)	1257	1109	71	77
<i>griseocollis</i> (DeGeer, 1773)	977	733	142	102
<i>borealis</i> (Kirby, 1837)	252	68	173	11
<i>auricomus</i> (Robertson, 1903)	145	116	7	22
<i>rufocinctus</i> (Cresson, 1863)	143	122	21	0
<i>fervidus</i> ^b (Fabricius, 1798)	131	103	14	14
<i>terricola</i> ^b (Kirby, 1837)	103	34	69	0
<i>perplexus</i> (Cresson, 1863)	71	28	43	0
<i>citrinus</i> (Smith, 1854)	42	20	20	2
<i>flavidus</i> (Eversmann, 1892)	36	20	16	0
<i>pensylvanicus</i> ^b (DeGeer, 1773)	22	20	0	2
<i>affinis</i> ^b (Cresson, 1863)	18	17	1	0
<i>insularis</i> (Smith, 1861)	2	1	1	0

2 ^a *Bombus vagans* group includes *B. vagans* (Smith, 1854) and *B. sandersoni* (Franklin, 1913).3 ^b Categorized with IUCN status vulnerable or critically endangered (Hatfield, 2015)

Table 6(on next page)

Results of linear mixed effects model of influence of ecological provinces on overall bumble bee abundance.

Bee abundances are log-transformed.

1

Bumble bees	Fixed effects	Estimate	SE	T	P
	Eastern Broadleaf Forest	4.2961	0.1628	26.39	<0.002
	Laurentian Mixed Forest	0.1210	0.2538	0.477	0.63
	Prairie Parklands	-1.2629	0.4023	-3.139	<0.002
Random		Variance	SD		
	Route	0.4086	0.6392		
	Residual	0.1812	0.4256		

2