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ABSTRACT11

DNA methylation is a crucial topic in bioinformatics research. Traditional wet experiments are usually

time-consuming and expensive. In contrast, machine learning offers an efficient and novel approach. In

this study, we propose DeepMethylation, a novel methylation predictor with deep learning. Specifically,

the DNA sequence is encoded with word embedding and GloVe in the first step. After that, dilated

convolution and transformer encode modules are utilized to extract the features. Finally, full connection

and softmax operations are applied to predict the methylation sites. The proposed model achieves an

accuracy of 97.9% on the 5mC dataset, which outperforms state-of-the-art models. Furthermore, our

predictor exhibits good generalization ability as it achieves an accuracy of 95.8% on the m1A dataset. To

ease access for other researchers, our code is publicly available at https://github.com/sb111169/tf-5mc.
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INTRODUCTION23

Epigenetics is first introduced to study the heritable changes in the regulation of gene expression without24

altering the nucleotide sequence of DNA. Advancements in life sciences have led to constant updates25

to the definition of epigenetics. Researchers have discovered various epigenetic mechanisms, including26

protein acetylation and methylation(Zhang et al., 2020a). Currently, N6-methyladenine (6mA), N4-27

methylcytosine (4mC) and 5-methylcytosine (5mC) are the three most widely studied types of DNA28

methylation. Take 5mC as an example, it commonly appears on the fifth carbon atom of cytosine in the29

DNA sequence’s CpG dinucleotides. DNA methyltransferase transfers the methyl (-CH3) group from30

S-AdenosylMethionine (SAM) to the fifth carbon atom of cytosine(Adampourezare et al., 2021).31

Studies have indicated the possible negative impact on organisms of abnormal DNA methylation.32

Firstly, DNA methylation can affect the level of gene expression, and even lead to gene silencing or33

abnormal expression(Ehrlich, 2003). For example, DNA methylation can change the conformation of34

chromatin, thus affecting chromatin accessibility and gene expression. In addition, the risk of gene35

mutations is positively correlated with DNA methylation(De Bont and Van Larebeke, 2004). Methylation36

sites are prone to be damaged in the process of replication and repair of DNA. If they are not repaired37

correctly, it may lead to loss of DNA or accumulation of mutations. Moreover, the same is true of the38

occurrence and development of cancer(Xu et al., 2011; Chowdhury et al., 2011; Lu et al., 2012; Koivunen39

et al., 2012). Some cancer cells have aberrant methylation of genes involved in important cellular life40

processes such as cell growth, differentiation and apoptosis, suggesting that DNA methylation may41

promote tumor initiation and progression. For instance, mutations in IDH1/2 produce the oncogenic42

metabolite 2-HG, which results in increased DNA methylation at the cellular level. This alteration43

affects gene expression and leads to cancer. Finally, embryonic development and adult diseases are also44
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associated with DNA methylation(Jin et al., 2008; Tatton-Brown et al., 2014; Baets et al., 2015). DNA45

methylation plays an important role in embryonic development, and abnormal methylation may cause46

birth defects or abnormal development. The status of three functional protein families in the epigenetic47

system (write, reader, eraser), and their associated genes’ genetic variation can cause diseases (e.g., autism,48

blood disease) by affecting overall cell-level epigenetics. Therefore, DNA methylation plays an important49

role in gene expression regulation and chromatin structure variation, and the detection of methylation is50

of great importance.51

Current methods for methylation detection include wet experiments, traditional machine learning meth-52

ods, and deep learning methods. Wet experiments conduct molecular biology tests to distinguish between53

methylation and demethylation in DNA samples. This typically involves bisulfite treatment(Smallwood54

et al., 2014; Kernaleguen et al., 2018), enzymatic digestion, and chromatin immunoprecipitation. Follow-55

ing bisulfite treatment, methylated cytosine is oxidized and transformed to unmethylated uracil, whereas56

unmethylated cytosine remains unchanged, and the difference indicates methylation.57

Traditional machine learning methods generally consist of three key steps: data processing, fea-58

ture extraction, and classification, which are all designed based on the experience of the researchers.59

Commonly-used features include physical, statistical, and sequence annotation features such as base60

frequencies, G+C content, length, repetitive sequences, RNA elements, and protein binding sites (Fang61

et al., 2006; Zhang et al., 2015). Based on the features, classification algorithms like logistic regression,62

support vector machines, or decision trees are used to identify the methylation sites.63

In contrast, deep learning methods are more straightforward. Instead of manually specifying the feature64

extractor and classifier, researchers only need to design the deep neural networks, which automatically65

extract features and predict methylation results from DNA sequences. Furthermore, driven by datasets66

with a large number of samples, deep learning can extract more essential features than manually designed67

ones. For instance, the DNA module and the CpG module of the DeepCpG model(Angermueller et al.,68

2017) can predict the relationship between DNA sequences and their methylation status, as well as the69

relationship between adjacent CpG sites within a single cell or across cells.70

In general, wet experiments achieve high accuracy, but they only predict a small number of DNA71

methylation sites. In addition, conducting wet experiments requires not only great cost and time, but also72

professional knowledge in biology, and these factors make it difficult to be widely applied. Traditional73

machine learning needs specified feature design, which also requires professional experience and extensive74

tests to find good feature descriptors. In contrast, deep learning methods can automatically learn the most75

relevant features without specifying them in advance, and can handle large datasets and high-dimensional76

data.77

However, although deep learning methods provide new insights to detect DNA methylation, they still78

face challenges. On the one hand, convolutional neural networks (CNNs) can extract features for DNA,79

but they are not sensitive to 1D sequential data. On the other hand, recurrent neural networks (RNNs)80

are more suitable for feature extraction of sequential signals, but they do not perform well in learning81

remote relationship. Moreover, conducting large-scale parallel computation is challenging due to RNN’s82

structure. In addition, the current DNA encoding methods, one-hot and word embedding, emphasize local83

information and ignore global relationship.84

To solve these problems, in this paper, we propose DeepMethylation, a novel deep-learning based85

scheme to predict DNA methylation sites. The contribution of this paper is as the following. Firstly,86

with word embedding and GloVe, we propose a novel DNA encoding method. This new representation87

format improves the ability in modeling the relationship between DNA sub-sequences. Secondly, dilated88

convolution and transform encoder are incorporated to better extract both local and global features,89

especially the relationship between DNA sequences far from each other. Last but not least, dense full90

connections are used to predict the methylation statue of each site. Experimental results demonstrate that91

the accuracy of the proposed method reaches 97.9%, which outperforms other state-of-the-art methods.92

RELATED WORKS93

Wet experiments94

Genome-wide single nucleotide resolution (GWGSR) typically requires wet experiments to be realized.95

Currently, the main approaches for achieving GWGSR include whole-genome bisulfite sequencing96

(WGBS), reduced representation bisulfite sequencing (RRBS), and DNA methylation chip.97
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WGBS (Smallwood et al., 2014; Kernaleguen et al., 2018) is a high-resolution and comprehensive98

method for full-genome sequencing via bisulfite treatment, which converts unmethylated cytosine to99

uracil, but does not convert methylated cytosine. Methylation status of individual cytosines can be100

determined at the single nucleotide level by comparing the DNA sequences with and without bisulfite101

treatment. RRBS(Guo et al., 2013; Farlik et al., 2015; Hou et al., 2016) is a cost-effective alternative to102

WGBS and involves sequencing the CpG-rich subset of the genome. RRBS reduces the requirement for103

sequence depth to cover the entire genome and still provides single nucleotide resolution at CpG sites.104

DNA methylation chips(Morris et al., 2014) represent microarray-based platforms that simultaneously105

detect DNA methylation levels among thousands of CpG sites in the genome. These chips contain probes106

that are specific to methylated or unmethylated CpG sites, and the intensity of the signal from each probe107

indicates the site’s methylation level.108

Although wet experiments produce accurate prediction results, it needs great financial cost and time,109

as well as professional biology knowledge, which is inefficient in implementation.110

Traditional machine learning methods111

With the rapid advancement in automatic DNA sequencing technology, huge amount of DNA sequences112

are obtained, promoting the analysis of DNA data. Traditional machine learning methods involve two113

steps. Firstly, manually designed DNA features are proposed. After that, with these features, machine114

learning classification algorithms are utilized to predict the methylation. Stevens et al.(Stevens et al.,115

2013) integrated the features from chromatin immunoprecipitation sequencing and methylation-sensitive116

restriction enzyme sequencing, and predicted the methylation status of CpG sites in the human genome117

by using a conditional random field model. Zhang et al. (Zhang et al., 2015)utilized various features,118

including methylation markers, genomic locations, and regulatory factors, to design a methylation119

prediction model with a random forest classifier. Fang et al.(Fang et al., 2006) developed a CpG island120

methylation prediction tool called MethCGI using CpG island data from the human brain. This model121

takes input features such as CpG ratio, GC content, TpG frequency and transcription factor binding site122

distribution, and employs a support vector machine as a classifier.123

Machine learning methods have demonstrated higher efficiency and lower costs than wet experiments.124

However, the performance of machine learning models is limited by the manual selection of feature125

descriptors and classifiers, which relies on the experience of the researchers.126

Deep learning methods127

In recent years, with the rapid development of neural networks, deep learning methods have been applied128

to DNA methylation prediction(Routhier and Mozziconacci, 2022). Deep learning automatically extracts129

features and is free from tedious feature engineering, allowing an end-to-end model to be constructed for130

feature extraction and classification. Deep learning methods, including convolutional neural networks131

(CNN) and recurrent neural networks (RNN), have been proven to perform well in predicting DNA132

methylation sites.133

Angermueller et al. proposed the DeepCpG model(Angermueller et al., 2017). The model consists134

of DNA module, CpG module and joint module. The DNA module involves two convolutional layers135

and a pooling layer to identify correlations between DNA sequence patterns and methylation status. The136

CpG module employs a bidirectional gated recurrent network to identify correlations between adjacent137

CpG sites. The joint module learns the interaction between the DNA and CpG modules to predict138

the methylation status in all cells. Tian et al. proposed MRCNN(Tian et al., 2019), which used the139

correlation between DNA sequence patterns and methylation levels to predict the methylation of the140

CpG site at single base resolution. The model used one-hot encoding, convolution, pooling and fully141

connected layers to output the predicted value. With a continuous loss function, MRCNN achieves smooth142

regression of methylation values, and produces more accurate results than the DeepCpG model. Zhou143

et al. built a RNN-based DNA methylation prediction model(Zhou, 2020), this model first converts the144

raw DNA sequence into matrix data through one-hot encoding, and then sends it to the RNN model for145

feature extraction and methylation prediction. The results have shown that RNNs are more suitable for146

handling sequence data and extracting hidden temporal features from the sequence than CNNs. Cheng147

et al. proposed iPromoter-5mC(Cheng et al., 2021), believing that DNA chemical properties can affect148

its genetic traits. To address this issue, they combined one-hot encoding with deoxyribonucleic acid149

nucleotide properties and their frequency (DPF) to generate a composite feature set. They then used a150

deep neural network to process the composite feature set for identifying methylation modification sites in151
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promoters. Tran et al. considered that the DNA sequence can be regarded as a distinct linguistic system,152

and they proposed an efficient encoding method to identify 5-methylcytosine sites. By embedding k-mers,153

they transformed the DNA sequence into ‘sentences’, and then generate the feature vector of the DNA154

sequence(Tran et al., 2021) with k-mers representation. Then, the feature vectors were separately sent to155

xgboost, random forest, deep forest and deep feedforward neural network. The final results showed that156

the performance of this model was better than iPromoter-5mC.157

In general, deep neural networks have better learning abilities than traditional learning methods, and158

thus produce more accurate results. Nevertheless, CNNs and RNNs still encounter challenges in encoding159

feature representations and efficiently extracting global long-distance features, and further research is160

desired.161

MATERIALS AND METHODS162

The Overall Framework163

As shown in figure 1, the proposed DeepMethylation has 3 modules, which are data processing module,164

feature extraction module and classification module. First, in data processing module, the one-dimensional165

DNA sequence is segmented and converted to a 39 × 300 matrix with word embedding and GloVe. After166

that, the feature extraction module utilizes transformer encoder and dilated convolution to extract global167

and local features. Finally, with the extracted features, the classification module predicts the methylation168

state of each site of the DNA sequence.169

Figure 1. The overall framework of DeepMethylation.

Data processing170

As a long sequence, DNA is not conducive to presenting the relationship among different fragments.171

Therefore, the first step is to convert one-dimensional DNA sequences to a group of short fragments.172

Although one-hot encoding(Abbas et al., 2021) can represent each base of DNA as a binary bit, it cannot173

provide the sequence orders or measure the distance(Huang et al., 2021) between related words. In this174

paper, word embedding and GloVe algorithm are used to better model the relationship in DNA sequences.175

By following the rule of WGBS, the golden standard of methylation detection, DNA sequences are176

cropped into 41 bp segments. As shown in figure 2, a 3-bp window slides over a segment and produces a177

series of 3-mer sub-sequences. As a result, a 41bp DNA sequence is converted to a 39×3 3-mer matrix.178
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Figure 2. 3-mer sub-sequences.
Figure 3. Co-occurrence matrix.

To explore the relationship between these 3-mer fragments, GloVe(JeffreyPennington and Manning,179

2014; Wang et al., 2022), a word embedding model based on global vectors, is utilized. It first checks180

the context of neighboring 3-mer fragments and obtains a co-occurrence matrix. Figure 3 depicts an181

example of the co-occurrence matrix for three four-word sentences. Take the combination of ‘CGG-ATC’182

as an example, it happens twice that ‘CGG’ appears before ‘ATC’, and the corresponding intersection183

with the row index ‘CGG’ and the column index ‘ATC’ is valued at two, which is marked in pink in the184

co-occurrence matrix for better illustration. Mathematically, the co-occurrence matrix is notated as X ,185

and Xi, j represents the frequency of word j appearing after i. I this way, the example in figure 3 can also186

be noted as XCGG,ATC = 2. Moreover, it is noteworthy that the matrix is symmetric about the diagonal187

line, and the elements in the upper-right of the matrix are computed and copied to the lower-left.188

In figure 3, the co-occurrence matrix only indicates the relationship of three sub-sequences, and in

order to model the relationship for all sub-sequences, GloVe algorithm traverses the entire corpus and

derives a global word vector dictionary through inner product operation and translation transformation of

words (Cochez et al., 2017; Liu et al., 2019a), which makes the mapping values equal or approximate to

the co-occurrence probability of words. To be specific, an energy function J is defined as

J =
N

∑
i, j=1

f (Xi, j)
�
V T

i
�Vj +bi +b j − log(Xi, j)

�2

(1)

where bi and b j are offsets, and N is the total number of words. Vi represent the word vector in the

global dictionary to be obtained, �Vj is the separate context vector that help solving Vi. Since J is a convex

function, Vi can be solve via optimization algorithms such as gradient descent. In addition, the weighting

factor f (Xi, j) is defined as

f (Xi, j) =

� �
Xi, j

TX

�α

if Xi, j < TX

1 otherwise
(2)

where TX is a threshold. With truncation and non-linear mapping, the weighting factor can retain crucial189

information in the co-occurrence count while also eliminating noise and irregular co-occurrence. In190

very special cases, f (Xi, j) equals to 1 only when two words are semantically similar and locate closely191

to each together in the vector space. α is set to 0.75, which enables the model to achieves quite good192

performances as has been proved in (JeffreyPennington and Manning, 2014).193

In implementation, the length of Vi is set to 300 for each valid vector word. Once all word vectors Vi194

are obtained, each 3-mer word can be represented by the corresponding word vector. As a result, the 39195

3-mer words in figure 1 can be presented with a 39×300 encoding vector matrix.196
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Feature extraction197

After data processing, the 39×300 word vector matrix is used for feature extraction. To be specific, this198

matrix is regarded as a word vector embedding layer that utilized as input for the feature extraction199

module, which utilizes dilated convolution and transformer encoder as shown in figure 1.200

On the one hand, to enlarge the receptive field while keep low computational complexity(Liu et al.,201

2019b; Yuan et al., 2019), dilated convolution is utilized. As shown in figure 4, in dilated convolution, the202

filter is expanded by inserting zeros between its values. This effectively increases the receptive field of203

the filter without increasing the number of parameters, allowing it to capture larger spatial structures and204

longer-term dependencies of the input. In this study, three branches with dilation rates of 1, 2, and 3 are205

used, followed by features concatenation, producing feature of contextual information at different scales.206

Figure 4. Dilated convolution.

On the other hand, followed by dilated convolution, a transformer encoder is used to extract the global207

relationship in the spliced features and the long-term dependency relationship between elements in the208

sequence(Khan et al., 2022). As shown in figure 5, based on the transformer encoder, which consists of209

input embedding, multi-head attention, add&norm, and feed forward, we incorporate positional encoding210

into the module. Positional encoding is an important property for sequential signals, take the 39 DNA211

fragments shown in figure 2 as an example, if their positions or arrangement orders are changed, they will212

form a new DNA sequence that is totally different. Therefore, with positional encoding, word orders can213

be introduced to distinguish between DNA sequences.214

Another important mechanism in the transformer encoder is the multi-head attention (MHA), which215

computes the relative importance between different positions in the input sequence so as to provide better216

input feature representation for the subsequent feed forward network. Figure 6 depicits the framework of217

MHA. The input features, which are in the form of 3D tensors, are copied multiple times. For each feature,218

a weighting factor is calculated with the self-attention mechanism, with which the weighted summation of219

the input features are calculated. MHA can map the input features to multiple sub-spaces, and improves220

the model’s understanding of the input sequence with feature extraction, attention calculation and feature221

concatenation. Furthermore, each head in MHA works independently, thus expanding the decision space222

of the model and enabling better decisions while mitigating over-fitting.223

Finally, after the operation of ‘addition and normalization (Add&Norm)’, the transformer produces224

the features of the gene, which are used for classification.225

Classification226

As shown in figure 2, the features extracted by the encoder are finally sent to the classifier to predict the227

sites of mathylation. The classifier has three fully connected layers with dropout. The dimensions of the228

three fully connected layer are 128, 64 and 32, respectively. Finally, a Sigmoid activation function is used229

to report whether a site is 5mc or non-5mc. In addition, the categorical cross-entropy loss is adopted to230

train the network.231

RESULTS AND ANALYSIS232

Dataset233

In learning-based methods, the dataset is of fundamental importance. In this study, we use the Cancer

Cell Line Encyclopedia (CCLE) dataset proposed by Zhang et al.(Zhang et al., 2020b), where 5mC
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Figure 5. Transformer Encoder. Figure 6. Multi-head Attention

modification sites of various cancer cell lines are processed by simplified RRBS experiment. Especailly,

we focus on investigating the distribution of 5mC sites in small cell lung cancer (SCLC)(Barretina et al.,

2012; Li et al., 2019). DNA fragments with ‘C’ locating in the center are extracted and notated as

E(δ ) (C) = E−(δ ) E−(δ−1) · · · E−(1) C E+(1) · · · E+(δ−1) E+(δ ) (3)

where for each site E ∈ {A,T,G,C}. In implementation, by following the rule of WGBS, δ is set to 20,234

and each fragment has 41 sites. In this way, a total of 93000 DNA fragments are obtained, including235

65000 methylation-positive samples and 865000 negative ones. As shown in table 1 and figure 7, the ratio236

between the negative and positive samples is about 13.3, which coincides with the distribution of 5mC in237

real cases.238

The experiment is conducted on a server with an Intel(R) Core(TM) i9-10900F CPU, a 64GB RAM,239

and an NVIDIA GeForce RTX 3090 GPU. The software is programmed with Python 3.7, Keras-nightly240

2.8, and tf-nightly-gpu 2.8.0.241

Table 1. The information of the experimental datasets.

Dataset Positive Sample Negative Sample

Training Dataset 52000 692000

Testing Dataset 13000 173000

Total 65000 865000

Figure 7. Proportion of positive and negative samples
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Performance Evaluation242

The model is trained and tested with the aforementioned dataset. According to the test results, e.g. the243

numbers of true negative (TN), false negative (FN), true positive (TP), and false positive (FP) samples,244

the following indexes are computed to evaluate the performance of the model.245

• Sensitivity (Sen) refers to the ratio of correctly predicted positive samples to all positive samples.

Sen =
T P

T P+FN
(4)

• Specificity (Spe) refers to the ratio of correctly predicted negative samples to all negative samples.

Spe =
T N

T N +FP
(5)

• Accuracy (Acc) refers to the ratio of correctly classified samples, both positive and negative, to all

tested samples.

Acc =
T P+T N

T P+T N +FP+FN
(6)

• Matthews Correlation Coefficient (Mcc) considers the joint relationship between TP, TN, FP and

FN, and comprehensively evaluates the consistency between the predicted results and the ground

truth.

Mcc =
T P× (T N)−FP× (FN)�

(T P+FP)× (T P+FN)× (T N +FP)× (T N +FN)
(7)

• Area Under the Curve (AUC) compares the performance of different models by calculating the area246

under the Receiver Operating Characteristic (ROC) curve, and larger value indicates higher degree247

of authenticity.248

Performance Comparison with SOTA Methods249

Three state-of-the-art (SOTA) methylation prediction methods, iPromoter-5mC(Cheng et al., 2021), 5mC-250

Pred(Tran et al., 2021) and BiLSTM-5mC(Zhang et al., 2020b), are compared with our model. In order251

to make a fair comparison, all models are trained with the aforementioned dataset, and are subjected to252

5-fold cross-validation. Table 2 presents the technique features, including encoding, feature extraction,253

and classification of the methods.254

Table 2. Summary of existing tools for 5mC sites prediction in genome-wide DNA promoters.

Method Encoding Feature Extraction and Classification

iPromoter-5mC One-hot Deep neural network

5mC-Pred K-mers XGBoost

BiLSTM-5mC One-hot and NPF BiLSTM

Our model GloVe Digital convolution and transformer encoder

As shown in figures 8-12, our model performs the best in terms of Spe, Acc, Mcc, and Auc, indicating255

that our model can get more essential features and the classifier is also more accurate. Our model256

adopts encoding technique, including word embedding and GloVe, and transformer feature extraction, as257

well as dilated convolution. These techniques improves the ability in modeling the relationship among258

sub-sequences, which also benefits the accurate classification of methylation for the gene sites.259

We also noticed that, in terms of ‘Sen’, the proposed framework is slightly lower than iPromoter-5mC260

and 5mC-Pred, the reason is that the our method focus on making reliable predictions, or in other words,261

our model is trend to classify a positive sample as ‘negative’ if it is not that confident. As a result, ‘TP’262

becomes slightly smaller and ‘FN’ is larger than the ground truth. Although this reduces the value of263

‘Sen’, it provides more reliable judgement for ‘TP’. On the other hand, it should be noticed that, in terms264

of the overall accuracy ‘Acc’ that takes all tested samples involved, the proposed method reaches 0.979,265

which is about 5% higher than the sub-optimal method BiLSTM-5mC.266
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Figure 8. Sen comparison. Figure 9. Spe comparison.

Figure 10. Acc comparison. Figure 11. Mcc comparison.

Figure 12. Auc comparison.

Influence of encoding methods267

Encoding methods have a significant impact on the model’s performance. In addition to the word268

embedding and GloVe encoding used in this paper, one-hot encoding(Vinyals et al., 2016) is also widely269

utilized. To verify the superiority of GloVe, we replace the encoding method in figure 1 with one-hot270

encoding, and compare the performance with the five quality indexes as shown in figure 13. It can be271

noticed that, both methods produce satisfactory results, but GloVe still performs better than one-hot272

encoding.273

To be specific, for Spe, Acc and Auc, the performance of the methods are similar with index274

values above 0.97. For the other two indexes, Sen and Mcc, GloVe encoding achieves significant275

performance improvement over one-hot encoding. The reason is that one-hot encoding only provides276

the simplest mapping of the four bases A, T, C, and G, resulting in low-dimensional representation of277

DNA, while GloVe incroprates sliced DNA fragments, and thus better represents the relationship among278

sub-sequences. Therefore, GloVe encoding exhibits better ability to identify positive examples, as well as279

higher correlation between the predictions and the ground truth.280

Influence of feature extraction methods281

In addition to encoding, feature extraction methods also greatly affect the methylation detection results.282

The long short term memory (LSTM)(Yu et al., 2019) is widely used to extract features for 1D sequence,283

so a comparison is made between LSTM and the proposed Transform encoder. As shown in figure 14, it284

can be seen that the transformer encoder achieves better performance than LSTM in terms of Sen, Mcc285

and Auc. The reason is that, as a recurrent neural network, LSTM relies on memory units to transmit286

information when dealing with long sequences. However, as the sequence grows longer, the information287
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Figure 13. Performance comparison of feature encoding methods for the prediction of 5mC sites.

transmission becomes weaker in the network, which impairs the ability of long-term modeling. In288

comparison, the transformer encoder utilizes the multi-head attention mechanism, which directly model289

the relationship between input signals without relying on the context, and thus better deal with long290

sequence data.291

Figure 14. Performance Evaluation of Different Feature Extraction Methods.

Generality on m1A data292

We also test the generalization performance of the proposed method when extending to other types of293

DNA data. For example, in figures 15-16, the proposed model is tested with m1A data of the EMDLP294

dataset (Wang et al., 2022). It can be noticed that, the network converges after 12 epoches, and the295

accuracy reaches 95.8%. This demonstrates that the proposed method has good generation ability and is296

promising to be applied to different DNA data.297

CONCLUSIONS298

After analyzing existing research and extensively comparing experimental performance, the proposed299

DeepMethylation is proved to be an effective method for identifying DNA methylation sites. Word embed-300

ding and GloVe can effectively describe the features of DNA sequences and reveal hidden relationships301
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Figure 15. Training Progress of training and testing data sets.

Figure 16. Performance on m1A dataset.

between sub-sequences. In addition, the feature extraction module, including the transformer encoder302

and the dilated convolution, can better extract local and global features of DNA sequences. Experiments303

demonstrated that the proposed framework, as well as the specified tools, achieves accurate methylation304

detection, with the accuracy reaching 97.9%, and can be applied to m1A data. In the future, we will305

consider using this model for the recognition of 4mC and 6mA.306

Although excellent research has been done by previous researchers in this field and they have provided307

theoretical and experimental support for our research, there is still room for improvement, such as308

developing unsupervised learning methylation detection approaches without the ground truth labels,309

which are commonly obtained via expensive and labor-intensive wet experiments.310
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