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Background. Pathological conditions may result in certain genes having expression variance that diûers
markedly from control's. Finding such genes from gene expression data can provide invaluable
candidates for therapeutic intervention. Under the dominant paradigm for modeling RNA-Seq gene
counts using the negative binomial model, tests of diûerential variability are challenging to develop,
owing to dependence of the variance on the mean.

Methods. Here, we describe clrDV, a statistical method for detecting genes that show diûerential
variability between two populations. We present the skew-normal distribution for modeling gene-wise null
distribution of centered log-ratio transformation of compositional RNA-seq data.

Results. Simulation results show that clrDV has false discovery rate and probability of Type II error that
are on par with or superior to existing methodologies. In addition, its run time is faster than the closest
competitor9s, and remains relatively constant for increasing sample size per group. Analysis of a large
neurodegenerative disease RNA-Seq dataset using clrDV successfully recovers multiple gene candidates
that have been reported to be associated with Alzheimer9s disease. Additionally, we ûnd that most of the
genes with diûerential variability have smaller relative gene expression variance in the Alzheimer9s
disease population compared to the control population.
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ABSTRACT12

Background. Pathological conditions may result in certain genes having expression

variance that differs markedly from control’s. Finding such genes from gene expression

data can provide invaluable candidates for therapeutic intervention. Under the dominant

paradigm for modeling RNA-Seq gene counts using the negative binomial model,

tests of differential variability are challenging to develop, owing to dependence of the

variance on the mean.

Methods. Here, we describe clrDV, a statistical method for detecting genes that

show differential variability between two populations. We present the skew-normal

distribution for modeling gene-wise null distribution of centered log-ratio transformation

of compositional RNA-seq data.

Results. Simulation results show that clrDV has false discovery rate and probability

of Type II error that are on par with or superior to existing methodologies. In addition,

its run time is faster than the closest competitor’s, and remains relatively constant

for increasing sample size per group. Analysis of a large neurodegenerative disease

RNA-Seq dataset using clrDV successfully recovers multiple gene candidates that

have been reported to be associated with Alzheimer’s disease. Additionally, we find

that most of the genes with differential variability have smaller relative gene expression

variance in the Alzheimer’s disease population compared to the control population.
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1 INTRODUCTION31

1.1 Background32

Finding patterns of gene expression variation that are associated with a biological33

condition of interest is the first step towards elucidating the molecular basis underlying34

a biological process. Currently, bulk tissue mRNA collected under specific biological35

conditions through RNA-sequencing (RNA-Seq) technologies remains an important36

approach for studying gene expression patterns. Typically, genes that show statistically37

and biologically meaningful difference in mean expression between conditions are of38

PeerJ reviewing PDF | (2023:02:82667:0:1:NEW 23 Feb 2023)

Manuscript to be reviewed



interest. Indeed, pathological conditions frequently manifest as gene sets with altered39

mean mRNA expression levels. The identification of these genes is important for40

understanding how the functions of normal molecular pathways are perturbed (Van den41

Berge et al., 2019). Hence, detecting genes that are differentially expressed is a routine42

and main use of RNA-Seq data (Stark et al., 2019). To analyse differential gene43

expression, a multitude of statistical tests have been developed throughout the years.44

Methods such as edgeR (Robinson et al., 2010), DESeq2 (Love et al., 2014) and voom45

(Law et al., 2014) have become established, go-to methods for differential expression46

(DE) analysis.47

To obtain a more complete picture of patterns of gene expression variation, we need48

to look beyond genes with significantly different mean expression (DE genes) between49

conditions (Gorlov et al., 2012). Genes that show differential variability (DV genes)50

are likely to be important as well because many biological phenomena are explained51

by changes in the variance, rather than the mean, of the distribution of gene expression52

level (de Jong et al., 2019). For example, genes that show differential variability53

between undifferentiated and differentiating states have been found to be related to54

body axis development, neuronal movement, and transcriptional regulation during the55

neural differentiation process (Ando et al., 2015). In cancer biology, DV genes are56

useful as biomarkers for predicting tumor progression and prognosis (Dinalankara and57

Corrada Bravo, 2015), and patient survival (Strbenac et al., 2016). Gorlov et al. (2012)58

found that genes with larger expression variance in tumors compared to normal cells59

show stronger association with clinically important features. In network biology, genes60

with high variability in expression correlate with their positions within the signaling61

network hierarchy (Komurov and Ram, 2010). Finally, increased gene expression62

variability is a common outcome of aging (Bahar et al., 2006; Stegeman and Weake,63

2017). Standard DE analyses are likely to miss DV gene candidates, since they are not64

optimized for detecting differences in expression variability.65

To date, only a few methods are available for finding DV genes using RNA-Seq data.66

In contrast, even in 2015, there were at least 20 methods for detecting DE genes (Khang67

and Lau, 2015). For testing differential variability of genes between two populations68

using RNA-Seq data, initial methods co-opted techniques from microarray data analysis.69

DiffVar (Phipson and Oshlack, 2014) is an empirical Bayes method that depends on70

the limma (Smyth, 2005) framework. Subsequently, negative binomial models became71

popular. MDSeq (Ran and Daye, 2017) uses the coefficient of dispersion (σ2/µ) from72

the negative binomial 1 (NB1) generalized linear model as a measure for variability. The73

variance from the NB1 model is a function of the mean µ and the dispersion φ parameter74

(σ2 = φ µ). The parameter µ is treated as a technical component, whereas φ is treated75

as a biological component and interpreted as a parameter for gene expression variability.76

de Jong et al. (2019) proposed a DV test that uses the generalized additive models for77

location, scale and shape (GAMLSS; (Rigby and Stasinopoulos, 2005)) framework for78

quantifying expression variability. GAMLSS is based on the negative binomial 2 (NB2)79

model, whereby the mean and the variance are related quadratically as σ2 = µ +φ µ2.80

Recently, Roberts et al. (2022) developed DiffDist, a hierarchical Bayesian model based81

on the NB2 model. In their work, gene expression variability is measured using the82

dispersion parameter φ , which is treated as a log-normal prior. Subsequently, test of83

difference in dispersion between two conditions is based on the posterior distribution84
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simulated using Markov Chain Monte Carlo (MCMC).85

In this paper, we wish to propose clrDV - a novel method for detecting DV genes86

between two conditions in RNA-Seq data that is based on a compositional data analysis87

framework. The method involves a log-ratio transformation of the raw gene counts,88

which results in a continuous variable. We show that the skew-normal distribution89

with centered parameters (Azzalini, 1985) is an appropriate model for the null distribu-90

tion. Subsequently, we construct a Wald test statistic for testing differential variability.91

Through simulations, we show how well clr-DV performs compared to existing methods.92

Finally, we demonstrate the applied value of clrDV by using it to identify biologically93

meaningful genes in the analysis of a large RNA-seq dataset from a neurodegenerative94

disease study.95

1.2 Motivation96

The general idea of conducting a test of differential variability for RNA-Seq data97

involves testing the equality of variances (equivalently, standard deviations) between two98

populations. The variance parameter is embedded in some probability distribution that99

approximates the distribution of gene (more generally, transcript) counts, assuming the100

null hypothesis is correct. The standard approach models RNA- Seq data as a discrete101

random variable.102

Before modeling can be done, the raw count data need to be normalized to account103

for variation in the sequencing depth of each sample. Commonly used methods include104

the trimmed mean of M values (TMM) (Robinson and Oshlack, 2010), the median-of-105

ratios method (Anders and Huber, 2010; Love et al., 2014), upper-quartile (Bullard106

et al., 2010), conditional quartile normalization (Hansen et al., 2012), etc. After this,107

a model that accounts for overdispersion commonly seen in RNA-Seq data (e.g. the108

NB distribution) is used, but alternative models are possible (Esnaola et al., 2013).109

Statistical tests of differential variability can then be based on estimators of suitable110

model parameters for representing expression variability.111

In recent years, there has been an increasing call towards adopting a compositional112

data analysis (CoDA) framework for improving the analysis of RNA-Seq data. Indeed,113

in the closely related field of microbiome data analysis, CoDA forms the main theo-114

retical framework of data analysis and differential abundance methods (Gloor et al.,115

2017). Nevertheless, the diffusion of CoDA approach into RNA-Seq data analysis is116

slow, possibly because established protocols for routine analyses such as differential117

expression analysis (e.g. DESEq2, edgeR) are all based on discrete count models such as118

the NB model. Quinn et al. (2018b) argued that next-generation sequencing abundance119

data should be viewed as inherently compositional because only a portion of genes may120

be sampled by sequencers, and cells are likely to be constrained in their capacity for121

mRNA production. Furthermore, Quinn et al. (2018a) showed the feasibility of applying122

ALDEx2 (Fernandes et al., 2014), a tool developed for differential abundance analysis123

in micriobiome studies under a CoDA framework, to differential expression analysis124

using RNA-Seq data. Encouragingly, they reported that ALDEx2 shows superior perfor-125

mance with respect to precision and recall when compared against edgeR and DESeq2.126

By removing the need to rely on assumptions that justify normalization protocols in127

standard count-based approaches, log-ratio based transformations of RNA-Seq data in128

compositional form is potentially more attractive and effective for differential expression129
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analyses (Quinn et al., 2019). More recently, McGee et al. (2019) developed absSimSeq -130

a novel simulation protocol for generating realistic RNA- Seq data using a compositional131

data framework.132

The key step in processing compositional data involves log-ratio transformation,

for which several variants are available. The simplest is the centered log-ratio (CLR)

transformation, first proposed by Aitchison (1986). After CLR- transformation, the

simplex space of the compositional data is transformed into the Euclidean space. It is

then convenient to view CLR-transformed values as realizations of a continuous random

variable. To be concrete, let Xgi be the read count for gene g and sample i, where

g = 1,2, . . . ,G and i = 1,2, . . . ,n. For a G-component composition {x1i,x2i, . . . ,xGi},

the CLR- transformation of Xgi is given by

CLR(Xgi) = log

�

xgi

(∏g2 xg2i)1/G

 

= log(xgi)2
1

G

G

∑
g2=1

log(xg2i),

for g2 = 1,2, . . . ,G. We call CLR(Xgi) the relative gene expression, or CLR-transformed133

count, of gene g and sample i. A pseudo-value 0.5 is added if xgi = 0 for any i. Thus,134

the main challenge for using CLR-transformed data to develop a test for differential vari-135

ability is modeling them using a tractable probability distribution for which estimation136

of the variance parameter is practical.137

2 MATERIALS AND METHODS138

2.1 The skew-normal model for CLR-transformed data139

We show that the null distribution of CLR-transformed count data approximately fol-

lows the skew-normal distribution (Azzalini, 1985; Azzalini and Capitanio, 2014)

(see Supplementary Material S1). Denote the relative gene expression from gene g

in sample i by Ygi. Thus, Ygi has a skew-normal distribution with centered param-

eters (CP), that is, Ygi > SNC(µg,σg,γg), where µg is the mean, σg is the standard

deviation, and γg is the skewness parameter, g = 1,2, . . . ,G and i = 1,2, . . . ,n. The

parameter vector θθθ (C)
g = (µg,σg,γg) has parameter space R×R

+ × (2k,k), where

k =
:

2(42π)/(π 2 2)3/2 j 0.9953. The special case of γg = 0 results in a normal

distribution with mean µg and variance σ2
g . The probability density function of a skew-

normal distribution with direct parameters (DP) is given by

f (ygi;ξg,ωg,αg) =
2

ωg
φ
�ygi 2ξg

ωg

�

Φ

�

αg

ygi 2ξg

ωg

�

,

with location parameter ξg * R, scale parameter ωg * R
+, and skewness parameter

αg *R; φ(·) and Φ(·) are the probability density function and the cumulative distribution

function of the standard normal distribution, respectively. The skew-normal distribution

with CP is derived from the DP form via the mapping (Azzalini and Capitanio, 2014)

µg = ξg +bωgδg, σg = ωg

�

12b2δ 2
g , γg =

42π

2

b3α3
g

�

1+(12b2)α2
g

�3/2
; (1)
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and the inverse mapping is provided by

ξg = µg 2bωgδg, ωg =
σg

�

12b2σ2
g

, αg =
R

�

b2 2 (12b2)R2
, (2)

where b =
�

2/π , δg = αg/
�

1+α2
g , and R = 3

�

2γg/(42π).140

For a single sample, the log-likelihood function for θθθ (D)
g = (ξg,ωg,αg)

T is given by

31 = logL(θθθ (D)
g ;ygi) = c2 logωg 2

(ygi 2ξg)
2

2ω2
g

+ζ0

�

αg

ygi 2ξg

ωg

�

,

where c is a constant and ζ0(·) = log
�

2Φ(·)
�

. Taking zgi = (ygi 2 ξg)/ωg, we obtain

the partial derivatives of 31:

∂31

∂ξg
=

zgi

ωg
2 αg

ωg
ζ1(αgzgi),

∂31

∂ωg
=2 1

ωg
+

z2
gi

ωg
2 αg

ωg
ζ1(αgzgi)zgi,

∂31

∂αg
= ζ1(αgzgi)zgi;

thus the likelihood equations for a sample of size n are given by

n

∑
i=1

zgi2αg

n

∑
i=1

ζ1(αgzgi)= 0,
n

∑
i=1

zgi
22αg

n

∑
i=1

zgiζ1(αgzgi)= n,
n

∑
i=1

zgiζ1(αgzgi)= 0, (3)

where ζ1(·) = φ(·)/Φ(·). Numerical methods are necessary to solve these equations.

Azzalini and Capitanio (2014) suggested that a sample size up to about 50 may be

necessary for the skew- normal distribution. To initialize the search, method of moments

(MM) estimates are chosen as starting points for the CP components in Equation (1).

The MM estimators for the centered parameters are given by

µ̃g = Ȳg, σ̃g = Sg, γ̃g =
Mg,3

S3
g

, (4)

respectively, where Ȳg is the sample mean, Sg is the sample standard deviation, and Mg,3141

is the sample third central moment. By estimating the CP components in Equation (1)142

using Equation (4), and then converting them to DP components using Equation (2),143

we obtain the MM estimators of the DP components: ξ̄g, ω̄g and ᾱg. Subsequently, a144

search of the DP space where Equation (3) holds is done. Once θ̂θθ
(D)
g = (ξ̂g, ω̂g, α̂g) is145

obtained, it is mapped to Equation (1) to get θ̂θθ
(C)
g = (µ̂g, σ̂g, γ̂g), the maximum likelihood146

estimators of the centered parameters.147

Under regular maximum likelihood estimation, certain data values can produce a

divergent α̂g. To overcome this problem, Azzalini and Arellano-Valle (2013) proposed

a maximum penalized likelihood estimation (“Qpenalty”) approach. A non-negative

penalty term Q that penalizes the divergence of the skewness parameter αg is formulated

as Q = c1 log(1+c2α2
g ), where c1 j 0.87591 and c2 j 0.85625 (Azzalini and Arellano-

Valle, 2013; Azzalini and Capitanio, 2014). Then, the maximum penalized likelihood

for θθθ (D)
g is the penalized log-likelihood

3p(θθθ
(D)
g ) = 3(θθθ (D)

g ;yyyg)2Q, (5)
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where yyyg = (yg1,yg2, . . . ,ygn), 3(θθθ
(D)
g ;yyyg) is the log- likelihood function with respect to

the parameter vector θθθ (D)
g :

3(θθθ (D)
g ;yyyg) = constant2n logωg 2

n

∑
i=1

(ygi 2ξg)
2

2ω2
g

+
n

∑
i=1

ζ0

�

αg

ygi 2ξg

ωg

�

.

The maximum penalized likelihood estimator (MPLE), θ̃θθ
(D)
g , is a finite point that maxi-148

mizes 3p(θθθ
(D)
g ). The standard errors of θ̃θθ

(D)
g can be approximated from the correspond-149

ing penalized information matrix as Var(θ̃θθ
(D)
g )j23

22
p(θ̃θθ

(D)
g )21.150

The “MPpenalty” approach (Azzalini and Capitanio, 2014) defines the penalty

function Q in Equation (5) as 2 logπm(αg), where πm is a prior distribution for the

skewness parameter αg. The matching prior (Cabras et al., 2012) for αg, allowing for

the presence of ψψψ = (ξg,ωg), is given by

πm(αg) ∝
�

Iαgαg
(ψ̂ψψ,αg)2 Iαgψψψ(ψ̂ψψ,αg)Iψψψψψψ(ψ̂ψψ,αg)

21Iψψψαg
(ψ̂ψψ,αg)

�1/2
,

where the terms involved are specific blocks of the Fisher information matrix III of θθθ (D)
g151

(see Supplementary Material S1 for details). Since πm(0) = 0, the matching prior penalty152

effectively penalizes αg = 0 with Q = ∞.153

To perform parameter estimation and carry out related numerical tasks involving154

the skew-normal distribution, we used the sn (Azzalini, 2022) R package. Regular155

maximum likelihood estimation of parameters of the skew-normal model was first156

done using the function selm(). If NA values were returned, we used the maximum157

penalized likelihood estimation as implemented using the Qpenalty option. If NA158

values persisted, the MPpenalty option was used.159

For RNA-Seq experiments comparing two populations, testing for differential vari-

ability is equivalent to testing the equality of the standard deviation of relative gene

expressions in two populations, that is, σg,1 = σg,2. For this purpose, we can use the

Wald statistic

Zg =
σ̂g,2 2 σ̂g,1

�

Var(σ̂g,2)+Var(σ̂g,1)
,

for g = 1,2, . . . ,G, where σ̂g, j, j = 1,2 are the maximum likelihood estimators of the160

standard deviation of the skew-normal distribution with centered parameters for popula-161

tion 1 and population 2, and Var(σ̂g, j), j = 1,2 are the corresponding diagonal elements162

of the estimated Fisher information matrix of centered parameters θθθ (C)
g = (µg,σg,γg).163

To control the false discovery rate (FDR) as a result of conducting multiple independent164

hypothesis tests across genes, we applied the Benjamini-Yekutieli procedure (Benjamini165

and Yekutieli, 2001). Note that in the context of samples, FDR is estimated as the166

sample proportion of false discoveries.167

2.2 Data Description168

In order to study the performance of clrDV and other existing methods with respect to169

FDR and probability of Type II error, it is necessary to simulate the null distribution with170
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realistic parameter values. For this purpose, we used two real RNA-Seq datasets. The171

first dataset (GEO accesion number: GSE123658) contains whole blood RNA-Seq data172

from from 39 Type 1 diabetes patients and 43 healthy donors (Leal Valentim et al., 2020),173

with 16,785 transcripts. The second dataset (GEO acccesion number: GSE150318)174

contains longitudinal gene expression data from 114 short-lived killfish Nothobranchius175

furzeri measured at 10 weeks and 20 weeks of age (Kelmer Sacramento et al., 2020),176

with 26,739 transcripts. Hereafter, we call these two datasets the “Valentim dataset” and177

the “Kelmer dataset”.178

For empirical assessment, we used the Mayo RNASeq dataset (Allen et al., 2016),179

which consists of 278 samples and 64,253 transcripts. In this study, RNA was isolated180

from the temporal cortex of brains of patients with four biological conditions: control181

(n = 80), Alzheimer’s disease (AD; n = 84), progressive supranuclear palsy (PSP;182

n = 84) and pathologic aging (n = 30). We chose to compare the control group against183

the AD and the PSP group respectively, since the sample sizes in these groups are184

reasonably large and balanced.185

2.3 Simulation study186

Only transcripts that satisfy two conditions in each group were used for simulation:187

(i) average count-per- million (CPM) above 0.5; and (ii) less than 85% of samples188

have zero count. Then, 2000 of the filtered genes were randomly selected. For each189

gene, an NB2 model was fitted. We simulated 10% of the genes to be DV genes by190

multiplying their size parameter (1/φ ) with a random value x, where x * (0.25,0.5)*191

(2,4). Counts were then simulated based on the fitted NB2 model, for six sample sizes192

(50,100,125,150,200,250) using the polyester (Frazee et al., 2015) R package. A193

total of 30 instances were thus simulated. Genes with BY-adjusted p-value < 0.05 were194

flagged as having differential variability.195

The performance of clrDV against MDSeq, diffVar, and GAMLSS (Benjamini-196

Hochberg (BH) and Benjamini-Yekutieli (BY) variants) was evaluated by considering197

their FDR and probability of Type II error. Additionally, we also recorded the run time198

of each method. DiffDist was excluded from the evaluation since it needs to perform199

MCMC simulations to generate the posterior distribution. As such, it is computationally200

expensive to implement and difficult to justify as a choice for routine application. Indeed,201

running DiffDist on an RNA-Seq dataset with 43 samples per group and 23,416 tran-202

scripts, Roberts et al. (2022) reported that DiffDist took about three hours to complete,203

compared to 12 minutes for GAMLSS and 4 minutes for MDSeq .204

2.4 Empirical assessment205

We applied clrDV to the Mayo RNA-Seq dataset to assess its capacity for detecting206

DV genes that are contextually meaningful. Analysis using MDSeq and GAMLSS207

(BH and and BY variants) were also done. We dropped diffVar because this method208

performed poorly during the simulation stage. Volcano plots were used to inspect the209

biological effect size and statistical significance of all genes tested. Venn diagrams were210

used to identify sets of genes that are identically recovered by all three methods, by211

combinations of two methods, or uniquely recovered by a single method. Violin plots of212

selected DV genes were made to verify computational results.213
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2.5 Tools and computing environment214

Computational tasks were done in a computer with a 1.80 GHz i5-8265U CPU and an215

8GB RAM processor. R (R Core Team, 2022) (version 4.2.1) operating in Windows 10216

was used. The complete list of R packages used is given in the Supplementary Material217

S2. ENSEMBL gene ID to gene symbol conversion was done using the application218

programming interface of the BioTools.fr website (Saurin, 2022).219

3 RESULTS220

3.1 Simulation study221

We found that the skew-normal distribution with centered parameters fit the CLR-222

transformed count data well. Two examples are given in Figure 1. Additional examples223

can be readily inspected using the R codes provided. Figure 2 shows the scatter plots of224

probability of Type II error against FDR for analysis of the simulated Valentim dataset,225

for each of the six sample size per group scenarios. diffVar is clearly uniformly inferior226

to all other methods (mean probability of Type II error > 0.05 and FDR > 0.17, for all227

sample sizes).228

For sample size of 50, all methods show relatively larger mean probability of Type229

II error (> 0.2); additionally, diffVar and GAMLSS-BH show high mean FDR (> 0.05).230

Against MDSeq, clrDV is uniformly superior with respect to mean FDR and mean231

probability of Type II error; against GAMLSS-BH, clrDV has uniformly superior mean232

FDR; against GAMLSS-BY, clrDV gives approximately similar mean FDR and mean233

probability of Type II error. When sample size is very large (250), clrDV, MDSeq and234

GAMLSS-BY give similar performance. With respect to computing speed, clrDV is235

substantially faster than GAMLSS (both BH and BY variants) as sample size increases236

(Supplementary Material Table S1). For the analysis of simulated data from the Kelmer237

dataset, we find clrDV to have comparable mean FDR and mean probability of Type238

II error (Figure 3) as MDSeq and GAMLSS-BY. However, clrDV computing time239

remains almost constant across the six sample sizes, whereas MDSeq and GAMLSS240

have computing times that increase with sample size (Supplementary Material Table S2).241

diffVar and GAMLSS-BH are inferior in controlling FDR across all six sample sizes.242

3.2 Analysis of the Mayo RNA-Seq dataset243

After filtering, sample sizes of the control, the AD and the PSP groups were 78, 82,244

and 84, respectively. For the AD and the control group comparison, a total of 18,664245

transcripts were left; for the PSP and control comparison, 18,636 transcripts were left.246

For MDSeq and GAMLSS, we normalized the raw counts using TMM normalization.247

3.2.1 Detection of genes with differential variability248

Applying the procedure described in Section 2, we estimated the standard deviation249

of the CLR- transformed data, computed the Wald statistic and subsequently the BY-250

adjusted p-value for each tested gene. For the control vs. AD comparison, we detected a251

set of 4754 DV genes (see Supplementary Table S3 for complete list); for the control252

vs. PSP comparison, 4859 DV genes were detected (see Supplementary Table S4 for253

complete list). For the majority of DV genes, the estimated standard deviation in the254

control group is larger than the one in the treatment group (Figure 4). This observation255
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suggests that genes with decreased expression variability among patients with AD are256

far more common than those that show increased variability.257

Figure 5 shows the number of significant DV genes identified by clrDV, MDSeq,258

GAMLSS-BH and GAMLSS- BY for the control vs. AD comparison (see Supplemen-259

tary Table S5 for complete list). GAMLSS-BH detected the most DV genes (9926),260

followed by MDSeq (6924), and clrDV (4754). The high confidence gene set, defined261

as the intersection of DV genes from each method, contains genes with estimated262

log2(SD ratio) that is relatively large (> 0.5). About 99.8% (4743/4754) of DV genes263

detected by clrDV are also identified by MDSeq or GAMLSS-BH; 92.0% (4374/4754)264

are detected by both MDSeq and GAMLSS-BH; about 0.2% (11/4754) are uniquely265

identified by clrDV. GAMLSS-BH identified very large numbers of DV genes in this266

dataset, but the majority of these are probably false positives, given its relatively poorer267

control of FDR as shown in the results of the simulation studies. Moreover, these DV268

genes have estimated log2(SD ratio) with relatively small magnitude, as indicated by269

the violin plots (Figure 5(c)).270

Using GAMLSS-BY, only 6079 DV genes were detected, compared to 9926 using271

GAMLSS-BH. Thus, GAMLSS-BY primarily helps improve FDR by reducing the272

number of DV genes called. Between 61.7% (4271/6924) and 89.8% (4271/4754)273

of the DV genes detected by one method are detected by all three. About 97.0%274

(4613/4754) of DV genes detected by clrDV are identified by one of other two methods,275

and 3.0% (141/4754) of DV genes detected by clrDV are unique.276

The result of the control vs. PSP comparison is similar (Figure 6; Supplementary277

Material Table S6). GAMLSS-BH also detected the most number of DV genes (9707),278

followed by MDSeq (6894), and clrDV (4859). Up to 99.4% (4831/4859) of DV279

genes identified by clrDV are detected by MDSeq or GAMLSS-BH; about 89.1%280

(4329/4859) are detected by both MDSeq and GAMLSS-BH; about 0.6% (28/4859)281

are uniquely identified by clrDV. Using GAMLSS-BY, only 6024 DV genes were flagged.282

Approximately 95.9% (4658/4859) of DV genes identified by clrDV are also identified283

by MDSeq or GAMLSS-BY; about 86.1% (4186/4859) are detected by both MDSeq284

and GAMLSS-BY; about 4.1% (201/4859) are uniquely detected by clrDV.285

The violin plots (Figure 5 and Figure 6) suggest that the DV genes uniquely called by286

clrDV may be more likely to true positives, given that the magnitude of log2(SD ratio)287

is generally larger than 0.5. For those uniquely called by GAMLSS or MDSeq, the order288

of magnitude is generally below 0.5. With respect to run time, for the control vs. AD289

comparison, clrDV took about 7.5 minutes, compared to 6 minutes for MDSeq, and 13290

minutes for GAMLSS; for the control vs. PSP comparison, clrDV took about 7 minutes,291

while MDSeq used 6 minutes, and GAMLSS used 15 minutes.292

3.2.2 Biological significance of detected differential variability genes293

In the control vs. AD comparison, four of the DV genes that have the largest estimated294

SD ratio above 1 are LTBP2, SLPI, C2orf40, and SLC47A1 (Figure 7). All four genes295

have been reported to be associated with Alzheimer’s disease in the literature. The296

latent transforming growth factor (TGF)- beta binding proteins (LTBP) are important297

components of the extracellular matrix (Robertson et al., 2015). They interact with298

fibrillin microfibrils, and are known to be mediators of TGF-β functions (Rifkin et al.,299

2018), dysfunctions of which have been implicated in Alzheimer’s disease (Das and300
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Golde, 2006). Then, the secretory leukocyte protease inhibitor protein (SLPI) is known301

to regulate the penetrance of frontotemporal lobar degeneration (FTLD) in patients who302

have mutations in the progranulin gene (Ghidoni et al., 2014). Loss of progranulin303

function has been found to enhance microglial neuroinflammation, which is implicated304

in Alzheimer’s disease (Mendsaikhan et al., 2019). Podvin et al. (2016) found that305

C2orf40 is a neuroimmune factor in Alzheimer’s disease. The SLC47A1 (solute carrier306

family 47 member 1) protein is expressed in both the kidney and the brain, and recent307

research has suggested a linkage between kidney diseases and Alzheimer’s disease (Shi308

et al., 2018; Kelly and Rothwell, 2022).309

We detected 74 genes from the SLC family in the high confidence DV gene set,310

including four members of the SLC39 family. Lang et al. (2012) demonstrated the311

modulating effect of dZip1, the ortholog of human SLC39 family transporter, on zinc312

ion uptake using a Drosophila model. Zinc is known to induce amyloid beta formation313

(Bush et al., 1994). Inhibition of dZip1 produces substantial reduction of amyloid beta314

peptide 42 (Aβ42) fibril deposits and less neurodegeneration in Aβ42-transgenic flies.315

Two of the DV genes with estimated SD ratio substantially smaller than 1 are PELP1316

and GP1BB (Figure 7). PELP1 mediates E2 inhibition of GSK3β , a neurodegenerative317

kinase signaling pathway in the brain (Thakkar et al., 2018). GSK3β is implicated318

in Alzheimer’s disease as a key mediator of cell death (Llorens-Martin et al., 2014).319

The GP1BB gene produces glycoprotein 1b-beta (GPIbβ ), a subunit of the GPIb-IX-V320

protein complex on the surface of platelet cells. Amyloid beta peptides are known to321

be actively released by platelets (Bush et al., 1990; Casoli et al., 2007). Visconte et al.322

(2020) recently reported that recruitment of GPIb-IX-V is required for fibrillar amyloid323

Aβ40 and Aβ42 to induce platelet aggregation. The study of the role of platelets and324

the pathogenesis of Alzheimer’s disease is an active topic (Catricala et al., 2012).325

We note that approximately half of genes in the high confidence gene set from the326

control vs. AD comparison (4271 genes) are also found in the high confidence gene327

sets from the control vs. PSP comparison (4186 genes). Altogether, 2149 DV genes are328

common to both comparisons. This observation is consistent with recent findings that329

transcriptomic changes are in AD and PSP relative to control are strongly correlated330

(Wang et al., 2022).331

4 DISCUSSION332

Our present work demonstrates that when analyzing gene expression data using the333

CoDA framework, the skew-normal distribution provides a natural way to model CLR-334

transformed data. The skew-normal distribution is a tractable model with mature335

computational support through the sn R package. A test of differential variability can336

therefore be based directly on the standard deviation parameter of the skew-normal337

distribution. Moreover, a test of differential expression that is based on the mean338

parameter can be derived as well. With these tests, it becomes possible to develop339

methods for detecting three classes of genes in two-population comparisons: (i) equal340

variance, different mean; (ii) equal mean, different variance; (iii) different mean, different341

variance. Although clrDV cannot differentiate genes of the second and the third type,342

inspection of violin plots should be useful for ascertaining whether the DV genes also343

appear to differ significantly in the mean of their relative expression level.344
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We observed that in the comparisons between control vs. AD and control vs. PSP, a345

majority of the DV genes identified by clrDV (between 86.1% and 92.0%) were already346

included in the high-confidence gene set, where the estimated log2(SD ratio) has a347

relatively large magnitude. Thus, it seems that clrDV alone should be able to recover348

most of the DV genes of interest.349

The relative poorer performance of MDSeq and GAMLSS could be caused by the350

choice of normalization. It is known that incorrect normalization leads to inflated351

FDR in differential expression analyses (Evans et al., 2018), yet the assumptions that352

justify a normalization method are usually not testable. Since existing normalization353

methods have been developed for the purpose of finding differentially expressed genes,354

the assumptions that justify their use are probably suboptimal for differential variability355

tests. Consequently, the performance of existing count-based approaches for DV test is356

likely sensitive to the choice of normalization method. However, it is beyond the scope357

of the present work to optimize the choice of normalization step for these count-based358

methods.359

On the aspect of practical application, we note that the R codes provided by de Jong360

et al. (2019) for GAMLSS are not sufficiently generic and require further user modifica-361

tions to be suitable for routine use as a DV test. In addition, GAMLSS uses BH rather362

than BY as the default setting for multiple comparisons adjustment. For MDSeq, we363

found that it may occasionally encounter difficulties in estimating model parameters.364

In our analysis of the Mayo RNA-Seq dataset, we observed that 45 genes returned NA365

parameter estimates in the control vs. AD and the control vs. PSP comparisons. Given366

these findings, we believe clrDV is currently the most practical and effective method for367

researchers who wish to conduct differential variability test using RNA- Seq data.368

5 CONCLUSIONS369

Variability of gene expression at aberrant levels is one of the hallmarks of disrupted or370

dysregulated biological processes. Hence, detection of genes with differential variability371

should accompany routine differential expression analysis to expand the pool of potential372

therapeutic intervention targets. clrDV offers a novel approach for identifying DV genes373

in RNA-seq data. By modeling the null distribution of centered log- ratio transformed374

RNA-Seq data using a skew-normal distribution, clrDV can detect genes with expression375

variance that differs significantly between two populations. Simulation results demon-376

strate that clrDV has a comparable or superior false discovery rate and probability of377

Type II error compared to existing methods, while also having a faster run time for larger378

sample sizes per group. Applying clrDV to the Mayo RNA-seq dataset, we identified379

several genes associated with Alzheimer’s disease, many of which had smaller relative380

gene expression variance in the Alzheimer’s disease population compared to the control381

population. Crucially, the compositional data analysis framework used in this work can382

be extended to create statistical tests for differential expression and differential skewness383

using RNA-seq data. Results from this extension will be reported elsewhere.384

CODE AVAILABILITY385

We have created an R package called clrDV to perform the differential variability test386

described here. The R package and codes for reproducing the analyses in this study are387
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available at https://github.com/Divo-Lee/clrDV.388

DATA AVAILABILITY389

The present work did not generate no new datasets. We used datasets published by390

other researchers described in Section 3.2. The RNA-Seq datasets with GEO accession391

numbers GSE123658 and GSE150318 are freely available in the NCBI Gene Omnibus392

Expression database. We obtained permission from AD Knowledge Portal (accessible at393

https://adknowledgeportal.org) to access and use the Mayo RNASeq dataset for research394

purpose.395
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Available at: http://azzalini.stat.unipd.it/SN/.441

Azzalini, A. and Arellano-Valle, R. B. (2013). Maximum penalized likelihood estima-442

tion for skew-normal and skew-t distributions. Journal of Statistical Planning and443

Inference, 143(2):419–433.444

Azzalini, A. and Capitanio, A. (2014). The Skew-Normal and Related Families. Cam-445

bridge University Press, Cambridge.446

Bahar, R., Hartmann, C. H., Rodriguez, K. A., Denny, A. D., Busuttil, R. A., Dollé,447
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Figure 1. Histograms of CLR-transformed counts for two genes with fitted

skew-normal curve for (a) the Valentim dataset (µ̂ = 3.968 (s.e. = 0.038), σ̂ = 0.858,

(s.e. = 0.030) and γ̂ =20.732 (s.e. = 0.055)); (b) the Kelmer dataset (µ̂ = 1.140

(s.e. = 0.012), σ̂ = 0.275 (s.e. = 0.009) and γ̂ =20.336 (s.e. = 0.107)).
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Figure 2. Scatter plots of probability of Type II error vs. FDR for simulation study of

the Valentim dataset (30 instances) for samples size per group of (a) 50, (b) 100, (c) 125,

(d) 150, (e) 200, and (f) 250. Dashed lines represent probability of Type II error and

FDR of 0.05.
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Figure 3. Scatter plots of probability of Type II error vs. FDR for simulation study of

the Kelmer dataset (30 instances) for samples size per group of (a) 50, (b) 100, (c) 125,

(d) 150, (e) 200, and (f) 250. Dashed lines represent probability of Type II error and

FDR of 0.05.
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Figure 4. Volcano plots for (a) control vs. AD and (b) control vs. PSP comparisons for

the Mayo RNA-Seq dataset. Dashed line represents the threshold of BY- adjusted

p-value (q) at 0.05 for flagging DV genes. The number of DV genes with

log2(SD ratio)> 0 and log2(SD ratio)< 0 respectively: (a) 32 and 4722; (b) 19 and

4840.
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Figure 5. Venn diagrams of DV genes detected by clrDV, MDSeq and (a)

GAMLSS-BH; (b) GAMLSS-BY for the control vs. AD comparison. Violin plots of the

distribution of estimated log2(SD ratio) of the DV genes detected using clrDV, MDSeq

and (c) GAMLSS-BH; (d) GAMLSS-BY. Abbreviations: cgm = DV genes detected by

clrDV, GAMLSS and MDSeq; c-g-m = DV genes detected by clrDV only; g-c-m = DV

genes detected by GAMLSS-BH only; m-c-g = DV genes detected by MDSeq only.
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Figure 6. Venn diagrams of DV genes detected by clrDV, MDSeq and (a)

GAMLSS-BH; (b) GAMLSS-BY for the control vs. PSP comparison. Violin plots of

the distribution of estimated log2(SD ratio) of the DV genes detected using clrDV,

MDSeq and (c) GAMLSS-BH; (d) GAMLSS-BY. Abbreviations: cgm = DV genes

detected by clrDV, GAMLSS and MDSeq; c-g-m = DV genes detected by clrDV only;

g-c-m = DV genes detected by GAMLSS-BH only; m-c-g = DV genes detected by

MDSeq only.

22/23PeerJ reviewing PDF | (2023:02:82667:0:1:NEW 23 Feb 2023)

Manuscript to be reviewed



−2 −1 0 1 2 3

c
o

n
tr

o
l

A
D

CLR−transformed count

C
o

n
d

it
io

n

(a)

−3 −2 −1 0

c
o

n
tr

o
l

A
D

CLR−transformed count

C
o

n
d

it
io

n

(b)

−6 −4 −2 0 2

c
o

n
tr

o
l

A
D

CLR−transformed count

C
o

n
d

it
io

n

(c)

−1.0 −0.5 0.0 0.5 1.0

c
o

n
tr

o
l

A
D

CLR−transformed count

C
o

n
d

it
io

n

(d)

−2 −1 0 1 2 3

c
o

n
tr

o
l

A
D

CLR−transformed count

C
o

n
d

it
io

n

(e)

1.4 1.6 1.8 2.0 2.2 2.4 2.6

c
o

n
tr

o
l

A
D

CLR−transformed count

C
o

n
d

it
io

n

(f)

Figure 7. Violin plots of selected DV genes detected in the control vs. AD comparison.

(a) SLC47A1, (b) C2orf40, (c) SLPI, (d) LTBP2 have the largest SD ratio (> 2); (e)

GP1BB and (f) PELP1 have SD ratio about 0.4.
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