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ABSTRACT
Background. Loss of biological connectivity increases the vulnerability of ecological
dynamics, thereby affecting processes such as pollination. Therefore, it is important
to understand the roles of the actors that participate in these interaction networks.
Nonetheless, there is a significant oversight regarding the main actors in the pollination
networks within the highly biodiverse forests of Colombia. Hence, the present study
aims to evaluate the interaction patterns of a network of potential pollinators that
inhabit an Andean Forest in Totoró, Cauca, Colombia.
Methods. The interactions between plants and potential pollinators were recorded
through direct observation in 10 transects during six field trips conducted over the
course of one year. Subsequently, an interaction matrix was developed, and network
metrics such as connectance, specialization, nestedness, and asymmetry of interaction
strength were evaluated by applying null models. An interpolation/extrapolation curve
was calculated in order to assess the representativeness of the sample. Finally, the
key species of the network were identified by considering degree (k), centrality, and
betweenness centrality.
Results. A total of 53 plant species and 52 potential pollinator species (including insects
and birds) were recorded, with a sample coverage of 88.5%. Connectance (C = 0.19)
and specialization (H2’ = 0.19) were low, indicating a generalist network. Freziera
canescens, Gaiadendron punctatum, Persea mutisii, Bombus rubicundus, Heliangelus ex-
ortis, Chironomus sp., and Metallura tyrianthina were identified as the key species that
contribute to a more cohesive network structure.
Discussion. The present study characterized the structure of the plant-pollinator
network in a highly diverse Andean forest in Colombia. It is evident that insects are the
largest group of pollinators; however, it is interesting to note that birds form a different
module that specializes in pollinating a specific group of plants. On the other hand, the
diversity and generality of the species found suggest that the network may be robust
against chains of extinction. Nevertheless, the presence of certain introduced species,
such asApis mellifera, and the rapid changes in vegetation covermay affect the dynamics
of this mutualistic network. So, it is imperative to apply restoration and conservation
strategies to these ecosystems in order to enhance plant-animal interactions and prevent
the loss of taxonomical and functional diversity.
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INTRODUCTION
High Andean forests and moorlands in Colombia are arguably the mountain ecosystems
that are most affected by anthropogenic pressures (Bax & Francesconi, 2019), which
negatively impact the diversity of organisms (Hazzi et al. 2018) and ecological processes
(Gonda, 2020; Rodríguez-Echeverry & Leiton, 2021). As a result, ecosystem functions and
services, such as pollination, seed dispersal, carbon sequestration, and watershed protection
(Llambíet al., 2019), are in a highly vulnerable situation. Any alteration to these functions
and services could lead to serious problems for the natural environment and the country’s
economy.

Pollination is a crucial process for maintaining vegetation cover. It involves interactions
between angiosperm plants and approximately 300,000 species of pollinating agents,
including both vertebrates and invertebrates (Ollerton, Winfree & Tarrant, 2011).
Pollination is currently affected by pressures on vegetation, such as logging for firewood
and timber, agriculture, livestock, and mining (Goulson et al., 2015). Additionally, there
are threats to pollinators, including declining population sizes, extinction, and an alarming
situation for invertebrates (Nates-Parra, 2016; Shivanna, Tandon & Koul, 2020). The effects
that disturbances can have on plant-animal interaction networks are threatening, as they
can alter the phenology, distribution, and/or disappearance of their consumers (Herzog et
al., 2010;Maglianesi & Jones, 2016).

In a scenario of global environmental change, it is essential for everyone to learn about
the structure, dynamics, and sensitivity of pollination networks and their components in
various ecosystems. Research on interaction networks in Colombia is emerging (Carvajal
et al., 2023; Ramírez-B et al., 2017; Vaca-Uribe et al., 2021). Several studies focusing on the
composition and structure of networks have been carried out in different areas of the
country (Aguado, Gutiérrez-Chacón & Muñoz, 2019).

There has been limited research on the characteristics of interaction networks in the
high Andean mountains, specifically in high Andean forests and moorlands. As a result,
there is a scarcity of literature on these networks, making it difficult to determine whether
they are similar to or different from ecosystems at lower altitudes. Given the more extreme
conditions in terms of temperature, light, radiation, and humidity, it is observed that
these networks are less diverse in terms of species and interactions. However, they exhibit
greater specialization and modularity. Nevertheless, additional differences may emerge
from biogeographic factors, historical utilization of the environment, and global climate
change.

Ignorance of the interaction networks allows propose the following questions: (1) What
are the components of a plant–pollinator interaction network within the Andean forest?
(2) Which interaction patterns may be found in the topology of this network? and (3)
What are the key species of the interaction network of this Andean forest?
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To address these questions, the present study has the general objective of evaluating the
interaction patterns between plants and potential pollinators in a mountain forest located
in the southwestern Andes of Colombia. This will be achieved through the following specific
objectives: (1) determine the components of the plant–pollinator interaction network in the
Andean forest; (2) characterize the interaction patterns within the network’s topology; and
(3) identify the key species within the interaction network of the mountain forest. Finally,
this study aims to address the following hypothesis: if the vegetation in the study area
has been modified due to the implementation of productive systems, then the interaction
network will exhibit a low specialization index and a generalist structure.

MATERIALS AND METHODS
Location of the study area
The study was carried out in El Cofre village, located in the municipality of Totoró,
Cauca, Colombia. The field site is located between 2,800 and 3,300 m.a.s.l., at 2◦30′50′′N,
76◦20′14′′W, and 2◦31′44′′N, 76◦21′18′′W, with an area of approximately seven hectares
(Fig. 1). The annual average precipitation is 2,000 mm, with a bimodal weather season
pattern. Heavy precipitation occurs during April and May, while low precipitation is
observed from November to January (Martínez, 2011). The area has a relative humidity
between 79.3% and 83.1%. The yearly temperature ranges from 9 to 13 ◦C. The site has
a slope ranging from 20% to 70%. Most of the territory is characterized by mountainous
terrain with topography ranging from slightly to extremely rugged (Arcos, 2009; Becoche-M,
Macías-P & Zambrano-G, 2018;Martínez, 2011).

The study area is localized within the Guanacas-Purace-Coconuos complex, which is
characterized by a vegetation cover classified as Andean Forest, as defined by Cuatrecasas
(1989). This area also exhibits significant biodiversity and ecosystem richness, as it is located
in a transitional zone between the Andean and moorland biomes. The Cofre River basin,
which is a tributary of the Cauca River, plays a crucial role in providing ecosystem services
in the area. However, mining activities have led to increased deforestation and have had a
significant impact on water contamination (Arcos, 2009). As a result, this is one of the last
remaining forest remnants in the municipality, and despite the anthropic intervention, it
still conserves species that are characteristic of this particular ecosystem.

Identification and records of network components
During six field trips, 10 transects of 100 m× 2 m were randomly established; each transect
was separated from the next by 50 m. The transects were sampled for six months in the year
2019, specifically during the rainy season. All plant–pollinator interactions were recorded
during field observations of ornithophilous and entomophilous plants in the blooming
phase. Sampling consisted of observing two individuals per plant species from 8:00 to
18:00 during each field trip. Each individual was observed for 30 min, resulting in a total
of 360 min, or 6 h per plant species. This approach aimed to obtain the maximum number
of interactions (Vizentin-Bugoni et al., 2016). Every time a plant was visited, it was marked
with visible tape to ensure it could be easily identified and observed during subsequent
field trips.
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Figure 1 Study area. Location of the study area in El Cofre village, Totoró, Cauca. Map credits:
Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase,
IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap
contributors, and the GIS User Community.

Full-size DOI: 10.7717/peerj.16133/fig-1

Additionally, the observations were supplemented with the visit to each transect in order
to evaluate new species of plants in the blooming phase. All the marked plants were visited
every other week. The recording of interactions for each marked plant was also randomized
during the field trips (Vizentin-Bugoni et al., 2016).

The procedure to classify an organism as a potential pollinator consisted of meticulous
observation by the researcher, who recorded all the processes taking place in the flower.
Three unique behaviors were established to define the potential pollinators: (1) spending a
minimum of 3 s on the flower; (2) having pollen on the organism’s body; and (3) moving
among flowers (Álvarez & Noval, 2017).

The vegetation evaluated in the study transects was identified according to the work of
Arcos (2009), as were the functional traits of the plants, such as plant habits, height, and
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reproduction strategies. When identification in the field was not possible, the samples were
collected and taken to the herbarium of the Universidad del Cauca (Cauca State University)
to be confirmed by an expert.

Birds were observed and recorded using Bushnell 50x10 binoculars. The classification
of the birds was based on the guide by Ayerbe-Quiñones (2018). Unidentified insects were
collected using an entomological net and placed in glass vials containing 70% alcohol to be
transported to the lab. There, they were identified using the guides by Borror, Triplehorn
& Johnson (1989), González, Ospina & Bennett (2005), Serna (1996), Smith-Pardo & Vélez
(2008) andWolf (2006), along with some other names confirmed by experts. The specimens
will be deposited in the Natural History Museum of the Universidad del Cauca.

The collection of biological material was carried out under Resolution 0152 of February
12, 2015, issued by the National Authority for Environmental Licenses (ANLA), which is
the entity responsible for granting permits for the collection of wild species of biological
diversity, specifically for non-commercial scientific research purposes.

Structural parameters of the pollinator network
First, an interaction matrix was developed, where the columns represent animal species
(potential pollinators) and the rows represent plants. The frequency of interactions (i.e.,
the number of visits or grade-k) for each species was recorded in this matrix (Medel,
Aizen & Zamora, 2009). In order to assess the robustness of the sampling, a curve of
the cumulative interactions was calculated (Medel, Aizen & Zamora, 2009) using an
interpolation/extrapolation method. This method was based on the sample coverage,
which measures the proportion of the total diversity represented by the recorded data
(Chao & Jost, 2012).

The connectance, nestedness, specialization, interaction strength asymmetry (ISA),
extinction slope, robustness, and modularity of the general network were also calculated.
The modularity was determined using the QuaBiMo algorithm (Dormann & Strauss, 2014;
Dormann et al., 2022; Ramírez-B et al., 2017).

On the other hand, the present study considered species with higher centrality
measurements at the species level as key species in the potential pollinator network
structure. The criteria used for this were:

-Species with the highest grade (k), which defines the number of species to which a
node is related (Jordano, 1987). In animal-plant interaction matrices, the grade indicates
the generalization or specialization of each species (Bascompte & Jordano, 2008; Bascompte
& Jordano, 2007).

-Species with higher centrality, which measures the relative proximity to each node in
the network structure compared to others. This measure is calculated based on the number
and pattern of node connections. High values indicate that the evaluated species is located
in the central positions of the network (Ramírez-B et al., 2017).

-Species with higher betweenness centrality, which reveals the importance of a node
as a connector among different areas of the network. Therefore, the nodes with values
higher than zero connect network areas that would otherwise be dispersed or completely
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disconnected. It also shows the significance of the species for network cohesiveness
(Newman, 2004; Ramírez-B, 2013).

Data analysis
All data were calculated using R software version 4.3.0 (R Core Team, 2023). The
interpolation/extrapolation curves were estimated employing Hill numbers (q= 0),
sample coverage, and a 95% confidence interval. This was done using the statistical
packages iNEXT (Hsieh, Ma & Chao, 2013) and SpadeR (Chao & Jost, 2015; Chao et al.,
2015), complemented with the knitr package (Xie, 2014). Subsequently, the networks were
graphically represented using the Bipartite 2.18 package (Dormann et al., 2022; Dormann
et al., 2009). This package is also used to calculate the original network indices and null
models, providing a clear visualization of the network patterns.

In order to evaluate the relevance of metrics, the observed values were compared to
those generated through null models (Dormann et al., 2009) and thus determined whether
the network patterns are natural or if they are generated randomly (CaraDonna et al.,
2017; Ponisio, Gaiarsa & Kremen, 2017). For implementing the null models, the protocol
proposed by García (2013) and Gotelli (2000) was considered. To assess the level of
significance, the observed metrics at the network level were compared to 1,000 null models
generated using the algorithm developed by Patefield (1981). This algorithm utilizes total
fixed peripherals to distribute interactions and produce a series of networks where all
species are randomly associated (Blüthgen et al., 2008). The significance evaluation was
performed using the Bipartite R package (Dormann et al., 2022).

RESULTS
Network structure of potential pollinators
The potential plant–pollinator network from Totoró Andean Forest is made up of 53 plant
species and 52 animal species (hummingbirds -5 sp.-, and insects -47 sp.-) (Appendix 1).
A total of 524 interactions out of the 2,756 possible interactions (53 plants × 52 animals)
were observed, assuming that all visitors visite all plant species. These were represented in
a bipartite network (Fig. 2).

The frequency of visits between animals and plants fluctuated, but there were distinct
pairs of species, such as Gaiadendron punctatum and Sphecodes sp., which, according to
the records, had the highest number of visits (Fig. 3). The accumulated interaction curve
shows 88.5% representativeness.

The 53 plant species belong to 48 genera of 33 families. The herbaceous layer has
the highest number of species (24), followed by shrubs (19) and arboreal species (10).
The families with the highest number of recorded interactions were: Asteraceae (109),
Melastomataceae (55), Pentaphylacaceae (43), Loranthaceae (41), Lauraceae (39), and
Cunoniaceae (39). Genera with the highest documented interactions were Miconia (50),
Freziera (43),Gaiadendron (41), Persea (39),Weinmannia (39),Gynoxys (33), and Baccharis
(29). Although the overall availability of floral resources was not evaluated, it was found
that the highest density of flowers was consistent with the botanical families that had the
highest number of interactions.
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Figure 2 Network representation of the bipartite interaction between plants (green) and animals (or-
ange). The width of the interaction shows the level of intensity of the visit. The left column (green color)
represents 53 plant species, and the right one represents 47 species of insects (orange color). The five hum-
mingbirds were marked with a red box; the Hymenoptera were marked with a yellow box; the Diptera
were marked with a black box; the Coleoptera were marked with a brown box; and the Lepidoptera were
marked with a purple box.

Full-size DOI: 10.7717/peerj.16133/fig-2
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Figure 3 Interaction matrix showing the interaction intensity. The rows in the dataset correspond to
the 53 plant species, while the columns represent the 52 animal species. Light color indicates a lower fre-
quency of interaction, while dark color signifies a higher frequency of interaction.

Full-size DOI: 10.7717/peerj.16133/fig-3

The 52 species of potential pollinators are divided into 47 insect species and five bird
species. Insects belong to the orders Hymenoptera (206 unique interactions), Diptera
(190), Coleoptera (57), Lepidoptera (18), and 24 families. Among these, Ichneumonidae,
Apidae, Halictidae, Syrphidae, and Tachinidae had the highest number of interactions. The
only bird family recorded with 53 interactions was the Trochilidae family.

The network had a connectance of 19.1%, indicating a generally low density of
interactions between plants and potential pollinators (Table 1). The network specialization
(H2′) (Table 1) shows how most potential pollinators, such as Apis mellifera, Bombus
rubicundus, and Bombus hortulanus, interact with the same plant species, including Freziera
canescens, G. punctatum, and Persea mutisii. This indicates a high level of generalization.
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Table 1 Metrics at the network level. Showing connectance values, H2 (specialization), NODF (nested-
ness), ISA (interaction strength asymmetry); modularity, gradient of extinction (animals and plants), and
robustness (animals and plants) calculated from the original network.

Metrics Calculated value

Connectance 0.1912192
H2 0.1979635
NODF 55.95717
ISA −0.02007464
Modularity 5
Extinction gradient (animals) 3.5279669
Extintion gradient (plants) 8.5598719
Robustness (animals) 0.765515
Robustness (plants) 0.8750506

The nestedness of the network (NODF) value showed a result of 55.95 (Table 1),
suggesting that there is a group of generalists in the network of potential pollinators
interacting as a sub-group of the species with fewer interactions. The obtained value of
the ISA (Table 1) demonstrates that there is a greater dependency of plants on animals
than vice versa. It was also found that the network is integrated by well-defined groups of
species, as indicated by its modularity (Table 1). It is important to highlight that the five
species of birds were part of a different sub-group, separate from the other four sub-groups
formed by insects (Fig. 4).

The extinction gradient of the network demonstrates a greater sensitivity to the extinction
of potential pollinators when the plants in the system are eliminated. However, the area
under the extinction curve suggests that the gradual decrease in the gradient is indicative
of a very robust network (sample coverage = 0.885).

Seven key species were identified within the interaction network. These were chosen by
observing the highest values of grade, betweenness centrality, and centrality. First, there
are three plant species—F. canescens, G. punctatum, and P ersea mutisii—that exhibit the
highest values in terms of the number of species they are linked to (grade), their central
position in the network (centrality) and their relevance as connectors between different
parts of the network (betweenness centrality) (Table 2).

Similarly, it was possible to identify Bombus rubicundus, Heliangelus exortis, Chironomus
sp., andMetallura tyrianthina as key species in the group of potential pollinators. According
to the analysis, these species are the most generalist, as they have the greatest number of
links and are also the ones with the closest proximity to each species in relation to the
others and greater importance in terms of network cohesion.

Evaluation of metrics of the original network through the Patefield (1981) algorithm was
significant (p< 0.001; H1 accepted) (Table 3), indicating natural patterns of connectance
behavior, specialization (H2′), nestedness (NODF), and ISA occurring in the ecosystem.
These were determined by looking at the distance between measurements of the recorded
values of index value distributions in a random network built by the null model (Fig. 5).
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Figure 4 Interaction pattern with identified modules for QuaBiMo (steps= 1E8;Q= 0.25) (Dormann
& Strauss, 2014). The rows in the dataset correspond to the 53 plant species, while the columns represent
the 52 animal species. Darker squares indicate the observed interactions. Red squares outline the five mod-
ules. The first module includes the five bird species, while a clear ecological pattern for the other modules
is less evident.

Full-size DOI: 10.7717/peerj.16133/fig-4

DISCUSSION
The mutualistic network interaction of a cloud Andean Forest in Totoró is a representative
case of interactions between plants and potential pollinators living in the area. The obtained
sample coverage represents a significant part of the community, in which values such as
connectance and network nestedness occur naturally in the ecosystem.

The variations in climatic seasonality, plant phenology, and the wide diversity of insects
in the Neotropics (Basset et al., 2012) contribute to the challenge of comprehensively
documenting all the interactions occurring at the site. During the development of this
research, we were able to observe a rainy season during which the number of interactions
decreased. This decrease can be attributed to adverse weather conditions, such as wind,
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Table 2 Evaluated metrics for each plant and animal species. There are 10 plant and animal species with
higher calculated values for grade, centrality, and betweenness centrality, making them key species. (*) Key
species in the network structure.

Especie Grade Centrality Betweenness
centrality

Freziera canescens* 43 0.14227858 0.06285219
Gaiadendron punctatum* 41 0.14227858 0.55136541
Persea mutisii* 40 0.07001098 0.10273082
Weinmannia mariquitae 40 0.01944184 0
Gynoxys columbiana 33 0.01740747 0.07108799
Baccharis latifolia 29 0.01944184 0.01907239
Ilex sp. 29 0.01944184 0
Miconia theizans 28 0.01944184 0.14217599
Saurauia bullosa 23 0.01740747 0

PLANTS

Miconia orcheotoma 22 0.07001098 0
Apis mellifera 27 0.00637904 0
Bombus rubicundus* 26 0.08422752 0.10849057
Bombus hortulanus 21 0.08422752 0
Panyapedaliodes drymaea 18 0.00637904 0
Heliangelus exortis* 18 0.19077916 0.11179245
Leia sp. 17 0.00637904 0
Chironomus sp.* 17 0.00637904 0.125
Eudejeania sp. 15 0.00637904 0
Metallura tyrianthina* 15 0.21460551 0.00141509

ANIMALS

Campopleginae sp. 15 0.00637904 0

Table 3 Null model to evaluate metrics from the original network. The expected mean for
connectance, specialization (H2’), nestedness (NODF), and interaction strength asymmetry (ISA)
resulted from the null model, which is statistically different from the calculated value obtained from the
recorded data. The standard deviation (Sd) is calculated from the distribution of random network values
generated by the null model, Fisher (F) statistics, and significance value (p). Significance was calculated
using Patefield’s (1981) algorithm.

Original net Observations Null model
(Patefield 1981)

sd Z p

Connectance 0.1912192 0.2446633 0.00303675 −17.62934 <0.001
H2 0.1979635 0.08281885 0.00344194 32.7792 <0.001
NODF 55.95717 63.63671 1.890555 −4.103718 <0.001
ISA −0.02007464 0.00453684 0.00155516 −15.99905 <0.001

radiation, and precipitation, which likely hindered the free movement of potential
pollinators. The floral phenology could also influence the decrease in interaction records
(Dáttilo & Rico-Gray, 2018). For example, species like Miconia orcheotoma and Miconia
theizans had flowers throughout all the field trips, while others, such asVallea stipularis, Ilex
sp., G. pucntatum, Meliosma novogranatensis, and Weinmannia mariquitae, among others,
only had flowers during one or two field trips (Martínez, 2011; Ospina, 2009).
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Figure 5 Null model graphic for evaluated metrics on the original network. The X-axis represents the
index value, and the Y -axis indicates the density of the model for each index unit. A line representing the
observed value is compared to a bell curve representing the distribution values of a random network built
by the null model. The distance between these two measurements is significantly different. The following
parameters are represented: (A) connectance, (B) specialization (H2′), (C) nestedness (NODF), and (D)
interaction strength asymmetry (ISA).

Full-size DOI: 10.7717/peerj.16133/fig-5

However, the low number of observed interactions compared to those that were possible
can also be explained by the presence of forbidden links in the network (Ramírez-B, 2013).
These forbidden links may be due to differences in size between the androecium and
the pollinator or between the size of the beak and the corolla. An example of this is the
absence of a registry for hymenopteran or dipteran insects that are less than one centimeter
long and interact with large flowers (≥10 cm), such as Brugmansia sanguinea or Passiflora
mixta. However, authors like Vizentin-Bugoni, Maruyama & Sazima (2014) mention the
importance of these types of interactions for the structure of ecological networks, which
may be more significant than species abundance.

Some of the interactions between pairs of species were recorded with greater intensity
compared to others. Most of these interactions happened with generalist species of
insects, such as Sphecodes sp., Neocorynura sp1., Bombus rubicundus, Neocorynura sp2.,
and plants such as G. punctatum, Persea mutisii, and F. canescens. The intensity of such
interactions might be linked to an ecological strategy adopted by potential pollinators,
mostly insects, which consists of maintaining fluctuating and abundant populations as
well as a high number of offspring (Begon, Townsend & Harper, 2006). That dominance
of these organisms also contribute to a higher frequency of interactions (Bascompte et al.,
2003; Vázquez et al., 2009).

The plants documented in the network structures are characterized by their small
size, small leaves, and a canopy filled with abundant epiphytes. These characteristics are
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representative of this particular life zone (Cuatrecasas, 1989; Rangel-Ch., 2015). In addition,
the wide variety of species in the herbaceous layer indicates that the forest is in the early
stages of regeneration. Pioneer species from the Melastomataceae and Asteraceae families
are dominant (Arcos, 2009; Vargas, 2008), and these families had the highest number of
observed interactions. It is important to highlight the role of such pollinators during the
early succession stages. Some studies have demonstrated that these organisms are more
abundant in regenerating ecosystems than in mature forests, primarily because of the
greater availability of resources (Roberts, King & Milam, 2017; Tauro, 2013). Pioneer plants
from families such as Asteraceae and Melastomataceae, which exhibit high phenotypical
plasticity and colonization capacity, provide attractive flowers and rewards for pollinators
(Vargas, 2008). In this study, pioneer species such as Baccharis latifolia andMiconia theizans
belonging to these families, respectively, were recorded.

Additionally, it has been found that pollinator diversity is similar in both recovering
ecosystems and conserved ones. This suggests that these organisms play a role in re-
establishing biological connectivity (Roberts). Plants with zoophile pollination has been
proposed as an ecological attribute when choosing potential species for regeneration, as
they may aid in accelerating the regeneration process in ecological dynamics (Vargas,
2008).

As for the potential pollinators, birds and insects were identified. The observed
hummingbirds (Chaetocercus mulsant, Aglaeactis cupripennis, H. exortis, Metallura etallura
tyrianthina, and Colibri coruscans) belong to the studied territory (Ayerbe-Quiñones et al.,
2008), and their interactions occurred only with bush, arboreal, and vine plants, such as
Duranta obtusifolia, F. canescens, or Passiflora mixta.

However, most of the recorded pollinators were insects. This could be due to the
presence of a high density of typical floral resources in plant succession processes. In
addition, this forest fragment is surrounded by an agricultural matrix, which can result
in a higher frequency of certain insects (Becoche-M, Macías-P & Zambrano-G, 2018). The
Hymenoptera order is characterized by a wide variety of pollinator species, including
bees and wasps. This can be easily demonstrated by the interactions observed during field
trips, where species such as Bombus rubicundus, Bombus hortulanus, and Angiopolybia sp.
were frequently seen. Without a doubt, this order is one of the major contributors to the
ecosystem service of pollination (Nates-Parra, 2016). The Diptera order also presents a
wide range of interactions; however, Borror, Triplehorn & Johnson (1989)mention that the
number of species devoted to pollination is lower compared to Hymenoptera. It is also
important to emphasize that some researchers, such as Dalsgaard et al. (2009) and Devoto,
Medan & Montaldo (2005), point out how the richness and composition of pollinator
species vary according to elevation, precipitation, and temperature. Additionally, these
authors also mention a global pattern where dipteran richness is predominant in humid
areas while hymenopteran richness is predominant in dry land. Although the present
research was carried out in a humid territory, an equal number of species were found
for both orders. This is probably attributed to factors such as a wide variety of pioneer
plant species that dominate the early succession stage of the forest. These plants offer floral
appeals and rewards that are utilized by hymenopteran and dipteran insects. On the other
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hand, there could be other species whose habitat has changed as a result of environmental
phenomena, such as climate change (Kiers et al., 2010; Michener, 2007; Tylianakis et al.,
2008). Nevertheless, understanding ecological patterns in the tropics is challenging due to
the limited research conducted in these areas.

Likewise, the network metrics were calculated, but they cannot be compared at a
quantitative level to other networks due to differences in size and unknown distributions
of each recorded variable (Ramírez-B, 2013). Nonetheless, below is a descriptive analysis of
the interaction patterns.

As for network connectance, its low value is attributed to the wide diversity of recorded
species and interactions. Some authors suggest that this happens because when species
richness increases, the number of interactions also increases, but connectance decreases
exponentially (Jordano, 1987; Ramírez-B, 2013; Winemiller, 1989). Research studies, such
as those conducted by Basilio et al. (2006) and Olesen et al. (2008), have identified similar
patterns in these parameter behaviors.

Network specialization shows that most potential pollinators tend to be generalists,
although some species with only a single interaction can be found, such asTerphis sp., which
is extremely unusual, with distribution and behavior still unknown.However, specialization
is often the result of insufficient sampling. However, when this is evaluated over several
years, most of the recorded organisms tend to be generalists (Petanidou et al., 2008). It is
important to highlight that specialized pollinators undergo co-evolutionary processes that
are being seriously threatened by activities that degrade ecosystem health. This poses a risk
of extinction for species that rely on these pollinators for sexual reproduction and cannot
replace this dependency (Lindberg & Olesen, 2001).

The recorded nestedness value can be attributed to interactions between abundant
and dominant species with a high number of interactions, such as F. canescens and W.
mariquitae, and potential pollinators, such as Eurymetopum sp. and Hylodanacaea sp., that
were recorded visiting the former species only a few times. The nestedness pattern may
suggest heterogeneity in the evolutionary development of each species, thereby generating
greater selective effects among the species that interact more frequently (Medel, Aizen &
Zamora, 2009). Yet, some authors, like Rico-Gray (2007), emphasize the importance of
obtaining a substantial sampling effort to replicate the methodology in neighboring areas.
This is necessary in order to affirm the co-evolutionary patterns that are recorded in the
pollination networks.

The interaction asymmetry index suggests that potential pollinators in this network
have a greater dependence on plants than the opposite. This can be attributed in part to the
evolutionary strategy adopted by the majority of angiosperms, wherein energy expenditure
can be minimized while achieving high reproductive success through interactions with
pollinators (Nates-Parra, 2016). Likewise, Vázquez et al. (2007) suggest that the high
relative abundance of some species can significantly influence the increase in asymmetry
in interaction strength. This finding is consistent with the results of our research, which
identified potential pollinators such as Sphecodes sp., Bombus rubicundus, Neocorynura
sp1., and Chironomus sp. that were recorded in high abundance in the area, probably
due to the agricultural and livestock activities in the surrounding study area. However, it
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would be important to further evaluate the role of species such as Sphecodes sp., which are
generally kleptoparasitic bees without highly developed scopes, why their contribution to
the pollination process may not be as effective as in other species (Nates-Parra, 2016).

Network modularity indicates that there are five compartments. One of these
compartments comprises five bird species, while the other four compartments consist
of insects. Even though there were insect interactions with ornithophile plants, a sub-
group formed between hummingbirds and bell-shaped flowers. This is the result of
co-evolutionary processes that allow plants to reproduce in exchange for a reward (Medel,
Aizen & Zamora, 2009). The specialization of the members within this module is the main
reason for their existence (Dormann & Strauss, 2014).

The remaining four compartments were formed by insects and the rest of the plant
species, but as mentioned by Dormann & Strauss (2014) in their research, a possible
ecological pattern is less evident. In order to ecologically interpret these modules, it is
necessary to have a deep understanding of them. It is crucial to identify and conserve the
species that serve as hubs and links among modules, as their removal from the network
can trigger cascades of extinction (Olesen et al., 2007). On the other hand, it is also possible
that new modules may be generated after documenting all interactions, including potential
pollinators such as bats and/or moths, when analyzing the data.

Other evaluated metrics included the extinction slopes, which indicated the high
sensitivity of potential pollinators to extinction if plants are removed from the network.
According to Memmott, Waser & Price (2004), this is a result of the decline in various
specialist organisms, which tend to disappear first. This finding aligns with the information
found in the present research. Nonetheless, there is a high value of robustness for animals
and plants, which increases the network’s tolerance to extinction. This is attributed to
network redundancy (Kaiser-Bunbury et al., 2010; Memmott, Waser & Price, 2004). This
behavior was also recorded in the present study, where most plants interacted with many
pollinators.

Seven key species were identified based on their contribution to the network structure.
The first species recorded were F. canescens, G. punctatum, and Persea mutisii. This species
is essential for the forest structure, as they have higher horizontal and vertical dominances
compared to other species (Arcos, 2009). They may also be plants that offer significant
flower rewards (pollen and nectar), which guarantees their reproduction and interaction
with numerous pollinators. According to Tinoco et al. (2016) G. punctatum produces an
average of 0.09 ml of nectar and has a sugar concentration of 31 mg/ml, which is high
compared to other evaluated plants. On the other hand, these species can contribute to
ecological restoration processes, strengthening the resilience and function of the network
(Kaiser-Bunbury et al., 2017).

Bombus rubicundus and Chironomus sp. were also identified as representing the
hymenopteran and dipteran orders that stand out for being generalists and abundant
in the study area. Among them, Bombus rubicundus is considered an important pollinator
of the Andean forest in the country (González, Ospina & Bennett, 2005).

H. exortis and Metallura tyrianthina are hummingbird species characteristic of this life
zone area, observed in the field with greater frequency compared to the other observed bird
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species. Added to this, the number of interactions and the frequency of visits are important
factors in maintaining network cohesiveness. This is supported by studies conducted by
Bascompte et al. (2003) andMartín-González, Dalsgaard & Olesen (2010); that highlight the
importance of generalist species in maintaining network cohesiveness. They explain that
the highly heterogeneous distribution of interactions among species provides alternative
pathways to find answers when the system is disturbed.

It is remarkable to observe the presence of each taxonomic group (plants, birds, and
insects) as key species, highlighting the essential role that all network components play
in the dynamics of the ecosystem. It is also important to emphasize that even though
pollination networks are dynamic (CaraDonna et al., 2017) and tolerant of the extinction
of their components (Memmott, Waser & Price, 2004), the elimination of key species, as
identified in this study, can lead to the secondary extinction of other potential pollinators
and plant species.

Apis mellifera was also identified as an important pollinator of the native vegetation
in the study area. However, it is important to note that this species was introduced from
Europe (Michener, 2007) and has successfully adapted to the different ecosystems in the
country. Even though the ecosystem services offered by this species, such as pollination
and derivative products, are important, studies have shown that the presence of this species
displaces native pollinators. This displacement leads to a decrease in the production of fruit
and seeds from the native flora (Montero-Castaño et al., 2018; Valido, Rodríguez-Rodríguez
& Jordano, 2014). The impact caused by an invasive species on the ecosystem can result in
new adaptation mechanisms in native plants. These mechanisms may include changes in
flowering stages, flower morphology, and flower reward, causing a loss in the diversity and
functionality of the pollinator network (Pisanty & Mandelik, 2012). Although other studies
also mention that these particular species only play a secondary role, affecting the native
species mildly (Flórez-Gómez, Maldonado-Cepeda & Ospina-Torres, 2020).

On the other hand, evaluating the structural parameters of the original network using
a null model revealed that connectance, specialization, nestedness, and ISA are inherent
patterns in the ecosystem. However, it is important to understand that pollination networks
are dynamic over time and that their interactions are not static. This is because communities
can undergo structural rewiring as new interactions are established among the remaining
species in response to changing environmental conditions (CaraDonna et al., 2017; Costa
et al., 2018). This suggests that, despite the loss of species, the network components would
rearrange their interactions (CaraDonna et al., 2017), mostly because of the niche width
of the persistent species and the reduction of intra-specific competition (Medel, Aizen &
Zamora, 2009).

Nevertheless, the continuous elimination of species from the system due to diverse
anthropic or climatic factors could lead to the disappearance of fewer generalist nodes
that have specific interactions with the initially extinct ones, as suggested by González et al.
(2009) and Herzog et al. (2010). This usually occurs because many species cannot establish
new interactions within the community when there is a rewiring in the network (Brodie et
al., 2014). Consequently, this results in a potential loss of species and functional diversity.
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CONCLUSION
In this research, potential pollinators and their interaction patterns with vegetation were
identified in a cloud forest in the Colombian Andes. Insects and birds make up groups of
pollinators with varying degrees of specialization and sensitivity to environmental changes.
The conformation of differentmodules suggests that there are specific relationships between
birds and groups of plants, indicating a certain degree of specialization within the network.
However, the predominant structure persists among generalists, primarily due to the
dominance of species commonly found in altered systems. Additionally, differences in the
processes of resilience and extinction of key species could impact taxonomic and functional
diversity, community stability, and the provision of ecosystem services. Therefore, it is
necessary to continue researching and monitoring the network. Moreover, the information
obtained is useful for designing conservation strategies that aim to restore and conserve
the high mountain ecosystem. This includes considering the identified key species and
articulating research with environmental education and community management.
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