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ABSTRACT
DNA methylation is a crucial topic in bioinformatics research. Traditional wet
experiments are usually time-consuming and expensive. In contrast, machine
learning offers an efficient and novel approach. In this study, we propose
DeepMethylation, a novel methylation predictor with deep learning. Specifically, the
DNA sequence is encoded with word embedding and GloVe in the first step. After
that, dilated convolution and Transformer encoder are utilized to extract the features.
Finally, full connection and softmax operators are applied to predict the methylation
sites. The proposed model achieves an accuracy of 97.8% on the 5mC dataset, which
outperforms state-of-the-art methods. Furthermore, our predictor exhibits good
generalization ability as it achieves an accuracy of 95.8% on the m1A dataset. To ease
access for other researchers, our code is publicly available at https://github.com/
sb111169/tf-5mc.
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INTRODUCTION
Epigenetics is first proposed to investigate the heritable changes in the regulation of gene
expression without altering the nucleotide sequence of DNA. Researchers have discovered
various epigenetic mechanisms, including protein acetylation and methylation (Zhang, Lu
& Chang, 2020a). Currently, N6-methyladenine (6mA), N4-methylcytosine (4mC), and
5-methylcytosine (5mC) are the three most widely studied types of DNA methylation.
Take 5mC as an example, it commonly appears on the fifth carbon atom of cytosine in the
DNA sequence’s CpG dinucleotides. DNA methyltransferase transfers the methyl (-CH3)
group from S-AdenosylMethionine (SAM) to the fifth carbon atom of cytosine
(Adampourezare et al., 2021).

Studies have indicated the possible negative impact on organisms of abnormal DNA
methylation. Firstly, DNA methylation affects the level of gene expression and even leads
to gene silencing or abnormal expression (Ehrlich, 2003). For example, DNA methylation
can change the conformation of chromatin, thus affecting chromatin accessibility and gene
expression. In addition, the risk of gene mutations is positively correlated with DNA
methylation (De Bont & Van Larebeke, 2004). Methylation sites are prone to be damaged
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in the process of replication and repair of DNA. If they are not repaired correctly, it may
lead to loss of DNA or accumulation of mutations. Moreover, the same is true of the
occurrence and development of cancer (Xu et al., 2011; Chowdhury et al., 2011; Lu et al.,
2012; Koivunen et al., 2012). Some cancer cells have aberrant methylation of genes involved
in important cellular life processes such as cell growth, differentiation and apoptosis,
suggesting that DNA methylation may promote tumor initiation and progression.
For instance, mutations in IDH1/2 produce the oncogenic metabolite 2-HG, which results
in increased DNA methylation at the cellular level. This alteration affects gene expression
and leads to cancer. Finally, embryonic development and adult diseases are also associated
with DNA methylation (Jin et al., 2008; Tatton-Brown et al., 2014; Baets et al., 2015). DNA
methylation plays an important role in embryonic development, and abnormal
methylation may cause birth defects or abnormal development. The status of three
functional protein families in the epigenetic system (write, reader, eraser), and their
associated genes’ genetic variation can cause diseases (e.g., autism, blood disease) by
affecting overall cell-level epigenetics. Therefore, DNA methylation plays an important
role in gene expression regulation and chromatin structure variation, and the detection of
methylation is of great importance.

Current methods for methylation detection include wet experiments, traditional
machine learning methods, and deep learning methods. Wet experiments conduct
molecular biology tests to distinguish between methylation and demethylation in DNA
samples. This typically involves bisulfite treatment (Smallwood et al., 2014; Kernaleguen
et al., 2018), enzymatic digestion, and chromatin immunoprecipitation. Following bisulfite
treatment, methylated cytosine is oxidized and transformed to unmethylated uracil,
whereas unmethylated cytosine remains unchanged, and the difference indicates
methylation.

Traditional machine learning methods generally consist of three steps: data processing,
feature extraction, and classification, which are all designed based on the experience of the
researchers. Commonly-used features include physical, statistical, and sequence
annotation features such as base frequencies, G+C content, length, repetitive sequences,
RNA elements, and protein binding sites (Fang et al., 2006; Zhang et al., 2015). Based on
the features, classification algorithms such as logistic regression, support vector machine,
and decision trees are used to identify the methylation sites.

In contrast, deep learning methods are more straightforward. Instead of manually
specifying the feature extractor and classifier, deep neural networks can automatically
extract features and predict methylation results fromDNA sequences. Furthermore, driven
by datasets with a large number of samples, deep learning can extract more essential
features than manually designed models. For instance, the DNA module and the CpG
module of the DeepCpG model (Angermueller et al., 2017) can predict the relationship
between DNA sequences and their methylation status, as well as the relationship between
adjacent CpG sites within a single cell or across cells.

In general, wet experiments achieve high accuracy, but they only predict a small number
of DNAmethylation sites. In addition, conducting wet experiments requires not only great
cost and time, but also professional knowledge in biology, and these factors make it
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difficult to be widely applied. Traditional machine learning needs specified feature design,
which also requires professional experience and extensive tests to find good feature
descriptors. In contrast, deep learning methods can automatically learn the most relevant
features without specifying them in advance, and can handle large datasets and
high-dimensional data.

Although deep learning methods provide new insights to detect DNAmethylation, they
still face challenges. On the one hand, convolutional neural networks (CNNs) are not
sensitive to 1D sequential data such as DNA. On the other hand, recurrent neural networks
(RNNs) perform better in extracting sequential features, but they are not good at exploring
relationships for bases far away. In addition, the current DNA encoding methods, one-hot
and word embedding, emphasize local information and ignore global relationships.

To solve these problems, in this article, we propose DeepMethylation, a novel
deep-learning based scheme to predict DNA methylation sites. The contribution of this
article is as the following. Firstly, with word embedding and GloVe, we propose a novel
DNA encoding method. This new representation format improves the ability in modeling
the relationship between DNA sub-sequences. Secondly, dilated convolution and
Transformer encoder are incorporated to better extract both local and global features,
especially the relationship between DNA sequences far from each other. Last but not least,
dense full connections are used to predict the methylation status of each site. Experimental
results demonstrate that the accuracy of the proposed method reaches 97.8%, which
outperforms other state-of-the-art methods.

RELATED WORKS
Wet experiments
Genome-wide single nucleotide resolution (GWGSR) typically requires wet experiments to
be realized. Currently, the main approaches for achieving GWGSR include whole-genome
bisulfite sequencing (WGBS), reduced representation bisulfite sequencing (RRBS), and
DNA methylation chip.

WGBS (Smallwood et al., 2014; Kernaleguen et al., 2018) is a high-resolution and
comprehensive method for full-genome sequencing via bisulfite treatment, which converts
unmethylated cytosine to uracil, but does not convert methylated cytosine. Methylation
status of individual cytosines can be determined at the single nucleotide level by comparing
the DNA sequences with and without bisulfite treatment. RRBS (Guo et al., 2013; Farlik
et al., 2015; Hou et al., 2016) is a cost-effective alternative to WGBS and involves
sequencing the CpG-rich subset of the genome. RRBS reduces the requirement for
sequence depth to cover the entire genome and still provides single nucleotide resolution at
CpG sites. DNA methylation chips (Morris et al., 2014) represent microarray-based
platforms that simultaneously detect DNA methylation levels among thousands of CpG
sites in the genome. These chips contain probes that are specific to methylated or
unmethylated CpG sites, and the intensity of the signal from each probe indicates the site’s
methylation level.
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Although wet experiments produce accurate prediction results, it needs great financial
cost and time, as well as professional biology knowledge, which is inefficient in
implementation.

Traditional machine learning methods
With the rapid advancement in automatic DNA sequencing technology, huge amounts of
DNA sequences are obtained, promoting the analysis of DNA data. Traditional machine
learning methods involve two steps. Firstly, manually designed DNA features are
proposed. After that, with these features, machine learning classification algorithms are
utilized to predict the methylation. Stevens et al. (2013) integrated the features from
chromatin immunoprecipitation sequencing and methylation-sensitive restriction enzyme
sequencing, and predicted the methylation status of CpG sites in the human genome by
using a conditional random field model. Zhang et al. (2015) utilized various features,
including methylation markers, genomic locations, and regulatory factors, to design a
methylation prediction model with a random forest classifier. Fang et al. (2006) developed
a CpG island methylation prediction tool called MethCGI using CpG island data from the
human brain. This model takes input features such as CpG ratio, GC content, TpG
frequency, and transcription factor binding site distribution, and employs a support vector
machine as a classifier.

Machine learning methods have demonstrated higher efficiency and lower costs than
wet experiments. However, the performance of machine learning models is limited by the
manual selection of feature descriptors and classifiers, which relies on the experience of the
researchers.

Deep learning methods
In recent years, with the rapid development of neural networks, deep learning methods
have been applied to DNA methylation prediction (Routhier & Mozziconacci, 2022).
Different from traditional machine learning that highly relies on the experience of the
researchers, deep learning methods, including convolutional neural networks (CNN) and
recurrent neural networks (RNN), can automatically learn the essential features from the
raw sequential data, and construct end-to-end models, which have been proven to
outperform traditional machine learning methods in predicting DNA methylation sites.

Angermueller et al. (2017) proposed the DeepCpG model. The model consists of DNA
module, CpG module, and joint module. The DNA module involves two convolutional
layers and a pooling layer to identify correlations between DNA sequence patterns and
methylation status. The CpG module employs a bidirectional gated recurrent network to
identify correlations between adjacent CpG sites. The joint module learns the interaction
between the DNA and CpG modules to predict the methylation status in all cells. Tian
et al. (2019) proposed MRCNN, which used the correlation between DNA sequence
patterns and methylation levels to predict the methylation of the CpG site at single base
resolution. The model used one-hot encoding, convolution, pooling, and fully connected
layers to output the predicted value. With a continuous loss function, MRCNN achieves
smooth regression of methylation value, and produces more accurate results than the
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DeepCpG model. Zhou (2020) built an RNN-based DNA methylation prediction model,
this model first converts the raw DNA sequence into matrix data through one-hot
encoding, and then sends it to the RNN model for feature extraction and methylation
prediction. The results have shown that RNNs are more suitable for handling sequence
data and extracting hidden temporal features from the sequence than CNNs. Cheng et al.
(2021) proposed iPromoter-5mC, believing that DNA chemical properties can affect its
genetic traits. To address this issue, they combined one-hot encoding with
deoxyribonucleic acid nucleotide properties and their frequency (DPF) to generate a
composite feature set. They then used a deep neural network to process the composite
feature set for identifying methylation modification sites in promoters. Tran et al.
considered that the DNA sequence can be regarded as a distinct linguistic system, and they
proposed an efficient encoding method to identify 5-methylcytosine sites. By embedding
k-mers, they transformed the DNA sequence into ‘sentences’, and then generate the
feature vector of the DNA sequence (Nguyen et al., 2021) with k-mers representation.
Then, the feature vectors were separately sent to xgboost, random forest, deep forest and
deep feedforward neural network. The final results showed that the performance of this
model was better than iPromoter-5mC.

In general, deep neural networks have better learning abilities than traditional learning
methods, and thus produce more accurate results. Nevertheless, CNNs and RNNs still
encounter challenges in encoding feature representations and efficiently extracting global
long-distance features, and further research is desired.

MATERIALS AND METHODS
The overall framework
As shown in Fig. 1, the proposed DeepMethylation has three modules, which are data
processing module, feature extraction module and classification module. First, in data
processing module, the one-dimensional DNA sequence is segmented and converted to a
39 � 300 matrix with word embedding and GloVe. After that, the feature extraction
module utilizes Transformer encoder and dilated convolution to extract global and local
features. Finally, with the extracted features, the classification module predicts the
methylation state of each site of the DNA sequence.

Data processing
As a long sequence, DNA is not conducive to presenting the relationship among different
fragments. Therefore, the first step is to convert a one-dimensional DNA sequence to a
group of short fragments. Although one-hot encoding (Abbas, Tayara & Chong, 2021) can
represent each base of DNA as a binary bit, it cannot provide the sequence orders or
measure the distance (Huang et al., 2021) between related words. In this article, word
embedding and GloVe algorithm are used to better model the relationship in DNA
sequences.

By following the rule of WGBS, the golden standard of methylation detection, DNA
sequences are cropped into 41 bp segments. As shown in Fig. 2, a 3-bp window slides over
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a segment and produces a series of 3-mer sub-sequences. As a result, a 41 bp DNA
sequence is converted to a 39 � 3 3-mer matrix.

To explore the relationship between these 3-mer fragments, GloVe (JeffreyPennington &
Manning, 2014; Wang et al., 2022), a word embedding model based on global vectors, is
utilized. It first checks the context of neighboring 3-mer fragments and obtains a
co-occurrence matrix. Figure 3 depicts an example of the co-occurrence matrix for three
four-word sentences. Take the combination of ‘CGG-ATC’ as an example, it happens twice
that ‘CGG’ appears before ‘ATC’, and the corresponding intersection with the row index
‘CGG’ and the column index ‘ATC’ is valued at two, which is marked in pink in the
co-occurrence matrix. Mathematically, the co-occurrence matrix is notated as X, and Xi;j

represents the frequency of word j appearing after i. In this way, the example in Fig. 3 can
also be noted as XCGG;ATC ¼ 2. Moreover, it is noteworthy that the matrix is symmetric

Figure 1 The overall framework of DeepMethylation. Full-size DOI: 10.7717/peerj-16125/fig-1
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about the diagonal line, and the elements in the upper-right of the matrix are computed
and copied to the lower-left.

In Fig. 3, the co-occurrence matrix only indicates the relationship of three sub-
sequences, and in order to model the relationship for all sub-sequences, GloVe algorithm
traverses the entire corpus and derives a global word vector dictionary through inner
product operation and translation transformation of words (Cochez et al., 2017; Liu et al.,
2019a), which makes the mapping values equal or approximate to the co-occurrence
probability of words. To be specific, an energy function J is defined as

J ¼
XN
i;j¼1

f ðXi;jÞ VT
i
eVj þ bi þ bj � logðXi;jÞ

� �2
(1)

where bi and bj are offsets, and N is the total number of words. Vi represents the word
vector in the global dictionary to be obtained, eVj is the separate context vector that helps
solve Vi. Since J is a convex function, Vi can be solved via optimization algorithms such as
gradient descent. In addition, the weighting factor f ðXi;jÞ is defined as

f ðXi;jÞ ¼
Xi;j

TX

h ia
if Xi;j,TX

1 otherwise

(
(2)

With the truncation parameter TX and the non-linear mapping parameter a, the model
can retain crucial information in the co-occurrence count while eliminate noise and
irregular co-occurrence. In very special cases, f ðXi;jÞ equals to 1 only when two words are

Figure 2 3-mer sub-sequences. Full-size DOI: 10.7717/peerj-16125/fig-2
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semantically similar and locate closely to each together in the vector space. a is an empiric
value that equals to 0.75, as has been proved can yield good perfromance
(JeffreyPennington & Manning, 2014).

In the implementation, the length of Vi is set to 300 for each valid vector word. Once all
word vectors Vi are obtained, each 3-mer word can be represented with the corresponding
word vector. As a result, the 39 3-mer words in Fig. 1 can be presented with a 39 � 300
encoding vector matrix.

Feature extraction
After data processing, the 39� 300 word vector matrix is used for feature extraction. To be
specific, this matrix is regarded as a word vector embedding layer that is utilized as input
for the feature extraction module, which utilizes dilated convolution and Transformer
encoder as shown in Fig. 1.

On the one hand, to enlarge the receptive field while keeping low computational
complexity (Liu et al., 2019b; Yuan et al., 2019), dilated convolution is utilized. As shown
in Fig. 4, in dilated convolution, the filter is expanded by inserting zeros between its values.
This effectively increases the receptive field of the filter without increasing the number of
parameters, allowing it to capture larger spatial structures and longer-term dependencies
of the input. In this study, three branches with dilation rates of 1, 2, and 3 are used,
followed by feature concatenation, producing features of contextual information at
different scales.

On the other hand, followed by dilated convolution, a Transformer encoder is used to
extract the global relationship in the spliced features and the long-term dependency
relationship between elements in the sequence (Khan et al., 2022). As shown in Fig. 5,
based on the Transformer encoder, which consists of input embedding, multi-head

Figure 3 Co-occurrence matrix. Full-size DOI: 10.7717/peerj-16125/fig-3
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attention, Add & Norm, and feed forward, we incorporate positional encoding into the
module. Positional encoding is an important property for sequential signals; taking the 39
DNA fragments shown in Fig. 2 as an example, if their positions or arrangement orders are
changed, they will form a new DNA sequence that is totally different. Therefore, with
positional encoding, word orders can be introduced to distinguish between DNA
sequences.

Another important mechanism in the Transformer encoder is the multi-head attention
(MHA), which computes the relative importance between different positions in the input
sequence so as to provide better input feature representation for the subsequent feed
forward network. Figure 6 depicts the framework of MHA. The input features, which are in
the form of 3D tensors, are copied multiple times. For each feature, a weighting factor is
calculated with the self-attention mechanism, with which the weighted summation of the
input features are calculated. MHA can map the input features to multiple sub-spaces, and
improves the model’s understanding of the input sequence with feature extraction,
attention calculation, and feature concatenation. Furthermore, each head in MHA works
independently, thus expanding the decision space of the model and enabling better
decisions while mitigating over-fitting.

Finally, after the operation of ‘addition and normalization (Add & Norm)’, the
Transformer produces the features of the gene, which are used for classification.

Classification
As shown in Fig. 2, the features extracted by the encoder are finally sent to the classifier to
predict the sites of methylation. The classifier has three fully connected layers with
dropout. The dimensions of the three fully connected layers are 128, 64, and 32,

Figure 4 Dilated convolution. Full-size DOI: 10.7717/peerj-16125/fig-4
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respectively. Finally, a Sigmoid activation function is used to report whether a site is 5mc
or non-5mc. In addition, the categorical cross-entropy loss is adopted to train the network.

RESULTS AND ANALYSIS
Dataset
In learning-based methods, the dataset is of fundamental importance. In this study, we use
the Cancer Cell Line Encyclopedia (CCLE) dataset proposed by Zhang, Xiao & Xu (2020b),
where 5mC modification sites of various cancer cell lines are processed by a simplified
RRBS experiment. Especially, we focus on investigating the distribution of 5mC sites in
small cell lung cancer (SCLC) (Barretina et al., 2012; Li et al., 2019). DNA fragments with
‘C’ located in the center are extracted and notated as

Figure 5 Transformer encoder. Full-size DOI: 10.7717/peerj-16125/fig-5
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EðdÞ ðCÞ ¼ E�ðdÞ E�ðd�1Þ � � � E�ð1Þ C Eþð1Þ � � � Eþðd�1Þ EþðdÞ (3)

where for each site E 2 fA;T;G;Cg. In the implementation, by following the rule of
WGBS, d is set to 20, and each fragment has 41 sites. In this way, a total of 893,326 DNA
fragments are obtained, including 69,750 methylation-positive samples and 823,576
negative ones. As shown in Table 1, the ratio between the negative and positive samples is
about 13.3, which coincides with the distribution of 5mC in real cases.

The experiment is conducted on a server with an Intel(R) Core(TM) i9-10900F CPU, 64
GB RAM, and an NVIDIA GeForce RTX 3090 GPU. The software is programmed with
Python 3.7, Keras-nightly 2.8, and tf-nightly-gpu 2.8.0.

Performance evaluation
The model is trained and tested with the aforementioned dataset. According to the test
results, e.g., the numbers of true negative (TN), false negative (FN), true positive (TP), and

Figure 6 Multi-head attention. Full-size DOI: 10.7717/peerj-16125/fig-6

Table 1 Details of the dataset.

Dataset Positive sample Negative sample

Training dataset 55,800 658,861

Testing dataset 13,950 164,715

Total 69,750 823,576
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false positive (FP) samples, the following indexes are computed to evaluate the
performance of the model.

� Sensitivity (Sen) refers to the ratio of correctly predicted positive samples to all positive
samples.

Sen ¼ TP
TP þ FN

(4)

� Specificity (Spe) refers to the ratio of correctly predicted negative samples to all negative
samples.

Spe ¼ TN
TN þ FP

(5)

� Accuracy (Acc) refers to the ratio of correctly classified samples, both positive and
negative, to all tested samples.

Acc ¼ TP þ TN
TP þ TN þ FP þ FN

(6)

� The Matthews Correlation Coefficient (Mcc) considers the joint relationship between
TP, TN, FP, and FN, and comprehensively evaluates the consistency between the
predicted results and the ground truth.

Mcc ¼ TP � ðTNÞ � FP � ðFNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞ � ðTP þ FNÞ � ðTN þ FPÞ � ðTN þ FNÞp (7)

� Area under the curve (AUC) compares the performance of different models by
calculating the area under the Receiver Operating Characteristic (ROC) curve, and a
larger value indicates a higher degree of authenticity.

Performance comparison with SOTA methods
Three state-of-the-art (SOTA) methylation prediction methods, iPromoter-5mC (Cheng
et al., 2021), 5mC-Pred (Nguyen et al., 2021) and BiLSTM-5mC (Zhang, Xiao & Xu,
2020b), are compared with our model. Table 2 presents the technique features, including
encoding, feature extraction, and classification of the methods. The aforementioned
dataset proposed by Zhang, Xiao & Xu (2020b) is used to evaluate the performance of the
models, and the results are shown in Fig. 7. 1

Table 2 Summary of existing tools for 5mC sites prediction in genome-wide DNA promoters.

Method Encoding Feature extraction and classification

iPromoter-5mC One-hot Deep neural network

5mC-Pred K-mers XGBoost

BiLSTM-5mC One-hot and NPF BiLSTM

Our model GloVe Digital convolution and Transformer encoder

1 Note that to present the best perfor-
mance indexes, the results of SOTA
methods are directly referenced as in
Zhang, Xiao & Xu (2020b), while the
proposed method is trained with the
same dataset and configuration.
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As shown in Fig. 7, our model performs the best in terms of Spe, Acc, Mcc, and Auc,
indicating that our model can get more essential features and the classifier is also more
accurate. Our model adopts encoding techniques, including word embedding and GloVe,
and Transformer feature extraction, as well as dilated convolution. These techniques
improve the ability in modeling the relationship among sub-sequences, which also benefits
the accurate classification of methylation for the gene sites.

We also notice that, in terms of ‘Sen’, the proposed framework is slightly lower than
iPromoter-5mC and 5mC-Pred, the reason is that our method focuses on making reliable
predictions, or in other words our model is tend to classify a positive sample as negative if
it is not that confident. As a result, ‘TP’ becomes slightly smaller, and ‘FN’ is larger than the
ground truth. Although this reduces the value of ‘Sen’, it makes ‘TP’ more reliable.
The high MCC index indicates that our model can more accurately classify samples, and it
also shows that our model can handle uncertainties better. To be specific, when our model
is uncertain about the classification of a sample, it tends to classify the sample as negative
to avoid misclassification. This approach reduces false judgments, thus improving the
MCC index. On the other hand, it should be noticed that, in terms of the overall accuracy
‘Acc’ that takes all tested samples involved, the proposed method reaches 0.978, which is
about 5% higher than the sub-optimal method BiLSTM-5mC.

Influence of encoding methods
Encoding methods have a significant impact on the model’s performance. In DNA coding,
GloVe encoding (JeffreyPennington & Manning, 2014) and one-hot encoding (Vinyals
et al., 2016) are the most widely accepted methods, and adopted in related research
(Angermueller et al., 2017; Tian et al., 2019). To compare their performance, we replace

Figure 7 Performance comparison with SOTA methods.
Full-size DOI: 10.7717/peerj-16125/fig-7

Wang et al. (2023), PeerJ, DOI 10.7717/peerj.16125 13/23

http://dx.doi.org/10.7717/peerj-16125/fig-7
http://dx.doi.org/10.7717/peerj.16125
https://peerj.com/


GloVe encoding in Fig. 1 with one-hot encoding, and compare the performance with the
five quality indexes as shown in Fig. 8. It can be noticed that both methods produce
satisfactory results, but GloVe encoding still performs better than one-hot encoding.

To be specific, for Spe, Acc, and Auc, the performance of the methods are similar with
index values above 0.97. For the other two indexes, Sen and Mcc, GloVe encoding achieves
significant performance improvement over one-hot encoding. The reason is that one-hot
encoding only provides the simplest mapping of the four bases A, T, C, and G, resulting in
a low-dimensional representation of DNA, while GloVe encoding incorporates sliced
DNA fragments, and thus better represents the relationship among sub-sequences.
Therefore, GloVe encoding exhibits a better ability to identify positive examples, as well as
a higher correlation between the predictions and the ground truth.

Influence of feature extraction methods
In addition to encoding, feature extraction methods also greatly affect the methylation
detection results. The long short term memory (LSTM) (Yu et al., 2019) and gated
recurrent unit (GRU) (Dey & Salem, 2017) are the most widely used methods in extracting
features for 1D sequences, and thus we compare LSTM, GRU and the proposed
Transformer encoder. As shown in Fig. 9, it can be noticed that the Transformer encoder
outperforms LSTM and GRU in terms of Sen, Mcc, and Auc. The reason is that, as a
recurrent neural network, LSTM relies on memory units to transmit information when
dealing with long sequences. However, as the sequence grows longer, the information
transmission becomes weaker in the network, which impairs the ability of long-term
modeling. Compared to LSTM, GRU loses one gate unit, and is less suitable for extracting
long-term dependencies, which leads to poorer performance in terms of Sen and Mcc.
However, with a combination of update and reset gates, it dynamically adjusts the
importance of the historical data in the hidden state, thereby improving the performance.
As a result, it also achieves similar metrics to LSTM, such as Spe, Acc, and Auc.
In comparison, the Transformer encoder utilizes the multi-head attention mechanism,

Figure 8 Performance comparison of feature encoding methods for the prediction of 5mC sites.
Full-size DOI: 10.7717/peerj-16125/fig-8
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which directly models the relationship between input signals without relying on the
context, and thus better deals with long sequence data.

Influence of sub-sequence length and GloVe characteristic length
In addition to the encoding method and the feature extraction module, the length of the
sub-sequence, e.g., the value of k in k�mers, and the characteristic length of GloVe also
affect the results. As k increases, the number of sub-sequences increases exponentially,
leading to great even un-acceptable computational burden, and thus we only compared the
cases when k equals to 3, 5 and 7. As shown in Fig. 10, the results indicate that the model
performs stable with minor changes in k, suggesting that the model is not sensitive to k.
Note that, k � 3 must be satisfied, because for every base, the contextual relationship

Figure 9 Performance evaluation of different feature extraction methods.
Full-size DOI: 10.7717/peerj-16125/fig-9

Figure 10 Influence of sub-sequence length k. Full-size DOI: 10.7717/peerj-16125/fig-10
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between it and its preceding/following bases must be established, and at least three bases
are needed.

In addition, we also compare the impact of GloVe characteristic length on the model.
As shown in Fig. 11, as the length increases, the quality metrics also increase, and this
indicates that larger length values are more desired. Nevertheless, increasing the length
also brings a heavier computation burden, and finally, the GloVe characteristic length is
empirically set to 300 by balancing performance and complexity.

The impact of imbalance of dataset
To investigate the influence of dataset imbalance, we test three datasets with positive-to-
negative ratios of 1:10, 1:12, and 1:15, respectively, and the ratio of 1:12 is the most widely
adopted one in benchmark datasets. Figure 12 shows that our model reaches fast
convergence in all datasets, and Fig. 13 proves that our model exhibits good stability and

Figure 11 Influence of GloVe characteristic length. Full-size DOI: 10.7717/peerj-16125/fig-11

Figure 12 The training progress of datasets with different ratios. Train, training set; val, validation
set. Full-size DOI: 10.7717/peerj-16125/fig-12
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robustness against data imbalance. Compared with the widely accepted benchmark of 1:12,
the accuracy drop is less than 0.01 for the 1:10 dataset and less than 0.05 for the 1:15
dataset.

Generality on m1A data
The generalization ability of the proposed method is also tested by extending the model to
applications of other types of DNA data. For example, in Figs. 14 and 15, the proposed
model is tested with m1A data of the EMDLP dataset (Wang et al., 2022). It can be noticed
that the network converges after 12 epochs, and the accuracy reaches 95.8%. This
demonstrates that the proposed model has good generation performance and is promising
to be applied to different DNA data.

Figure 13 The accuracy of the datasets with different ratios.
Full-size DOI: 10.7717/peerj-16125/fig-13

Figure 14 Training progress of the m1A dataset. Train, training set; val, validation set.
Full-size DOI: 10.7717/peerj-16125/fig-14
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CONCLUSION
Methylation detection for DNA sequences is an important task in epigenetics. It also serves
as a cancer diagnostic biomarker, a therapeutic target, and a prognostic evaluation
criterion. Traditional methylation detection methods are based on wet experiments, which
are time and financial consuming. In recent years, deep learning has facilitated
methylation detection in a signal processing manner. However, the state-of-the-art
methods still face challenges in improving the accuracy and the robustness.

In this article, we propose DeepMethylation, a novel methylation prediction approach
based on deep learning. On the one hand, we propose a new DNA representation format
with word embedding and GloVe, which improves the ability in modeling the relationship
between DNA sub-sequences. On the other hand, we introduce dilated convolution and
Transform encoder to better extract both local and global features, especially in dealing
with the relationship between remote DNA sequences.

Experimental results have demonstrated that the proposed method reaches an accuracy
of 97.8%, which greatly outperforms the SOTA methods. In addition to the accuracy, the
influence of encoding methods, feature extraction methods, sub-sequence length, GloVe
characteristic length, and imbalance of dataset on the methylation prediction results are
also studied. The results proved that GloVe encoding exhibits a better ability to identify
positive samples and has a higher correlation between the predictions and the ground
truth. Transformer encoder utilizes the multi-head attention mechanism to directly model
the relationship between input signals without relying on context and achieves higher
accuracy than LSTM and GRU. As the length parameters, optimal performance is achieved
when the sub-sequence length is set to 3 and GloVe feature length is 300. Last but not least,
we also investigated the robustness with different ratios of positive and negative samples,
and our model exhibits good robustness.

Figure 15 Performance on m1A dataset. Full-size DOI: 10.7717/peerj-16125/fig-15

Wang et al. (2023), PeerJ, DOI 10.7717/peerj.16125 18/23

http://dx.doi.org/10.7717/peerj-16125/fig-15
http://dx.doi.org/10.7717/peerj.16125
https://peerj.com/


To the best of our knowledge, this is the first work that applies Transformer to 5mc
methylation prediction, and the results are promising in accuracy, which demonstrates
that deep learning models can be further explored in gene sequence research and other
related tasks. In the future, further investigation on larger datasets and other types of
biology data is still necessary. On the other hand, novel theoretical and experimental
supports are still to be developed, such as developing unsupervised learning methylation
detection approaches which do not need ground truth labels with expensive and
labor-intensive wet experiments.
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