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ABSTRACT
Background. Pathological conditions may result in certain genes having expression
variance that differs markedly from that of the control. Finding such genes from gene
expression data can provide invaluable candidates for therapeutic intervention. Under
the dominant paradigm formodelingRNA-Seq gene counts using the negative binomial
model, tests of differential variability are challenging to develop, owing to dependence
of the variance on the mean.
Methods. Here, we describe clrDV, a statistical method for detecting genes that show
differential variability between two populations. We present the skew-normal distribu-
tion for modeling gene-wise null distribution of centered log-ratio transformation of
compositional RNA-seq data.
Results. Simulation results show that clrDV has false discovery rate and probability of
Type II error that are on par with or superior to existing methodologies. In addition,
its run time is faster than its closest competitors, and remains relatively constant for
increasing sample size per group. Analysis of a large neurodegenerative disease RNA-
Seq dataset using clrDV successfully recovers multiple gene candidates that have been
reported to be associated with Alzheimer’s disease.

Subjects Bioinformatics, Computational Biology, Cognitive Disorders, Neurology, Statistics
Keywords Alzheimer’s disease, Compositional data, Differential variability, RNA-Seq data,
Skew-normal distribution

INTRODUCTION
Background
Finding patterns of gene expression variation that are associated with a biological condition
of interest is the first step towards elucidating the molecular basis underlying a biological
process. Currently, bulk tissue mRNA collected under specific biological conditions
through RNA-sequencing (RNA-Seq) technologies remains an important approach for
studying gene expression patterns. Typically, genes that show statistically and biologically
meaningful difference in mean expression between conditions are of interest. Indeed,
pathological conditions frequently manifest as gene sets with altered mean mRNA
expression levels. The identification of these genes is important for understanding how the
functions of normal molecular pathways are perturbed (Van den Berge et al., 2019). Hence,
detecting genes that are differentially expressed is a routine and main use of RNA-Seq data
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(Stark, Grzelak & Hadfield, 2019). To analyse differential gene expression, a multitude of
statistical tests have beendeveloped throughout the years.Methods such as edgeR (Robinson,
McCarthy & Smyth, 2010), DESeq2 (Love, Huber & Anders, 2014) and voom (Law et al.,
2014) have become established, go-to methods for differential expression (DE) analysis.

To obtain a more complete picture of patterns of gene expression variation, we need
to look beyond genes with significantly different mean expression (DE genes) between
conditions (Gorlov et al., 2012). We refer to the class of genes that show biologically
meaningful differences in expression variability (EV) as differential variability (DV) genes.
Genes can influence each other’s expression through regulatory interactions, and noise in
the expression of one gene can propagate to downstream genes (Raser & O’Shea, 2005).
Consequently, gene EV plays a crucial role in the organization of regulatory circuits and
signal transduction pathways (Mar et al., 2011; Komurov & Ram, 2010). Furthermore, the
position of proteins within the signaling network hierarchy strongly correlates with their
EV and functional centrality, reflecting a generic mechanism of transcriptional regulation
of the cellular signaling network (Komurov & Ram, 2010). Mar et al. (2011) observed that
genes with lower EV tend to be core members of pathways and more connected to other
network members, while genes with higher EV have fewer connections. Specifically, in
disease states such as Parkinson’s disease, increased EV in core signaling pathways can
lead to dysregulation and diminish the network’s robustness to external events. Therefore,
identifying DV genes can shed light on the underlying mechanisms of complex biological
phenomena. For example, in neurobiology, genes that show differential variability between
undifferentiated and differentiating states have been found to be associated with body
axis development, neuronal movement, and transcriptional regulation during the neural
differentiation process (Ando, Kato & Honda, 2015). In cancer biology, DV genes are useful
as biomarkers for predicting tumor progression and prognosis (Dinalankara & Corrada
Bravo, 2015), and patient survival (Strbenac et al., 2016). Gorlov et al. (2012) found that
genes with larger expression variance in tumors compared to normal cells show stronger
association with clinically important features. Finally, increased gene expression variability
is a common outcome of aging (Bahar et al., 2006; Stegeman &Weake, 2017). Standard DE
analyses are likely to miss DV gene candidates, since they are not optimized for detecting
differences in expression variability.

The general idea of conducting a test of differential variability for RNA-Seq data
involves testing the equality of variances (equivalently, standard deviations) between two
populations. The variance parameter is embedded in some probability distribution that
approximates the distribution of gene (more generally, transcript) counts, assuming the
null hypothesis is correct. The standard approach models RNA- Seq data as a discrete
random variable.

Before modeling can be done, the raw count data need to be normalized to account
for variation in the sequencing depth of each sample. Commonly used methods include
the trimmed mean of M values (TMM) (Robinson & Oshlack, 2010), the median-of-ratios
method (Anders & Huber, 2010; Love, Huber & Anders, 2014), upper-quartile (Bullard et
al., 2010), conditional quartile normalization (Hansen, Irizarry & Wu, 2012), etc. After
this, a model that accounts for overdispersion commonly seen in RNA-Seq data (e.g., the
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negative binomial distribution) is used, but alternative models are possible (Esnaola et al.,
2013). Statistical tests of differential variability can then be based on estimators of suitable
model parameters for representing expression variability.

To date, only a few methods are available for finding DV genes using RNA-Seq data.
In contrast, even in 2015, there were 22 methods for detecting DE genes (Khang & Lau,
2015). For testing differential variability of genes between two populations using RNA-Seq
data, initial methods co-opted techniques from microarray data analysis. DiffVar (Phipson
& Oshlack, 2014) is an empirical Bayes method that depends on the limma (Smyth,
2005) framework. Subsequently, the negative binomial (NB) model with two different
parametrizations (NB1, NB2; see Cameron & Trivedi (2013)) from DE tests was used for
developing DV tests. MDSeq (Ran & Daye, 2017) uses the coefficient of dispersion (σ 2/µ)
from a generalized linear model with NB1 parametrization as a measure for variability.
Accordingly, the variance is represented as the product of the mean µand the dispersion
φ parameter, σ 2

= φµ. The parameter µis viewed as a technical component, whereas φ
is treated as a biological component and interpreted as a parameter for gene expression
variability. De Jong, Moshkin & Guryev (2019) proposed a DV test that uses the generalized
additive models for location, scale and shape (GAMLSS; Rigby & Stasinopoulos, 2005)
framework for quantifying expression variability. GAMLSS uses the NB2 parametrization,
whereby the variance and the mean are related quadratically as σ 2

=µ+φµ2. Recently,
Roberts, Catchpoole & Kennedy (2022) developed DiffDist, a hierarchical Bayesian model
based on the NB2 model. In their work, gene expression variability is measured using
the dispersion parameter φ, which is treated as a log-normal prior. Subsequently, test of
difference in dispersion between two conditions is based on the posterior distribution
simulated using Markov Chain Monte Carlo (MCMC).

In recent years, there has been an increasing call towards adopting a compositional data
analysis (CoDA) framework for improving the analysis of RNA-Seq data. Compositional
data analysis originated from the study of chemical, mineral, and fossil compositions of
rocks and sediments (Aitchison, 1981). In this type of analysis, observations are expressed
as proportions relative to a total, with each part referred to as a component that sums to
unity. CoDA analyzes the relative differences between the components instead of their
absolute values. In the closely related field of microbiome data analysis, CoDA forms the
main theoretical framework of data analysis and differential abundance methods (Gloor
et al., 2017). Nevertheless, the diffusion of CoDA approach into RNA-Seq data analysis
is slow, possibly because established protocols for routine analyses such as differential
expression analysis (e.g., DESEq2, edgeR) are all based on discrete count models such as
the NB model.Quinn et al. (2018) argued that next-generation sequencing abundance data
should be viewed as inherently compositional because only a portion of genes may be
sampled by sequencers, and cells are likely to be constrained in their capacity for mRNA
production. Furthermore, Quinn, Crowley & Richardson (2018) showed the feasibility of
applying ALDEx2 (Fernandes et al., 2014), a tool developed for differential abundance
analysis in micriobiome studies under a CoDA framework, to differential expression
analysis using RNA-Seq data. Encouragingly, they reported that ALDEx2 shows superior
performance with respect to precision and recall when compared against edgeR and
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DESeq2. By removing the need to rely on assumptions that justify normalization protocols
in standard count-based approaches, log-ratio based transformations of RNA-Seq data in
compositional form is potentially more attractive and effective for differential expression
analyses (Quinn et al., 2019). More recently, McGee et al. (2019) developed absSimSeq - a
novel simulation protocol for generating realistic RNA- Seq data using a compositional
data framework.

In this article, we propose clrDV (centered log-ratio transformation-based test for
Differential Variability), a novel method for detecting DV genes between two conditions
in RNA-Seq data that is based on a compositional data analysis framework. The method
involves a log-ratio transformation (Aitchison, 1986) of the raw gene counts, which results
in a continuous variable. We model the distribution of the transformed variable using
the skew-normal distribution (Azzalini, 1985) with centered parameters. Subsequently, we
construct a Wald test statistic for testing differential variability. Through simulations, we
show how well clrDV performs compared to existing methods. Finally, we demonstrate the
applied value of clrDV by using it to identify biologically meaningful genes in the analysis
of a large RNA-seq dataset from a neurodegenerative disease study.

MATERIALS AND METHODS
The centered log-ratio transformation
We begin with the assumption that RNA-seq data are compositional, i.e., each sample
is represented by a vector of relative frequencies of the genes, which sums to unity. The
key step in processing compositional data involves a log-ratio transformation, for which
several variants are available. The simplest is the centered log-ratio (CLR) transformation,
first proposed by Aitchison (1986). After CLR-transformation, the simplex space of the
compositional data is transformed into the Euclidean space. It is then convenient to view
CLR-transformed values as realizations of a continuous random variable. To be concrete,
let Xgi be the read count for gene g and sample i, where g = 1,2,...,G and i= 1,2,...,n.
For a G-component composition {x1i,x2i,...,xGi}, the CLR- transformation of Xgi is given
by

CLR(Xgi)= log

{
xgi

(
∏

g ′ xg ′i)1/G

}
= log(xgi)−

1
G

G∑
g ′=1

log(xg ′i),

for g ′ = 1,2,...,G. We call CLR(Xgi) the relative gene expression, or CLR-transformed
count, of gene g and sample i. A pseudo-value 0.5 is added if xgi= 0 for any i. Thus, the
main challenge for using CLR-transformed data to develop a test for differential variability
is modeling them using a tractable probability distribution for which estimation of the
variance parameter is practical.

The skew-normal model for modeling centered log-ratio transformed
data
The skew-normal distribution is a three-parameter continuous probability distribution
that generalizes the normal distribution. Its additional skewness parameter enables it
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to model skewed data on the real line, thus making it more flexible than the normal
distribution, while retaining the usual mean and variance parameters. Historically, the
skew-normal model was arrived at by several different authors in other contexts (e.g., as a
prior distribution in Bayesian analysis by O’Hagan & Leonard (1976); see Azzalini (2022)).
Its main theoretical properties were developed by Azzalini (1985).

Denote the relative gene expression from gene g in sample i by Ygi. We model Ygi using
a skew-normal distribution with centered parameters (CP), that is, Ygi∼ SNC(µg ,σg ,γg ),
where µg is the mean, σg is the standard deviation, and γg is the skewness parameter,
g = 1,2,...,G and i= 1,2,...,n. The parameter vector θg (C)= (µg ,σg ,γg ) has parameter
space R×R+× (−k,k), where k =

√
2(4−π)/(π −2)3/2 ≈ 0.9953. The special case of

γg = 0 results in a normal distribution with mean µg and variance σ 2
g . See Li & Khang

(2022) for initial description and Supplementary Material S1 for further mathematical
details.

To perform parameter estimation and carry out related numerical tasks involving the
skew-normal distribution, we used the sn (Azzalini, 2022) R package. Regular maximum
likelihood estimation of parameters of the skew-normal model was first done using
the function selm(). If NA values were returned, we used the maximum penalized
likelihood estimation as implemented using the Qpenalty option. If NA values persisted,
the MPpenalty option was used.

For RNA-Seq experiments comparing two populations, testing for differential variability
is equivalent to testing the equality of the standard deviation of relative gene expressions
in two populations, that is, σg ,1= σg ,2. For this purpose, we can use the Wald statistic

Zg =
σ̂g ,2− σ̂g ,1√

Var(σ̂g ,2)+Var(σ̂g ,1)
,

for g = 1,2,...,G, where σ̂g ,j,j=1 ,2 are themaximum likelihood estimators of the standard
deviation of the skew-normal distribution with centered parameters for population 1 and
population 2, and Var(σ̂g ,j),j =1 ,2 are the corresponding diagonal elements of the
estimated Fisher information matrix of centered parameters θg (C). The Wald statistic
converges in distribution to the standard normal distribution as sample size becomes large.

To control the false discovery rate (FDR) as a result of conducting multiple hypothesis
tests across genes, we applied the Benjamini-Yekutieli procedure (Benjamini & Yekutieli,
2001), which allows for arbitrary dependence between the tested hypotheses. Note that in
the context of samples, FDR is estimated as the sample proportion of false discoveries.

Data description and preprocessing
In order to evaluate the suitability of the skew-normal distribution for fitting the CLR-
transformed counts and compare the performance of clrDV and other methods in terms
of controlling false discovery rate (FDR) and probability of Type II error, it is important
to simulate the null distribution using realistic parameter values. For this purpose, we
used two real RNA-Seq datasets that have modest to large sample sizes to enable reliable
estimation of the parameters of the NB2 model. The first dataset (GEO accesion number:
GSE123658) contains whole blood RNA-Seq data from from 39 Type 1 diabetes patients
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and 43 healthy donors (Leal Valentim et al., 2020), with 16,785 transcripts. The second
dataset (GEO acccesion number: GSE150318) contains longitudinal gene expression data
from 114 short-lived killfish Nothobranchius furzerimeasured at 10 weeks and 20 weeks of
age (Kelmer Sacramento et al., 2020), with 26,739 transcripts. Hereafter, we call these two
datasets the ‘‘Valentim dataset’’ and the ‘‘Kelmer dataset’’.

For empirical assessment, we used the Mayo RNASeq dataset (Allen et al., 2016), which
consists of 278 samples and 64,253 transcripts. In this study, RNA was isolated from the
temporal cortex of brains of patients with four biological conditions: control (n= 80),
Alzheimer’s disease (AD; n= 84), progressive supranuclear palsy (PSP; n= 84) and
pathologic aging (n= 30). We chose to compare the control group against the AD and
the PSP group respectively, since the sample sizes in these groups are reasonably large and
balanced. The large sample sizes per group of this dataset enables reliable estimation of
the variance parameter in the skew-normal model. In addition, since Alzheimer’s disease
is a well-researched neurodegeneratve disease, literature support for association with
Alzheimer’s disease may be more readily found for the DV genes detected, thus enhancing
interpretability of the analysis results.

For gene filtering, we removed a gene if it has average count-per-million (CPM) below
0.5, or its count is zero in at least 85% of the samples. After filtering, a total of 12,283 and
16,670 transcripts were left for the Valentim dataset and the Kelmer dataset, respectively.
In the Mayo RNA-Seq dataset, after removing samples with missing class labels, 78, 82, and
84 samples were left for the control, AD and PSP groups, respectively. For the AD-control
comparison, a total of 18,664 transcripts were left; for the PSP-control comparison, 18,636
transcripts were left. For MDSeq, diffVar, GAMLSS, and DiffDist, we normalized the raw
counts using TMM normalization.

Simulation study
Our simulation study has two objectives: (1) evaluation of the goodness-of-fit of the
skew-normal distribution on CLR-transformed data; (2) comparison of the performance
of clrDV against MDSeq, diffVar, GAMLSS (Benjamini–Hochberg (BH) and Benjamini–
Yekutieli (BY) variants), and DiffDist with respect to FDR and probability of Type II
error.

For objective (1), we randomly chose 10,000 of the filtered genes and modeled the
distribution of RNA-Seq counts for each of them using the NB2 model. This was done by
first estimating the parameters of the NB2 model using samples from one group (Type 1
diabetes group in the Valentim dataset; 20-weeks group in the Kelmer dataset), followed
by simulation of 500 biological replicates from the NB2 models with estimated parameters.
We used the polyester R package (Frazee et al., 2015) to perform the simulation. After
gene and sample filtering using the mean CPM < 0.5 and proportion of zero count ≥ 0.85
criteria, we checked the goodness-of-fit of the skew-normal model on the distribution of
the CLR-transformed simulated count data using the Kolmogorov–Smirnov (KS) test.

For objective (2), we first filtered out genes and samples using the mean CPM < 0.5
and proportion of zero count ≥ 0.85 criteria. We then randomly selected 2,000 of the
remaining genes and estimated the parameters of the NB2 model for each gene, again using
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the polyester R package. Thus, in a two-group comparison setting, both groups have
identical NB2 model parameters. For 10% of the genes (200/2,000), we simulated them
as DV genes by multiplying their estimated size parameter (1/φ) in one of the two groups
with a random value x , where x ∈ (0.25,0.5)∪ (2,4). For DiffDist, a random subset of a
quarter of the DV(50/200) and non-DV genes (450/1,800) were used, since the MCMC
step in DiffDist is computationally expensive. Subsequently, biological replicates of size
50,100,150,200 per group were drawn from these NB2 models. The minimum sample size
considered was 50 because for smaller values, estimation of the variance parameter of the
skew-normal model is unreliable (Azzalini & Capitanio, 2014; Azzalini, 2022). A total of 30
instances were thus simulated, and the methods considered were used to test for DV genes.
Genes with BY-adjusted p-value < 0.05 were flagged as having differential variability. We
evaluated the DV tests considered by plotting the probability of Type II error against FDR
for the 30 simulation instances. Finally, we recorded the run times of each method.

Empirical assessment
We applied clrDV to the Mayo RNA-Seq dataset to assess its capacity for detecting DV
genes that are contextually meaningful. For the genes after filtering, we assessed the fit of the
skew-normal model to their CLR-transformed count data using the KS-test. Comparisons
were made to close competitors as indicated from the results of the simulation study.
Volcano plots were used to inspect the biological effect size and statistical significance
of all genes tested. Venn diagrams were used to identify sets of genes that are identically
recovered by all three methods, by combinations of two methods, or uniquely recovered
by a single method. Violin plots of selected DV genes were made to verify computational
results.

Tools and computing environment
Computational tasks were done in a computer with a 1.80 GHz i5-8265U CPU and an 8GB
RAM processor. R version 4.2.1 (R Core Team, 2022) operating in Windows 10 was used.
The complete list of R packages used is given in Supplemental Information 2. ENSEMBL
gene ID to gene symbol conversion was done using the application programming interface
of the BioTools.fr website (Saurin, 2022).

RESULTS
Simulation study
For the skew-normal model to adequately capture variation in the CLR-transformed
RNA-Seq data, it is necessary to demonstrate goodness-of-fit between model and observed
data. Figure 1 shows the distribution of the p-value of KS tests for the fit of the skew-normal
model on distribution of the CLR-transformed count data. For the majority of the genes
(96.4% and 97.3% genes in the simulated Valentim and the Kelmer datasets, respectively),
the fit is good (p-value > 0.05).

Next, to be a viable alternative to existing methods for detecting differential variability,
clrDV should have comparable or superior performance with respect to FDR and the
probability of Type II error across sample size scenarios appropriate for the testing of
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Figure 1 Histograms of CLR-transformed counts for two genes with fitted skew-normal curve for (A)
the Valentim dataset (µ̂ = 3.968 (s.e. = 0.038), σ̂ = 0.858, (s.e. = 0.030) and γ̂ = −0.732 (s.e. =
0.055); (B) the Kelmer dataset (µ̂ = 1.311 ( s.e. = 0.013), σ̂ = 0.281 (s.e. = 0.009) and γ̂ = −0.331
(s.e. = 0.107)). Distribution of the p-values (after

√
−log10p transformation for compactness) of the

Kolmogorov–Smirnov goodness-of-fit tests of the skew-normal model for genes in the simulated (C)
Valentim dataset and (D) Kelmer dataset. The skew-normal model gives good fit to about 96.4% and
97.3% of the genes in (C) and (D), respectively. The red dashed line corresponds to the threshold p-value
of 0.05.

Full-size DOI: 10.7717/peerj.16126/fig-1

differential variability. Figure 2 shows the scatter plots of probability of Type II error
against FDR for analysis of the simulated Valentim dataset, for each of the four sample
sizes (50, 100, 150, 200) per group scenarios. For sample size of 50, all methods except
GAMLSS-BH show relatively largermean probability of Type II error (>0.5), indicating low
statistical power to detect DV genes. GAMLSS-BH shows an acceptable mean probability
of Type II error of about 0.2, with a trade-off in increased mean FDR of about 0.05.
diffVar shows highly inflated FDR. For other sample sizes, clrDV is uniformly superior
against MDSeq with respect to mean FDR and mean probability of Type II error; against
GAMLSS-BH, clrDV has uniformly superior mean FDR; against GAMLSS-BY, clrDV gives
approximately similar mean FDR and mean probability of Type II error. With respect to
computing speed, clrDV is substantially faster than GAMLSS (both BH and BY variants) as
sample size increases (Table S1). Overall, diffVar is uniformly inferior to all other methods
(mean probability of Type II error > 0.05 and FDR > 0.17, for all sample sizes). DiffDist
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Figure 2 Scatter plots of probability of Type II error vs. FDR for simulation study of the Valentim
dataset (30 instances) for samples size per group of (A) 50, (B) 100, (C) 150, and (D) 200. Dashed lines
represent probability of Type II error and FDR of 0.05.

Full-size DOI: 10.7717/peerj.16126/fig-2

appears to be more aggressive in calling DV genes, at the cost of having large variation
in for FDR, particularly for sample sizes of 150 or more. It also has the longest run time
among all methods.

For the analysis of simulated data from the Kelmer dataset, we find clrDV to have
comparable mean FDR and mean probability of Type II error (Fig. 3) as MDSeq and
GAMLSS-BY. However, clrDV computing time remains almost constant across the four
sample sizes (50, 100, 150, 200), whereas MDSeq, GAMLSS and DiffDist have computing
times that increase with sample size (Table S2). diffVar, GAMLSS-BH and DiffDist are
inferior in controlling FDR across all four sample sizes.
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Figure 3 Scatter plots of probability of Type II error vs. FDR for simulation study of the Kelmer
dataset (30 instances) for samples size per group of (A) 50, (B) 100, (C) 150, and (D) 200. Dashed lines
represent probability of Type II error and FDR of 0.05.

Full-size DOI: 10.7717/peerj.16126/fig-3

Detection of genes with differential variability
Similar to our findings from simulated data, the skew-normal model also appropriately
captures variation in the CLR-transformed counts of the genes for the Mayo RNA-Seq
dataset (Fig. 4). Almost all genes have KS goodness-of-fit test p-value greater than 0.05
(98.5% and 99.5% for the control and the AD groups, respectively; 98.4% and 99.2% for
the control and the PSP groups, respectively.)

Applying the procedure described in Section ‘The skew-normal model for modeling
centered log-ratio transformed data’, we estimated the standard deviation of the CLR-
transformed data, computed the Wald statistic and subsequently the BY-adjusted p-value
for each tested gene. For the control vs. AD comparison, we detected a set of 4,754 DV
genes (see Table S3 for complete list); for the control vs. PSP comparison, 4,859 DV
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Figure 4 Histograms of the distribution of the p-values (after
√
−log10p transformation for compact-

ness) from Kolmogorov–Smirnov goodness-of-fit tests of the skew-normal model on genes from the
(A) the control group (p-value> 0.05 for 98.5% of genes) and (B) the AD group (p-value> 0.05 for
99.5% of the genes) of the control vs. AD comparison; (C) the control group (p-value> 0.05 for 98.4%
of genes) and (D) the PSP group (p-value> 0.05 for 99.2% of genes) of the control vs. PSP comparison.
The red dashed line corresponds to the threshold p-value of 0.05.

Full-size DOI: 10.7717/peerj.16126/fig-4

genes were detected (see Table S4 for complete list). For the majority of DV genes, the
estimated standard deviation in the control group is larger than the one in the treatment
group (Fig. 5). This observation suggests that there is a higher proportion of DV genes
with reduced expression variability among AD patients compared to genes with increased
variability. In fact, many genes associated with AD may have a limited range of expression
levels, often being abnormally high or low, which could play a role in maintaining the
pathological state of the disease.

Only MDSeq and GAMLSS (BH and and BY variants) were considered for empirical
assessment since the results of the simulation study indicate that they are the only reasonable
competitors of clrDV with respect to appropriate control of FDR control and probability
of Type II error at sample sizes close to 100.

Figure 6 shows the number of significant DV genes identified by clrDV, MDSeq,
GAMLSS-BH and GAMLSS- BY for the control vs. AD comparison (see Table S5 for
complete list). GAMLSS-BH detected the most DV genes (9,926), followed by MDSeq
(6,924), and clrDV (4,754). The high confidence gene set, defined as the intersection
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Figure 5 Volcano plots for (A) control vs. AD and (B) control vs. PSP comparisons for the Mayo RNA-
Seq dataset. Dashed line represents the threshold of BY- adjusted p-value (q) at 0.05 for flagging DV
genes. The number of DV genes with log2(SD ratio) > 0 and log2(SD ratio) < 0 respectively: (A) 32 and
4,722; (B) 19 and 4,840.

Full-size DOI: 10.7717/peerj.16126/fig-5

of DV genes from each method, contains genes with estimated log2(SD ratio) that is
relatively large (>0.5). About 99.8% (4,743/4,754) of DV genes detected by clrDV are also
identified by MDSeq or GAMLSS-BH; 92.0% (4,374/4,754) are detected by both MDSeq
and GAMLSS-BH; about 0.2% (11/4,754) are uniquely identified by clrDV. GAMLSS-BH
identified very large numbers of DV genes in this dataset, but the majority of these are
probably false positives, given its relatively poorer control of FDR as shown in the results
of the simulation studies. Moreover, these DV genes have estimated log2(SD ratio) with
small magnitude, suggesting lack of bioloigcal significance (Fig. 6C).

Using GAMLSS-BY, only 6,079 DV genes were detected, compared to 9,926 using
GAMLSS-BH. Thus, GAMLSS-BY primarily helps improve FDR by reducing the number
of DV genes called. Between 61.7% (4,271/6,924) and 89.8% (4,271/4,754) of the DV genes
detected by one method are detected by all three. About 97.0% (4,613/4,754) of DV genes
detected by clrDV are identified by one of other two methods, and 3.0% (141/4,754) of
DV genes detected by clrDV are unique.

The result of the control vs. PSP comparison is similar (Fig. 7; Table S6). GAMLSS-BH
also detected themost number of DV genes (9,707), followed byMDSeq (6,894), and clrDV
(4,859). Up to 99.4% (4,831/4,859) of DV genes identified by clrDV are detected byMDSeq
or GAMLSS-BH; about 89.1% (4,329/4,859) are detected by both MDSeq and GAMLSS-
BH; about 0.6% (28/4,859) are uniquely identified by clrDV. Using GAMLSS-BY, only
6,024 DV genes were flagged. Approximately 95.9% (4,658/4,859) of DV genes identified
by clrDV are also identified by MDSeq or GAMLSS-BY; about 86.1% (4,186/4,859) are
detected by both MDSeq and GAMLSS-BY; about 4.1% (201/4,859) are uniquely detected
by clrDV.
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Figure 6 Venn diagrams of DV genes detected by clrDV, MDSeq and (A) GAMLSS-BH; (B) GAMLSS-
BY for the control vs. AD comparison. Violin plots of the distribution of estimated log2(SD ratio) of the
DV genes detected using clrDV, MDSeq and (C) GAMLSS-BH; (D) GAMLSS-BY. Abbreviations: cgm,
DV genes detected by clrDV, GAMLSS and MDSeq; c-g-m, DV genes detected by clrDV only; g-c-m, DV
genes detected by GAMLSS-BH only; m-c-g, DV genes detected by MDSeq only.

Full-size DOI: 10.7717/peerj.16126/fig-6

The violin plots (Figs. 6 and 7) suggest that the DV genes uniquely called by clrDV may
be more likely to true positives, given that the magnitude of log2(SD ratio), which is a
ssociated with biological significance, is generally larger than 0.5. For those genes uniquely
called by GAMLSS or MDSeq, the order of magnitude is generally below 0.5. With respect
to run time, for the control vs. AD comparison, clrDV took about 7.5 min, compared to
6 min for MDSeq, and 13 min for GAMLSS; for the control vs. PSP comparison, clrDV
took about 7 min, while MDSeq used 6 min, and GAMLSS used 15 min.

Biological significance of detected differential variability genes
For clrDV to be of practical use, it is necessary to show that it can successfully recover
genes with reported associations with a specific biological condition. Thus, in the analysis
of the Mayo RNA-Seq dataset for Alzheimer’s disease, four of the DV genes detected in the
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Figure 7 Venn diagrams of DV genes detected by clrDV, MDSeq and (A) GAMLSS-BH; (B) GAMLSS-
BY for the control vs. PSP comparison. Violin plots of the distribution of estimated log2(SD ratio) of
the DV genes detected using clrDV, MDSeq and (C) GAMLSS-BH; (D) GAMLSS-BY. Abbreviations:
cgm, DV genes detected by clrDV, GAMLSS and MDSeq; c-g-m, DV genes detected by clrDV only; g-c-m,
DV genes detected by GAMLSS-BH only; m-c-g, DV genes detected by MDSeq only.

Full-size DOI: 10.7717/peerj.16126/fig-7

control vs.AD comparison that have the largest estimated SD ratio above 1 are LTBP2, SLPI,
C2orf40, and SLC47A1 (Fig. 8). All four genes have been reported to be associated with
Alzheimer’s disease in the literature. The latent transforming growth factor (TGF)- beta
binding proteins (LTBP) are important components of the extracellular matrix (Robertson
et al., 2015). They interact with fibrillin microfibrils, and are known to be mediators of
TGF-β functions (Rifkin, Rifkin & Zilberberg, 2018), dysfunctions of which have been
implicated in Alzheimer’s disease (Das & Golde, 2006). Then, the secretory leukocyte
protease inhibitor protein(SLPI) is known to regulate the penetrance of frontotemporal
lobar degeneration (FTLD) in patients who have mutations in the progranulin gene
(Ghidoni et al., 2014). Loss of progranulin function has been found to enhance microglial
neuroinflammation, which is implicated in Alzheimer’s disease (Mendsaikhan, Tooyama
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Figure 8 Violin plots of selected DV genes detected in the control vs. AD comparison. (A) SLC47A1,
(B) C2orf40, (C) SLPI, (D) LTBP2 have the largest SD ratio (> 2); (E) GP1BB and (F) PELP1 have SD ra-
tio about 0.4.

Full-size DOI: 10.7717/peerj.16126/fig-8

&Walker, 2019). Podvin et al. (2016) found that C2orf40 is a neuroimmune factor in
Alzheimer’s disease. The SLC47A1 (solute carrier family 47 member 1) protein is expressed
in both the kidney and the brain, and recent research has suggested a linkage between
kidney diseases and Alzheimer’s disease (Shi et al., 2018; Kelly & Rothwell, 2022).

We detected 74 genes from the SLC family in the high confidence DV gene set, including
four members of the SLC39 family. Lang et al. (2012) demonstrated the modulating effect
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of dZip1, the ortholog of human SLC39 family transporter, on zinc ion uptake using a
Drosophila model. Zinc is known to induce amyloid beta formation (Bush et al., 1994).
Inhibition of dZip1 produces substantial reduction of amyloid beta peptide 42 (Aβ42)
fibril deposits and less neurodegeneration in Aβ42-transgenic flies.

Two of the DV genes with estimated SD ratio substantially smaller than 1 are PELP1
and GP1BB (Fig. 8). PELP1 mediates E2 inhibition of GSK3β, a neurodegenerative kinase
signaling pathway in the brain (Thakkar et al., 2018). GSK3β is implicated in Alzheimer’s
disease as a key mediator of cell death (Llorens-Martin et al., 2014). The GP1BB gene
produces glycoprotein 1b-beta(GPIbβ), a subunit of the GPIb-IX-V protein complex on
the surface of platelet cells. Amyloid beta peptides are known to be actively released by
platelets (Bush et al., 1990; Casoli et al., 2007). Visconte et al. (2020) recently reported that
recruitment of GPIb-IX-V is required for fibrillar amyloid Aβ40 and Aβ42 to induce
platelet aggregation. The study of the role of platelets and the pathogenesis of Alzheimer’s
disease is an active topic (Catricala, Torti & Ricevuti, 2012).

We note that approximately half of genes in the high confidence gene set from the control
vs. AD comparison (4,271 genes) are also found in the high confidence gene sets from the
control vs. PSP comparison (4,186 genes). Altogether, 2,149 DV genes are common to
both comparisons. This observation is consistent with recent findings that transcriptomic
changes are in AD and PSP relative to control are strongly correlated (Wang et al., 2022).

DISCUSSION
Both the results of the simulations and empirical assessment support the feasibility
of adopting a CoDA framework for modeling RNA-Seq data. The modeling of CLR-
transformed count data using the skew-normal model is justified by the model’s good
fit. This means that expression variation can be explicitly associated with the standard
deviation parameter of the skew-normal model, rather than through a proxy variable such
as the dispersion parameter in the negative binomial or the GAMLSS models.

From a practical perspective, the skew-normal model is an ideal choice since it is
mathematically tractable and has mature computational support through the sn R package,
which enables direct testing of differential variability using its standard deviation parameter.
Moreover, a test of differential expression that is based on the mean parameter can also be
derived. With these tests, it becomes possible to develop methods for detecting three classes
of genes in two-population comparisons: (i) equal variance, different mean; (ii) equal
mean, different variance; (iii) different mean, different variance. Although clrDV cannot
differentiate genes of the second and the third type, inspection of violin plots should be
useful for ascertaining whether the DV genes also appear to differ significantly in the mean
of their relative expression level.

We observed that in the comparisons between control vs. AD and control vs. PSP, a
majority of the DV genes identified by clrDV (between 86.1% and 92.0%) were already
included in the high-confidence gene set, where the estimated log2(SD ratio) has relatively
larger magnitude compared to non-DV genes (Figs. 6C and 6D; Figs. 7C and 7D). Thus, it
seems that clrDV alone should be able to recover most of the DV genes of interest.
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In standard count models, the choice of normalization method is a hyperparameter
that needs to be optimised. It is known that incorrect normalization leads to inflated FDR
in differential expression analyses (Evans, Hardin & Stoebel, 2018), yet the assumptions
that justify a normalization method are usually not testable. Since existing normalization
methods have been developed for the purpose of finding differentially expressed genes, the
assumptions that justify their use could be suboptimal for the purpose of developing
differential variability tests. Consequently, the performance of existing count-based
approaches for DV test is likely sensitive to the choice of normalization method. However,
it is beyond the scope of the present work to optimize the choice of normalization step for
these count-based methods.

On the aspect of practical application, we note that the R codes provided by De Jong,
Moshkin & Guryev (2019) for GAMLSS are not sufficiently generic and require further user
modifications to be suitable for routine use as a DV test. In addition, GAMLSS uses BH
rather than BY as the default setting for multiple comparisons adjustment.

ForMDSeq, we found that it may occasionally encounter difficulties in estimatingmodel
parameters. Specifically, in our analysis of the Mayo RNA- Seq dataset, we observed that
45 genes returned NA parameter estimates in the control vs. AD and the control vs. PSP
comparisons. On the other hand, the Bayesian method DiffDist does not appear attractive
for routine use, owing to its long run time and poor control of FDR at larger sample sizes.
Therefore, we suggest using GAMLSS-BH for sample sizes of 50 or less, since the simulation
results indicate that it has the best statistical power among the methods considered for
detecting DV, though with FDR that is likely to be at least 0.05. For larger sample sizes,
clrDV or GAMLSS-BY are better alternatives. In fact, users may consider using them jointly
to obtain high confidence DV gene sets, as shown in the analysis of the Mayo RNA-Seq
dataset.

Finally, the CoDA framework enables the estimation of mean, variance, and skewness
parameters simultaneously from RNA-seq data. This unique capability leads to the
development of statistical tests that can simultaneously assess differential expression,
differential variability, and differential skewness, which is not possible using conventional
count modeling techniques. The results of this extension will be reported elsewhere in a
separate publication.

CONCLUSIONS
Variability of gene expression at aberrant levels is one of the hallmarks of disrupted or
dysregulated biological processes. Hence, detection of genes with differential variability
should accompany routine differential expression analysis to expand the pool of potential
therapeutic intervention targets. clrDV offers a novel approach for identifying DV genes
in RNA-seq data. By modeling the null distribution of centered log-ratio transformed
RNA-Seq data using a skew-normal distribution, clrDV can detect genes with expression
variance that differs significantly between two populations. Simulation results demonstrate
that clrDV has a comparable or superior false discovery rate and probability of Type II error
compared to its close competitors, while also having a faster run time for larger sample sizes
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per group. Our analysis of the Mayo RNA-seq dataset revealed that four genes associated
with AD pathogenesis (LTBP2, SLPI, C2orf40, and SLC47A) showed significantly higher
variance in the AD group. On the other hand, GP1BB and PELP1, which are also linked to
AD pathogenesis, showed significantly lower variance in the AD group. In summary, for
large RNA-Seq studies (e.g., sample sizes of 100 or more), clrDV’s good control of FDR
and probability of Type II error, and its ease of implementation via the clrDV R package
make it a good choice for complementing DE tests with DV tests.
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