It is all about sharing and coexistence. Trophic assessment of three sympatric batoid species in the Southern Gulf of California (#82612)

First submission

Guidance from your Editor

Please submit by 23 Mar 2023 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

2 Latex file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

It is all about sharing and coexistence. Trophic assessment of three sympatric batoid species in the Southern Gulf of California

Arturo Bell Enríquez-García ^{Equal first author, 1}, Víctor Hugo Cruz-Escalona ^{Corresp., Equal first author, 1}, Jose Carriquiry ², Nicolas Roberto Ehemann ^{1,3}, Paola Andrea Mejía-Falla ^{4,5}, Emigdio Marín-Enríquez ⁶, Christina Veronica Treinen Crespo ², José Roberto Vélez-Tacuri ⁷, Andrés Navia ⁵

The competitive exclusion principle establishes that the coexistence of closely related

species requires a certain degree of resource partitioning; however, populations have

Corresponding Author: Víctor Hugo Cruz-Escalona Email address: vescalon@ipn.mx

individuals with different morphological or behavioral traits (e.g., maturity stages, sexes). This interaction often results in a multi-level differentiation in food preferences and habits. We explored such resource partitioning between and within three batoid species: *Hypanus dipterurus*, *Narcine entemedor*, and *Rhinoptera steindachneri* in the southern Gulf of California, Mexico, using a combination of stomach content and stable isotope analyses. We found a clear differentiation between *H. dipterurus* and *N. entemedor*, where the latter had more benthic habits, supported by greater importance of infaunal prey and higher δ^{13} C values. The degree of intra-specific differentiation was variable; however, we found a consistent differentiation among sexes and maturity stages, corresponding to changes in specialization (i.e., isotopic niche amplitude) or trophic spectrum (different prey importance and isotopic values per group). This work is a promising step towards understanding the biological and ecological mechanisms that allow the coexistence of these three species in a potentially important feeding area within the southern Gulf of California, Mexico.

Departamento de Pesquerías y Biología Marina, Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, Mexico

² Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico

Department of Biology, University of Konstanz, Zoology and Evolutionary Biology, Konstanz, Germany

Wildlife Conservation Society, Cali, Colombia

⁵ Fundación Colombiana para la Investigación y Conservación de Tiburones y Rayas, SQUALUS, Cali, Colombia

⁶ Facultad de Ciencias del Mar, CONACyT, Universidad Autónoma de Sinaloa, Mazatlán, Sinaloa, Mexico

⁷ Facultad Ciencias del Mar, Universidad Laica Eloy Alfaro de Manabí, Manabí, Ecuador

- It is all about sharing and coexistence.

 Trophic assessment of three sympatric batoid species in the Southern Gulf of California
- 5 Arturo Bell Enríquez-García¹, Víctor Cruz-Escalona¹, José Carriquiry²,
- 6 Nicolás R. Ehemann^{1,3}, Paola A. Mejía-Falla^{4,8}, Emigdio Marín-Enríquez⁵,
- ⁷ Christina Verónica Treinen-Crespo², José Roberto Velez-Tacuri^{6,7}, and
 - Andrés F. Navia⁸
- ₉ ¹Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas. Av.
- 10 Instituto Politécnico Nacional s/n, La Paz, Baja California Sur, Mexico. CP. 23094
- ¹¹ ²Universidad Autónoma de Baja California, Instituto de Investigaciones Oceanológicas,
- ¹² Carretera Transpeninsular Ensenada-Tijuana No. 3917, Fraccionamiento Playitas,
- 13 Ensenada, Baja California, México. CP. 22860
- ¹⁴ ³Zoology and Evolutionary Biology, Department of Biology, University of Konstanz,
- 15 Konstanz, Germany
- ⁶ Wildlife Conservation Society. Av. 5N No. 22N-11, Cali, Colombia
- ₁₇ ⁵Facultad de Ciencias del Mar, CONACyT, Universidad Autónoma de Sinaloa, Paseo
- Claussen s/n, C.P. 82000, Mazatlán, Sinaloa, México
- ⁶Fundación RACSE, Red de Agentes por la Conservación y Sostenibilidad de los
- Ecosistemas, Av. Florencia y Calle Oliva Miranda, Manta, Manabí, Ecuador
- ²¹ Facultad Ciencias del Mar, Universidad Laica Eloy Alfaro de Manabí, Ciudadela
- 22 Universitaria Vía a San Mateo, Manta, Manabí, Ecuador
- ²³ Fundación Colombiana para la Investigación y Conservación de Tiburones y Rayas,
- 4 SQUALUS, Calle 10A, No. 72-35, Apto. 310 E, Cali 760001, Colombia
- ²⁵ Corresponding author:
- ²⁶ Víctor Cruz-Escalona¹
- 27 Email address: vescalon@ipn.mx

28 ABSTRACT

The competitive exclusion principle establishes that the coexistence of closely related species requires a certain degree of resource partitioning; however, populations have individuals with different morphological or behavioral traits (e.g., maturity stages, sexes). This interaction often results in a multi-level differentiation in food preferences and habits. We explored such resource partitioning between and within three batoid species: *Hypanus dipterurus*, *Narcine entemedor*, and *Rhinoptera steindachneri* in the southern Gulf of California, Mexico, using a combination of stomach content and stable isotope analyses. We found a clear differentiation between *H. dipterurus* and *N. entemedor*, where the latter had more benthic habits, supported by greater importance of infaunal prey and higher $\delta^{13}C$ values. The degree of intra-specific differentiation was variable; however, we found a consistent differentiation among sexes and maturity stages, corresponding to changes in specialization (i.e., isotopic niche amplitude) or trophic spectrum (different prey importance and isotopic values per group). This work is a promising step towards understanding the biological and ecological mechanisms that allow the coexistence of these three species in a potentially important feeding area within the southern Gulf of California, Mexico.

2 INTRODUCTION

- Species-specific trophic ecology studies are fundamental to comprehending their ecological role in the
- ecosystem (Coll et al., 2013; Ferreti et al., 2010). Batoids are a group of aquatic predators with a wide

range of shapes, sizes, and life-history strategies that have colonized marine and freshwater environments (Last et al., 2016). These organisms play a crucial role in transferring energy from lower to higher levels, having direct and indirect effects on all levels of the food web (Heithaus et al., 2010; Barría et al., 2015; Navia et al., 2017). Batoid species are generally considered carnivorous, with a broad spectrum of prey, mainly composed of crustaceans, mollusks, polychaetes, and fishes (Barbini et al., 2018; Restrepo-Gómez et al., 2021; Serrano-Flores et al., 2021).

Some studies have examined the competitive interactions of coastal batoids, finding that sympatric coastal species display varying levels of interspecific dietary overlap and, therefore, resource partitioning (e.g., Mabragaña and Giberto 2007; Navarro-González et al. 2012). This resource partitioning has been attributed to differential use of habitats, and depth ranges in their ecosystem (White et al., 2004; Marshall et al., 2008; Lim et al., 2018) but also to differences in diet specialization (Platell et al., 1998; Espinoza et al., 2015). Despite the similarity in trophic levels among batoid species, the types, and sizes of prey can vary considerably within and among them, including ontogenic and sexual shifts (e.g., Moura et al. 2008; Schmitt et al. 2015; Restrepo-Gómez et al. 2021), which allows them to play numerous trophic roles in the ecosystem in which they inhabit (Navia et al., 2017).

In Mexico, trophic ecology studies usually involve highly abundant and frequently captured species (Valenzuela-Quiñonez et al., 2018; Restrepo-Gómez et al., 2021; Serrano-Flores et al., 2021), but the mechanisms that allow their coexistence are less commonly analyzed (Navarro-González et al., 2012; Murillo-Cisneros et al., 2019). In the southern Gulf of California, the three most abundant and fished batoid species are (González-González et al., 2020): the diamond stingray [*Hypanus dipterurus* (Jordan & Gilbert, 1880)], the giant electric ray (*Narnice entemedor* Jordan & Starks, 1895)], and the golden cownose ray (*Rhinoptera steindachneri* Evermann & Jenkins, 1891). *Hypanus dipterurus* is a benthopelagic predator that feeds primarily on mollusks, bivalves, and stomatopods (Restrepo-Gómez et al., 2021). *Narcine entemedor*, on the other hand, feeds mainly on epibenthic prey, especially polychaetes and sipunculids (Valadez-González, 2007; Flores-Ortega et al., 2015; Cabrera-Melendez, 2017). Meanwhile, *R. steindachneri* feeds on bivalves (Simental-Anguiano, 2011), and other soft prey, such as echinoderms (Navarro-González et al., 2012) and, to a lesser extent, mysidaceans (Ehemann et al., 2019).

Most feeding ecology studies have been based on stomach content analyses (SCA), which allow a relatively precise taxonomic definition of the diet, requiring high sampling frequencies and sample sizes to obtain reliable, time-integrated overviews of dietary habits, among other inherent limitations (Hyslop, 1980; Cortés, 1997; Vinson and Budy, 2011). A widely used alternative that overcomes some of the limitations of the SCA is the stable isotope analysis (SIA), which traces the elemental flow throughout the food webs (Ruiz-Cooley et al., 2006). The more commonly used isotopic ratios are those of carbon ($^{13}C/^{12}C$ or $\delta^{13}C$) and nitrogen ($^{15}N/^{14}N$ or $\delta^{15}N$), where $\delta^{13}C$ values mainly reflect the carbon sources within an ecosystem (grazing, predation), while $\delta^{15}N$ reflects the consumers' trophic status, primarily in terms of position and amplitude (Michener and Kaufman, 2007). These properties allow these ratios to closely identify the ecological niche (*sensu* Hutchinson 1978), where they can be considered analogous to bionomic and scenopoetic axes, respectively (Newsome et al., 2007); thus, the isotopic niche is considered a simplified approximation of the ecological niche.

Unlike SCA, SIA integrates information from the assimilated diet over a more extended period, which depends on the turnover rate of the tissue analyzed (Sinisalo et al., 2008). In muscle tissue of some elasmobranch species, this period has been estimated to be at least one year (Logan and Lutcavage, 2010; MacNeil et al., 2006). The discrepancy in time integration has motivated the joint use of both techniques, allowing a more comprehensive description of trophic interactions in aquatic systems (MacNeil et al., 2006; Vinson and Budy, 2011; Albo-Puigserver et al., 2015). Therefore, our study aims to analyze the coexistence of *H.dipterurs*, *N. entemedor*, and *R. steindachneri*, based on the feeding preferences of individuals captured by the artisanal fleet of La Paz Bay, southern Gulf of California, Mexico. We hypothesize that their coexistence is facilitated by the partitioning of trophic resources, which we test with integrative analyses about their trophic niche dynamics using SCA and SIA ($\delta^{13}C$ and $\delta^{15}N$).

METHODS

Study area and sample collection

This study did not require an "Ethical review and approval" because the specimens analyzed were caught by local artisanal fishers who worked under a commercial fishing permit (CONAPESCA-103053993316-

1) under Mexican laws and regulations. Hence, we did not participate in fishing operations, and at no

point did we handle live animals. The specimens were collected monthly from October 2013 to December 2015 off Espíritu Santo Island, in "El Morrito" (24° 25' 17.55" N, 110° 18' 31.61" W), at Bahía de La Paz, southern Gulf of California, Mexico. The catching depths varied between 0 and 40 m using bottom gill nets (100 m long, 1.5 m wide, and 16 cm stretch mesh size). The surface water temperature in this region changes seasonally from a warm season (30° C, May to September) to a cold one (20° C, October to April, Guevara-Guillén et al. 2015).

Sample processing

Stomach contents

After sampling, the individuals were sexed, and their sexual maturity stages were determined following (Smith et al., 2007; Burgos-Vázquez et al., 2017, 2018). The stomachs were removed from the specimens, fixed, and preserved in 10% formaldehyde. Simultaneously, $1 cm^3$ of muscle tissue was removed from the fresh specimens and kept frozen until SIA was performed to avoid possible alterations of the isotopic values (Stallings et al., 2015).

Stable isotope analysis

Upon collection, one gram of each sample was oven-dried at 60°C for 48 h, and lipids were removed using a chloroform:methanol (1:1) solution (Post et al., 2007; Carlisle et al., 2016) in a Microwave-Assisted Solvent Extraction System (1000 MARS-5, CEM Microwave Technology Ltd. Mathews, NC). Samples were then oven-dried at 60°C for 12 h to remove the remaining solvent (Kim and Koch, 2012; Li et al., 2016). 10 mL of deionized water were added to extract the urea accumulated in the tissue; the test tube was stirred for 15 minutes. Finally, the deionized water solution was discarded; this process was repeated twice. After extracting lipids and urea, the tissue was freeze-dried at -60°C for 36 hours and mechanically grounded in a porcelain mortar using a pestle until homogenization.

For stable isotope analyses, 400-1000 µg of dry-weight material were collected and weighed on a precision micro-balance (Mettler-Toledo Ltd, Singapore), encapsulated in tin capsules, and loaded into a Zero-Blank Autosampler (Costech Analytical Technologies Inc., USA). Stable isotope ratios were measured in a Delta V Advantage isotope ratio mass spectrometer (IRMS, Thermo Fisher Scientific, Waltham, USA), interfaced in a continuous flow to a Thermo Scientific – Flash HT 2000 elemental analyzer (Thermo Fisher Scientific, Waltham, USA) and an Isodat Workspace version 3.0 (Thermo Scientific, Waltham, USA).

The stable isotope ratios are expressed in the δ notation (DeNiro and Epstein, 1976), which represents the heavy-to-light isotope ratios of carbon or nitrogen ($^{13}C/^{12}C$ or $^{15}N/^{14}N$) relative to international standards for each isotope (atmospheric N_2 for nitrogen and Vienna PeeDee Belemnite for carbon, respectively) with a value of 0% (Brand et al., 2014).

Data Analyses

Stomach content analysis

Based on previous studies of SC (Cabrera-Melendez, 2017; Restrepo-Gómez et al., 2021), we constructed a single database to classify *H. dipterurus* and *N. entemedor* based on their diets; however, *R. steindachneri* was excluded from this analysis because the available stomach content data were insufficient to describe its diet adequately (Ehemann et al., 2019). Prey items were aggregated into ten broad taxonomic categories (amphipods, brachyuran and anomuran crabs, bivalves, echinoderms, other crustaceans, penaeid shrimps, polychaetes, sipunculids, stomatopods, and teleostean). Weight data from each prey taxon was used for subsequent analyses since they better represent the relative importance of each taxon, especially when different-sized preys are ingested (Hyslop, 1980).

The trophic differences between the sexes, sexual maturity stages, and sampling seasons of *H. dipterurus* and *N. entemedor* were assessed using Random Forest (RF) classifiers. This method classifies objects (i.e., individuals) by creating several uncorrelated decision trees and assigning each object to its most frequently found class based on its feature values (Carvajal et al., 2018); hence, in this study, individuals are classified to either *H. dipterurus* or *N. entemedor* based on the weights of each prey item. This approach was preferred over traditional techniques (e.g., PERMANOVA, ANOSIM, or SIMPER) because its a non-linear model insensitive to biased distributions and extreme data points, it automatically includes the interaction between features (prey items) due to its hierarchical nature, and it does not require any data transformation (Carvajal et al., 2018). These models were implemented in Python 3 (v. 3.8.6, Van Rossum and Drake 2009) using the Scikit-learn module (v. 1.0.1, Pedregosa et al. 2011).

153

154

155

156

158

159

160

162

163

164

165

167

169

171

173

174

175

176

The model complexity was optimized using a grid search algorithm and 5-fold cross-validation during training to tune the maximum tree depth (i.e., the maximum number of recursive partitions), the maximum number of prey species used per tree, and the number of trees in the ensemble. Model performance was evaluated using the area under the curve (AUC) of the Receiver Operating Characteristics (ROC) curve (Meyer-Baese and Schmid, 2014). A train-test (75%-25%) data split was performed to assess whether the tuned models overfit. Prey (feature) importance was determined using the SHAP library (SHapely Additive exPlanations, v.0.39.0, Lundberg and Lee 2017; Lundberg et al. 2020, which is a game-theoretic, model-agnostic approach that connects optimal prediction allocation with local explanations, based on Shapely values. Two preliminary steps were followed when classes were dramatically unbalanced: first, randomly under-sampling the overrepresented class and applying the Synthetic Minority Over-sampling Technique (SMOTE) using the imbalanced-learn library (v. 0.8.1, Lemaitre et al. 2007. Further details and code are included in Supplemental Information 1.

Stable isotope analyses

We analyzed the stable isotope data using Bayesian Inference (BI). In general, BI reallocates the credibility of a parameter among a space of candidate possibilities, using Bayes' theorem for evaluation, given the data, the model, and prior knowledge about the parameter (Bolstad, 2004; Kruschke, 2015). Every posterior distribution was sampled with three Markov-Chains Monte Carlo (MCMC) algorithms that were run until convergence, i.e., 0 divergences during the posterior sampling (No-U-Turn Sampler, NUTS, Betancourt 2017) and Gelman-Rubin statistics (Gelman et al., 2014) being less than 1.01 for every parameter. The corresponding Supplemental Information include graphical diagnostics such as posterior predictive checks and energy plots (Betancourt, 2017; Gabry et al., 2017). The size of the posterior sample for each model depended on the effective sample size for every parameter being over 2000 (Martin, 2018). The posterior distributions were summarized in terms of their means and 95% Highest Density Intervals (*HDI*_{95%}), which represent the areas of highest probability for the actual value of the parameter given the data and the model (Bolstad, 2004; Kruschke, 2015).

Inter and intra-specific analyses of isotopic values

The isotopic values of the three species were described using a custom hierarchical bivariate model, in 178 which the effects of the seasons (warm vs. cold), sexes, and maturity stages (adults vs. juveniles) on 179 both isotopic values are nested within each species. In consequence, the isotopic space of each species 180 is the result of two linear models (one per isotopic ratio), where the slopes represent the differences between both levels of each factor. Bayesian hierarchical models incorporate the uncertainty around 182 the parameters at the lower levels of the hierarchy and sequentially transfer it to the next; hence, they 183 effectively investigate cross-level hypotheses (Gelman et al., 2014). The model was implemented using 184 the PyMC3 library (v.3.11.4, Salvatier et al. 2016. Full details are provided in Supplemental Information 2. 185 Essential details are that 1) the hierarchical model allows a description at both the species and intra-species 186 187 levels; 2) the bivariate model accounts for the covariation between bulk isotopic values, which is relevant since these depend on the isotopic baseline and trophic discrimination; 3) a Laplacian prior was placed on 188 the slopes, which results in an L1 regularization (i.e., a "Bayesian Lasso" regression, Park and Casella 189 2012; and 4) the heavy-tailed Student-*t* likelihood assigns a higher probability to extreme values; thus, 190 allowing to make robust estimations of the parameters (Kruschke, 2012). 191

Isotopic niches and overlaps

The isotopic niche areas of each batoid species and their categories were estimated using Stable Isotope Bayesian Ellipse Areas (SEA_B), using the R package SIBER (Stable Isotope Bayesian Ellipses in R, v.2.1.0, (Jackson et al., 2011), and comparisons were based on their posterior distributions (Supplemental Information 3). Isotopic niche overlap between species was assessed using the NicheROVER package (Swanson et al. 2015, Supplemental Information 4), which uses BI to provide a directional estimate of the overlap, in the sense of the probability of finding one species' individual in the isotopic space of another.

RESULTS

201

Stomach Content Analyses

Inter-specific differentiation

The Random Forest (RF) model showed excellent performance, with a training AUC: 0.98, test AUC: 0.99), suggesting a clear boundary between the prey preferences of H. dipterurus (n = 205) and N. entemedor (n = 187). The main contributors (cumulative importance of approximately 70%) to their

differences were sipunculids, followed by bivalves and polychaetes, where *N. entemedor* had higher weights of sipunculids and polychaetes and *H. dipterurus* had higher weights of bivalves (1. The optimized forest consisted of 200 trees, with a maximum depth of two and a maximum of three features (prey items) per tree.

Intra-specific differentiation

For *H. dipterurus*, the RFs for the seasons (n; cold = 96, warm = 109), sexes (138 females, 67 males), and maturity stages (44 adults, 161 juveniles) had moderate AUC values (\leq 0.6; 2). The RF for the seasons showed higher weights of shrimps and crustaceans during the warm season. The model was optimized with 100 trees, a maximum depth of two and maximum one feature per tree. The main contributors to the classification of the sexes were bivalves, stomatopods, and shrimps. Higher weights of stomatopods and crabs were associated with females, while higher weights of shrimps and amphipods were associated with males. The final RF consisted of 50 trees with a maximum depth of 28 and one feature per tree, being the RF with the highest maximum depth, suggesting a fuzzy boundary between males and females. As for the maturity stages, the classes were balanced to 100 individuals, and stomatopods and bivalves were the most relevant prey groups to the classification (cumulative importance of \sim 70%). Adults had higher weights of shrimps, polychaetes, echinoderms, and sipunculids, while juveniles haad higher weights of stomatopods, bivalves, crabs, and amphipods. The optimized forest consisted of 50 trees with a maximum depth of five and a maximum of four features per tree.

For *N. entemedor*, the AUCs were better than those of *H. dipterurus* (AUC > 0.8; 3), except for the seasons. Sipunculids had the highest impact on predicting the seasons (n; cold = 99, warm = 88) and sexes (n; females = 154, males = 33), while polychaetes were the most important for classifying maturity stages (n; adults = 173, juveniles = 14). Higher weights of sipunculids and shrimps were associated with the warm season; higher weights of sipunculids, polychaetes, and shrimps were associated with females; and higher weights of polychaetes and shrimps with juveniles. The optimized RF for the seasons consisted of 50 trees with a maximum depth of one and a maximum of nine features per tree. Regarding the sexes, the optimized RF consisted of 100 trees with a maximum depth and features of seven. As for the maturity stages, the RF consisted of 100 trees, with a maximum depth of four and a maximum of eight features per tree.

Stable Isotope Analyses

Inter-specific comparisons of isotopic values and niches

The MvST model showed a gradient in $\delta^{13}C$ values among the species, with N. entemedor having the highest values $(M, [HDI_{95\%}]: -12.63, [-12.63, -12.14])$, followed by H. dipterurus (-14.0, [-14.39, -13.64]) and R. steindachneri (-16.12, [-16.34, -15.90]). For $\delta^{15}N$, R. steindachneri and H. dipterurus had similar values (16.18, [16.00, 16.34], and 16.16 [15.87, 16.46], respectively), which were lower than those of N. entemedor (18.05, [17.86, 18.25]). The comparisons of the posterior distributions showed high probabilities of differences in most cases (P > 99%, 4); the only exception being $\delta^{15}N$ values of H. dipterurus and R. steindachneri. The largest mean difference was found between N. entemedor and R. steindachneri in $\delta^{13}C$ (P(N.entemedor < R.steindachneri) = 100%; M = 3.7%; P(N) = 10.49; P(N) = 10

Intra-specific comparisons of isotopic values and niches

The results of analyzing the effect of the sex, seasonality, and maturity stage are summarized in 7. The effect of sex on isotopic values was relatively minor, with probabilities of differences lower than 75% in every case other than $\delta^{13}C$ for *H. dipterurus* ($\beta = -0.32\%$; p($\beta < 0$) = 90%). The effect of the season was more evident in $\delta^{15}N$, with probabilities of differences between the warm and cold season exceeding 90% for most comparisons. The values of the three species were lower during the cold season compared to the warm season. For $\delta^{13}C$, only *H. dipterurus* showed higher values during the cold season as compared to the warm season ($p(\beta < 0) \approx 98\%$; $\beta = 0.76\%$; $HDI_{95\%}$: [0.028‰, 1.5‰]). Most comparisons between maturity stages showed that juveniles had lower values of both isotopes, with the exception of H. dipterurus in $\delta^{13}C$, where juveniles had higher values.

The degree of intra-specific differentiation in isotopic niche areas varied among species (5, right, and 6). For the seasons, *R. steindachneri* was the only species with a high probability of differences $(p(cold > warm) \approx 80\%; HDI_{95\%} : [-1.11^2, 7.78^2]; M = 2.05^2)$. For the sexes, both *N. entemedor* $(p(males > females) \approx 87\%; [-0.67^2, 2.78^2]; 0.93^2)$ and *R. steindachneri* $(p(males > females) \approx 79\%; [-0.5^2, 1.1^2]; 2.05^2)$ showed differences. Regarding the maturity stages, both *H. dipterurus* $(p(juveniles > adults) \approx 80\%; [-2.17^2, 4.19^2]; 2.02^2)$ and *R. steindachneri* $(p(adults > juveniles) \approx 77\%; [-0.5^2, 1.06^2]; 0.27^2)$ showed differences in isotopic niche areas between juveniles and adults.

DISCUSSION

The competitive exclusion principle states that the coexistence of sympatric species requires a certain degree of resource partitioning (Gause, 1934; Hardin, 1960), hence heavily influencing these species' overall ecological niche (*sensu* Hutchinson 1978). Moreover, populations are not homogeneous but are formed by individuals with different morphological or behavioral traits (e.g., maturity stage, sexes) immersed in an ever-changing environment. This interaction results in a multi-dimensional differentiation in food preferences and resource exploitation, challenging the adequate management and conservation of populations (Coyle, 1998). We explored such differentiation in three coastal batoids by combining SCA and SIA, resulting in a comprehensive study of their foraging and coexistence strategies.

Differences in $\delta^{13}C$ are usually associated with horizontal spatial segregations, namely an inshore-offshore gradient, but they could also indicate a benthic-pelagic gradient (Newsome et al., 2007). In this case, neither isotopic pattern can be discarded. Essentially, isotopic gradients follow the differences in isotopic fractionation, which, in turn, depend on primary productivity, carbon sources, and biochemical processes (Smith and Epstein, 1971; Peterson and Fry, 1987). In this regard, the Gulf of California is a highly productive environment due to seasonal upwellings and oceanic eddies (Mercado-Santana et al., 2017), thus favoring higher biomasses (both in size and abundance) of primary producers, which then have higher $\delta^{13}C$ signatures than the smaller and slower-growing phytoplankton found in oceanic environments (Goericke and Fry, 1994). Benthic habitats, on the other hand, yield higher $\delta^{13}C$ baselines than pelagic ones due to a couple of factors: a preferential photosynthetic uptake of ^{12}C in surface waters and the release of ^{12}C during the subsequent decomposition and sinking of organic matter, leading to an increase in $\delta^{13}C$ values in calcifiers (Börner et al., 2017).

Both inshore-offshore and benthic-pelagic segregations have biological explanations depending on the analyzed species and their behaviors. At an inter-specific level, the results of SCA support the benthic-pelagic gradient due to the lower values of H. dipterurus relative to N. entemedor, and infaunal prey being more relevant to the latter. Moreover, their $\delta^{13}C$ values are similar to those reported for other coastal benthic predator species in the Gulf of California (Aurioles-Gamboa et al., 2013; Valenzuela-Quiñonez et al., 2018), which suggests that La Paz Bay is an important feeding area for these batoid species year-round. These findings are consistent with prior works on the feeding strategies of both species, where infaunal and epibenthic invertebrates are the most consumed by H. dipterurus (Restrepo-Gómez et al., 2021), while polychaetes have been reported as the primary prey of N. entemedor (Valadez-González, 2007). Morphological differences and feeding strategies could explain this resource partitioning. The protractile and tubular ventral mouth, along with its electric discharge (Last et al., 2016), make N. entemedor better suited to feed on benthic prey, while the different body shapes, teeth morphology, rostral fins, and locomotion systems of the other two species allow them to exploit the benthopelagic habitat (Nelson et al., 2016; Last et al., 2016; González-González et al., 2020).

As for $\delta^{15}N$, the ^{15}N -enriched values found are also coherent with those found in the Gulf of California, which is an area with particularly high $\delta^{15}N$ values (Elorriaga-Verplancken et al., 2018), due to biochemical processes and the oceanic circulation. The ETP is characterized by low oxygen concentrations and a shallow oxygen minimum zone, which result in deep denitrification processes that, in turn, mix with surface waters during upwellings (Altabet et al., 1999; Takai et al., 2000). The added denitrified water to the surface of the ETP generates a basal ^{15}N -enrichment due to the preferential removal of ^{14}N -enriched nitrate by bacteria, causing the emergence of ^{15}N -enriched residual nitrate during upwellings, which is then incorporated during primary production at the ocean surface (Altabet et al., 1999). Similar to $\delta^{13}C$, a gradient of $\delta^{15}N$ values was found, such that N. entemedor > H. dipterurus $\approx R$. steindachneri. These differences could be associated with differences in trophic positions (TPs); however, the influence of the environment could be a confounding factor, given that previous reports suggest that these species share TPs around 3.5 (Froese and Pauly, 2012). Testing whether this is the case is unfeasible

315

316

318

319

321

322

323

325

327

329

331

333

334

336

338

340

341

344

345

348

349

351

352

353

354

355

356

358

360

362

with the available information. Bulk SIA can confound the effect of the diet and primary producers (Martínez del Río et al., 2009) due to the spatial and temporal variation of the isotopic composition at the base of the trophic webs (Whitehead et al., 2020). Nonetheless, these shortcomings could be solved by measuring the isotope values of individual amino acids (Amino-Acid Compound-Specific SIA, AACSIA), given their unique and well-understood biochemical pathways, which would allow a direct assessment of the trophic web baseline (source AA) and the trophic status of the consumers (trophic AA, Ruiz-Cooley et al. 2017

For H. dipterurus, the performances of the RF models for every factor were moderate, with AUCs around 0.6, which could be interpreted as a lack of marked differences between the different factors; however, the MvST results for $\delta^{13}C$ values suggested differences among sexes, seasons and maturity stages. Likewise, for $\delta^{15}N$, the slopes suggested differences between seasons and maturity stages but not between sexes (7). Two non-mutually exclusive hypotheses could bring the isotopic results together, including the broad isotopic niche. The first one is that adults of H. dipterurus may enter La Paz Bay during the warm season for reproductive activities, while juveniles enter during the cold season (Burgos-Vázquez et al., 2018). The second is that some individuals could have had isotopic values corresponding to a different isoscape (i.e., an area with different baseline isotopic values) than those of the Gulf of California. Either way, a plausible explanation is the vagility of the species and its continuous distribution (Last et al., 2016), as has been reported with other migratory predator species in the Gulf of California (Elorriaga-Verplancken et al., 2018). These two hypotheses could also explain part of the much broader isotopic niche of the species relative to the other two (Figs. 5, 6); however, the effect of the maturity stage on the isotopic niche cannot be discarded. Adults with a smaller isotopic niche than juveniles could indicate a change in prey items consumed or specialization, which is congruent with prior reports (Restrepo-Gómez et al., 2021).

In contrast, both approaches yielded more consistent results for *N. entemedor* because they agreed upon differences within factors. The performances of the RF models for sexes and maturity stages were adequate (AUCs > 0.8), while MvST results suggested potential differences between maturity stages for $\delta^{13}C$ and between seasons and maturity stages for $\delta^{15}N$. These results indicate ontogenic changes in foraging habits, which agrees with previous studies on the species (Cabrera-Melendez, 2017). In this case, the ontogenic changes could also be related to an increased trophic spectrum due to an increase in body and mouth sizes during growth (Spath et al., 2013), resulting in more efficient prey capture and handling mechanisms (Valadez-González, 2007). Consequently, adults have access to a broader array of potential prey, supported by their broader isotopic niche relative to juveniles (Fig. 6). Another interesting finding is the differences between sexes, where females had a smaller isotopic niche area than males, opposite to prior SCA results where males had the broader trophic niche (Cabrera-Melendez, 2017). This discrepancy could be explained not only by the different time resolutions represented by SCA and SIA but also by the body size dimorphism (larger females), allowing them to access a broader spectrum of prey, as has been mentioned for other marine species (Phillips et al., 2011; Espinoza et al., 2015; Rosas-Hernández et al., 2019).

Although the SCA was not considered for *R. steindachneri*, the SIA results showed similar trends as in other species, with high probabilities of differences between maturity stages in $\delta^{13}C$ and between seasons in $\delta^{15}N$. As with *N. entemedor*, the differences in $\delta^{13}C$ agree with ontogenic changes in dietary habits, while differences in $\delta^{15}N$ could indicate a change in the trophic spectrum of the species or could also be the consequence of the migratory behavior of the species (Schwartz, 1990). These results are the first approach to shed light on the intra-specific variation in this species.

The contrasting results of SCA and SIA are likely due to differences in the periods reflected by both approaches. SCA reflects only a few hours before sampling while being affected by differential digestion rates of prey items, which, in turn, confounds the underlying ecological processes. This contrast also highlights the complementariness of both approaches. Nonetheless, an important consideration is that our SIA could reflect diet assimilation from over a year before sampling (Logan and Lutcavage, 2010; MacNeil et al., 2006), meaning that data from the warm seasons could include information from the previous cold season and vice-versa. Thus, analyzing a more metabolically active tissue with a shorter integration period would be preferable to generate more comparable results. Still, this study is a promising step towards understanding the biological and ecological mechanisms that allow the coexistence of the three species in the Southern Gulf of California, Mexico.

ACKNOWLEDGMENTS

- NRE is thankful to the CONACyT and BEIFI-IPN scholarships, received during his postgraduate studies.
- This study was financed by the projects CONACyT CB/2012/180894, IPN-SIP/20171069, and IPN-
- SIP/20221054. Isotopic analyses were conducted under the CONACyT project PN-2016/No.2916 to
- 370 JDC.

REFERENCES

- Albo-Puigserver, M., Navarro, J., Coll, M., Aguzzi, J., Cardona, L., and Sáez-Liante, R. (2015). Feeding ecology and trophic position of three sympatric demersal chondrichthyans in the northwestern Mediterranean. *Marine Ecology Progress Series*, 524:255–268.
- Altabet, M., Pilskaln, C., Thunell, R., Pride, C., Sigman, D., Chavez, F., and Francois, R. (1999). The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific.

 Deep Sea Research, I(46):655—679.
- Aurioles-Gamboa, D., Rodríguez-Pérez, M., Sánchez-Velasco, L., and Lavín, M. (2013). Habitat, trophic level, and residence of marine mammals in the Gulf of California assessed by stable isotope analysis. *Marine Ecology Progress Series*, 488:275–290.
- Barbini, S. A., Sabadin, D. E., and Lucifora, L. O. (2018). Comparative analysis of feeding habits and dietary niche breadth in skates: the importance of body size, snout length, and depth. *Reviews in Fish Biology and Fisheries*, pages 625–636.
- Barría, C., Navarro, J., M., C., Fernandez-Arcaya, U., and Sáez-Liante, R. (2015). Morphological parameters of abundant and threatened chondrichthyans of the northwestern Mediterranean Sea. *Journal of Applied Ichthyology*, 31(1):114–119.
- Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo. *arXiv preprint*, 1701.02434.
- Bolstad, W. (2004). *Introduction to Bayesian statistics*. Wiley-Interscience.
- Brand, W. A., Coplen, T. B., Vogl, J., Rosner, M., and Prohaska, T. (2014). Assessment of international
 reference materials for isotope-ratio analysis (IUPAC Technical Report). *Pure and Applied Chemistry*,
 86(3):425–467.
- Burgos-Vázquez, M. I., Chávez-García, V. E., Cruz-Escalona, V. H., Navia, A. F., and Mejía-Falla, P. A.
 (2018). Reproductive strategy of the Pacific cownose ray *Rhinoptera steindachneri* in the southern Gulf
 of California. *Marine and Freshwater Research*, 70(1):93–106.
- Burgos-Vázquez, M. I., Mejía-Falla, P., Cruz-Escalona, V. H., and Brown-Peterson, N. J. (2017). Re productive Strategy of the giant electric ray in the Southern Gulf of California. *Marine and Coastal Fisheries*, 9(1):577–596.
- Börner, N., Baaere, B. D., Akita, L., Francois, R., Jochum, K., Frenzel, P., Zhu, L., and Schwalb, A. (2017). Stable isotopes and trace elements in modern ostracod shells: implications for reconstructing past environments on the Tibetan Plateau, China. *Journal of Paleolimnology*, 58:191–211.
- Cabrera-Melendez, P. (2017). Hábitos alimentarios de *Narcine entemedor* en la Bahía de La Paz, México [Foraging habits of *Narcine entemedor* in Bahía de La Paz, México].
- Carlisle, A. B., Litvin, S. Y., Madigan, D. J., Lyons, K., Bigman, J. S., Ibarra, M., and Bizzarro, J. J.
 (2016). Interactive effects of urea and lipid content confound stable isotope analysis in elasmobranch
 fishes. Canadian Journal of Fisheries and Aquatic Sciences, 74(3):419–428.
- Carvajal, G., Maucec, M., and Cullick, S. (2018). *Components of artificial intelligence and data analytics*, pages 101–148. Gulf Professional Publishing.
- Coll, M., Navarro, J., and Palomera, I. (2013). Ecological role, fishing impact, and management options for
 the recovery of a Mediterranean endemic skate by means of food web models. *Biological Conservation*,
 157:108–120.
- Cortés, E. (1997). A critical review of methods of studying fish feeding based on analysis of stomach
 contents: application to elasmobranch fishes. *Canadian Journal of Fisheries and Aquatic Sciences*,
 54:726–738.
- Coyle, T. (1998). Stock identification and fisheries management: the importance of using several methods in a stock identification study, pages 173–182. Australian Society for Fishery Biology.
- DeNiro, M. and Epstein, S. (1976). You are what you eat(plus a few per mil): the carbon isotope cycle in food chains. *Geological Society of America Abstracts with Programs*, 8:834–835.
- Ehemann, N. R., Abitia-Cárdenas, L. A., Navia, A. F., Mejía-Falla, P. A., and Cruz-Escalona, V. H. (2019).

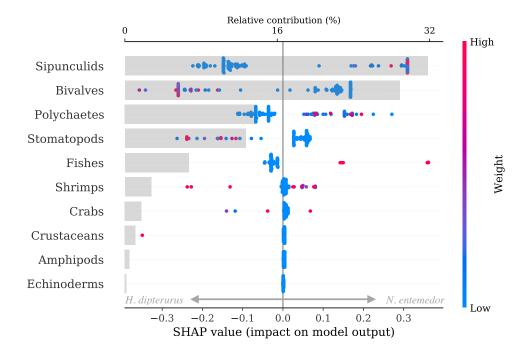
 Zeros as a result in diet studies, is this really bad? *Rhinoptera steindachneri* as a case study. *Journal of the Marine Biological Association of the United Kingdom*, 99(7):1661–1666.
- Elorriaga-Verplancken, F., Sandoval-Sierra, J., Paniagua-Mendoza, A., and Robles, R. (2018). Seasonality and potential foraging grounds of migratory California sea lions from La Paz Bay, Southern Gulf of California, Mexico. *Aquatic Mammals*, 44(1):56–61.
- Espinoza, M., Munroe, S., Clarke, T., Fisk, A., and Wehrtmann, I. (2015). Feeding ecology of common

- demersal elasmobranch species in the Pacific coast of Costa Rica inferred from stable isotope and stomach content analyses. *Journal of Experimental Marine Biology and Ecology*, 470:12–25.
- Ferreti, F., Worm, B., Britten, G. L., Heithaus, M., and Lotze, H. K. (2010). Patterns and ecosystem consequences of shark declines in the ocean. *Ecology Letters*, 13(8):1055–1071.
- Flores-Ortega, J. R., Godínez-Domínguez, E., and González-Sansón, G. (2015). Ecología trófica de
 siete especies de batoideos (Batoidea) en el Pacífico Central Mexicano. Revista de Biología Marina y
 Oceanografía, 50(3):521–533.
- Froese, R. and Pauly, D. (2012). FishBase.
- Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., and Gelman, A. (2017). Visualization in Bayesian workflow. *arXiv preprint*, 1709.01449.
- Gause, G. (1934). *The struggle for existence*. The Williams & Wilkins Company.
- Gelman, A., Hwang, J., and Vehtari, A. (2014). Understanding predictive information criteria for Bayesian models. *Statistics and Computing*, 24(6):997–1016.
- Goericke, R. and Fry, B. (1994). Variations in marine plankton $\delta^{13}C$ with latitude, temperature, and dissolved CO_2 in the world ocean. *Global Biochemical Cycles*, 8:85–90.
- González-González, L. d. V., Cruz-Escalona, V. H., Ehemann, N., De La Cruz-Agüero, G., Abitia Cárdenas, L. A., Mejía-Falla, P. A., and Navia, F. (2020). Captura por unidad de esfuerzo de la pesca
 artesanal de batoideos en la Isla Espíritu Santo, BCS, México. *Hidrobiológica*, 30(1):37–47.
- Guevara-Guillén, C., Shirasago-German, B., and Pérez-Lezama, E. L. (2015). The influence of large-scale
 phenomena on La Paz Bay hydrographic variability. *Open Journal of Marine Science*, 5(1):146–157.
- 446 Hardin, G. (1960). The competitive exclusion principle. Science, 131(3409):1292–1297.
- Heithaus, M. R., Frid, A., Vaudo, J., Worm, B., and Wirsing, A. J. (2010). *Unraveling the ecological importance of elasmobranchs*. CRC Press and Taylor & Francis Group.
- Hutchinson, G. (1978). An introduction to population ecology. Yale University Press.
- Hyslop, E. (1980). Stomach contents analysis-a review of methods and their application. *Journal of Fish Biology*, 17(4):411–429.
- Jackson, A., Inger, R., Parnell, A., and Bearhop, S. (2011). Comparing isotopic niche widths among
 and within communities: SIBER-stable isotope Bayesian ellipses in R. *Journal of Animal Ecology*,
 34(3):595–602.
- Kim, S. and Koch, P. (2012). Methods to collect, preserve, and prepare elasmobranch tissues for stable isotope analysis. *Environmental Biology of Fishes*, 95(1):53–63.
- Kruschke, J. (2012). Bayesian estimation supersedes the t test. *Journal of Experimental Psychology: General*, 142(2):573–603.
- Kruschke, J. (2015). *Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan.* Academic Press, 2nd edition.
- Last, P., Naylor, G., Séret, B., White, W., de Carvalho, M., and Stehmann, M., editors (2016). *Rays of the world.* CSIRO Publishing.
- Lemaitre, G., Nogueira, F., and Aridas, C. (2007). Imbalanced-learn: A Python toolbox to tackle the curse of imbalanced datasets in machine learning. *Journal of Machine Learning Research*, 18:1–5.
- Li, Y., Zhang, Y., Hussey, N., and Dai, X. (2016). Urea and lipid extraction treatment effects on $\delta^{15}N$ and $\delta^{13}C$ values in pelagic sharks. *Rapid Communications in Mass Spectrometry*, 30(1):1–8.
- Lim, K., Chong, V., Phaik-Eem, L., Yurimoto, T., and Loh, K. (2018). Feeding ecology of three sympatric species of stingrays on a tropical mudflat. *Journal of the Marine Biological Association of the United Kingdom*, 99:999–1007.
- Logan, J. and Lutcavage, M. (2010). Stable isotope dynamics in elasmobranch fishes. *Hydrobiologia*, 644:231–244.
- Lundberg, S. and Lee, S.-I. (2017). A unified approach to interpreting model predictions. *arXiv preprint*, 1705.07874.
- Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J.,
 Bansal, N., and Lee, S.-I. (2020). From local explanations to global understanding with explainable AI
 for trees. *Nature Machine Intelligence*, 2(1):56–67.
- Mabragaña, E. and Giberto, D. A. (2007). Feeding ecology and abundance of two sympatric skates, the shortfin sand skate *Psammobatis normani* McEachran, and the Smallthorn sand skate *P. rudis* Gunther
- (Chondricthyes, Rajidae), in the southwest Atlantic. *ICES Journal of Marine Science*, 64:1017–1027. MacNeil, M., Drouillard, K., and Fisk, A. (2006). Variable uptake and elimination of stable nitrogen

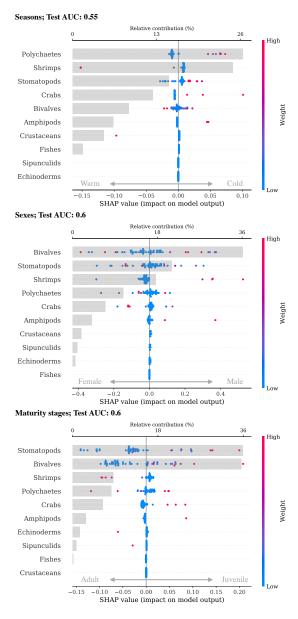
- isotopes between tissues in fish. Canadian Journal of Fisheries and Aquatic Sciences, 63:345–353.
- Marshall, A., Kyne, P., and Bennett, M. (2008). Comparing the diet of two sympatric urolophid elasmobranchs (*Trygonoptera testacea* Müller & Henle and *Urolophus kapalensis* Yearsley & Last): evidence of ontogenic shifts and possible resource partitioning. *Journal of Fish Biology*, 72(4):883–898.
- Martin, O. (2018). *Bayesian analysis with Python: Introduction to statistical modeling and probabilistic* programming using PyMC3 and ArviZ. Pakt Publishing, 2nd edition.
- Martínez del Río, C., P., Anderson-Sprecher, R., and Gonzalez, S. (2009). Dietary and isotopic specialization: the isotopic niche of three Cinclodes ovenbirds. *Oecologia*, 161(1):149–159.
- Mercado-Santana, J., del Ángel, E. S., González-Silvera, A., Sánchez-Velasco, L., Gracia-Escobar, M.,
 Millán-Núñez, R., and Torres-Navarrete, C. (2017). Productivity in the Gulf of California large marine
 ecosystem. *Environmental Development*, 22:18–29.
- Meyer-Baese, A. and Schmid, V. (2014). Chapter 7 Foundations of neural networks. In Meyer-Baese, A.
 and Schmid, V., editors, *Pattern recognition and signal analysis in medical imaging*, pages 197–243.
 Academic Press, 2nd edition.
- Michener, R. and Kaufman, L. (2007). *Stable isotope ratios as tracers in marine food webs: An update*, pages 238–282. Blackwell Publishing.
- Moura, T., Figueiredo, I., Farias, I., Serra-Pereira, B., and Neves, A. (2008). Ontogenic dietary shift and feeding strategy of *Raja undulata* Lacepède, 1802 (Chondichtyes: Rajidae) on the Portuguese continental shelf. *Scientia Marina*, 72(2):311–318.
- Murillo-Cisneros, D. A., O'Hara, T. M., Elorriaga-Verplancken, F. R., Curiel-Godoy, P., Sánchez-González, A., Marmolejo-Rodríguez, A. J., E., M.-E., and Galván-Magaña, F. (2019). Trophic
 assessment and isotopic niche of three sympatric ray species of western Baja California Sur, Mexico.
 Environmental Biology of Fishes, 102(12):1519–1531.
- Navarro-González, J., Bohórquez-Herrera, J., Navia, A., and Cruz-Escalona, V. (2012). Composición trófica de batoideos en la plataforma continental frente a Nayarit y Sinaloa, México. *Ciencias Marinas*, 38(2):347–362.
- Navia, A. F., Mejía-Falla, P. A., López-García, J., Giraldo, A., and Cruz-Escalona, V. H. (2017). How many trophic roles can elasmobranchs play in a marine tropical network? *Marine and Freshwater Research*, 68(7):1342–1353.
- Nelson, J. S., Grande, T. C., and Wilson, M. V. (2016). Fishes of the world. John Wiley & Sons.
- Newsome, S., del Rio, C., Bearhop, S., and Phillips, D. (2007). A niche for isotopic ecology. *Frontiers in Ecology and the Environment*, (5):429–436.
- Park, T. and Casella, G. (2012). The Bayesian Lasso. *Journal of the American Statistical Association*, 103(482):681–686.
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
 P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M.,
 and Duchesnay, E. (2011). Scikit-learn: machine learning in Python. *Journal of Machine Learning Research*, 12:2825–2830.
- Peterson, B. and Fry, B. (1987). Stable isotopes in ecosystem studies. *Annual Review of Ecology and Systematics*, 18:293–320.
- Phillips, R., McGill, R., Dawson, D., and Bearhop, S. (2011). Sexual segregation in distribution, diet and trophic level of seabirds: insights from stable isotope analysis. *Marine Biology*, 158(10):2199–2208.
- Platell, M., Potter, I., and Clarke, K. (1998). Resource partitioning by four species of elasmobranchs (Batoidea: Urolophidae) in coastal waters of temperate Australia. *Marine Biology*, 131:719–734.
- Post, D., Layman, C., Arrington, D., Takimoto, G., Quattrochi, J., and Montaña, C. (2007). Getting to the fat of the matter: models, methods and assumptions for dealing with lipds in stable isotope analyses. *Oecologia*, 152:179–189.
- Restrepo-Gómez, D., Cruz-Escalona, V., Mejía-Falla, P., Peterson, M., and A.F., N. (2021). Effects of age, maturity, sex, and seasonality on the feeding strategies of the diamond stingray, *Hypanus dipterurus*, in the southern Gulf of California. *Marine and Freshwater Research*, 72:469–480.
- Rosas-Hernández, M., Aurioles-Gambioa, D., and Hernández-Camacho, C. (2019). Specialized foraging habits of adult female California sea lions *Zalophus californianus*. *Marine Mammal Science*, 35(4):1463–1488.
- Ruiz-Cooley, R., Gerrodette, T., Fiedler, P., Chivers, S., Danil, K., and Ballance, L. (2017). Temporal variation in pelagic food chain length in response to environmental change. *Science Advances*,

3(e1701140):1-8.

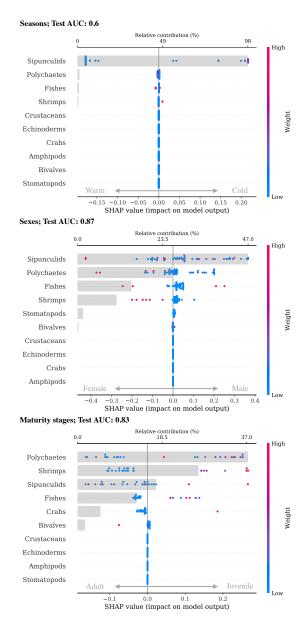
536


- Ruiz-Cooley, R., Markaida, U., Gendron, D., and Aguíñiga, S. (2006). Stable isotopes in jumbo squid (*Dosidicus gigas*) beaks to estimate its trophic position: comparison between contents and stable isotopes. *Journal of the Marine Biological Association of the United Kingdom*, 86:437–445.
- Salvatier, J., Wiecki, T. V., and Fonnesbeck, C. (2016). Probabilistic programming in Python using PyMC3. *PeerJ Computer Science*, 2:e55.
- Schmitt, J., Gedamke, T., DuPaul, W., and Musick, J. (2015). Ontogenic and sex-specific shifts in the feeding habits of the barndoor skate. *Marine and Coastal Fisheries*, 7(1):409–418.
- Schwartz, F. (1990). Mass migratory congregations and movements of several species of cownose rays, Genus *Rhinoptera*: A world-wide review. *Journal of the Elisha Mitchell Scientific Society*, 106(1):10–13.
- Serrano-Flores, F., Torres-Rojas, Y. E., Ajemian, M. J., Mendoza-Carranza, M., and Pérez-Jiménez, J. C.
 (2021). Advances in the study of the trophic niche of batoids with distribution in Mexican waters.
 Marine Ecology, 42:e12687.
- Simental-Anguiano, M. R. (2011). Dieta de *Rhinoptera steindachneri* (Evermann & Jenkins, 1892) y
 Dasyatis brevis (Garman, 1879) en el Alto Golfo De California [Diet of *Rhinoptera steindachneri* (Evermann & Jenkins, 1892) and *Dasyatis brevys* (Garman, 1879) in the Alto Golfo de California].
- Sinisalo, T., Jones, R., Helle, E., and Valtonen, E. (2008). Changes in diets of individual Baltic ringed
 seals (*Phoca hispida botnica*) during their breeding season inferred from stable isotope analysis of
 multiple tissues. *Marine Mammal Science*, 24(1):159–170.
- Smith, B. and Epstein, S. (1971). Two categories of ${}^{13}C/{}^{12}C$ ratios for higher plants. *Plant Physiology*, 47:380–384.
- Smith, W., Cailliet, G. M., and Melendez, E. M. (2007). Maturity and growth characteristichs of a commercialy exploited stingray, *Dasyatis dipterura*. *Marine and Freshwater Research*, 58(1):54–66.
- Spath, C., Barbini, S., and Figueroa, D. (2013). Feeding habits of the apron ray, *Discopyge tschudii* (Elasmobranchii: Narcinidae), from off Uruguay and northern Argentina. *Journal of the Marine Biological Association of the United Kingdom*, 93(2):291–297.
- Stallings, C. D., Nelson, J. A., Rozar, K. L., Adams, C., Wall, K. R., Switzer, T. S., Winner, B. L., and Hollander, D. J. (2015). Effects of preservation methods of muscle tissue from uppertrophic level reef fishes on stable isotope values ($\delta^{13}C$ and $\delta^{15}N$). *PeerJ*, (3:e874).
- Swanson, H. K., Lysy, M., Power, M., Stasko, A. D., Johnson, J. D., and Reist, J. D. (2015). A new
 probabilistic method for quantifying n dimensional ecological niches and niche overlap. *Ecology*,
 96(2):318–324.
- Takai, N., Onaka, S., Ikeda, Y., Yatsu, A., Kidokoro, H., and Sakamoto, W. (2000). Geographical variations in carbon and nitrogen stable isotope ratios in squid. *Journal of the Marine Biological Association of the United Kingdom*, 80:675–684.
- Valadez-González, C. (2007). Distribución, abundancia y alimentación de las rayas bentónicas de la costa
 de Jalisco y Colima, México [Distribution, abundance and feeding of the benthic rays of the coasts of
 Jalisco and Colima].
- Valenzuela-Quiñonez, F., Galván-Magaña, F., Ebert, D. A., and Aragón-Noriega, E. A. (2018). Feeding
 habits and trophic level of the shovelnose guitarfish (*Pseudobatos productus*) in the upper Gulf of
 California. *Journal of the Marine Biological Association of the United Kingdom*, 98(7):1783–1792.
- ⁵⁷⁸ Van Rossum, G. and Drake, F. (2009). *Python 3 reference manual*. CreateSpace, Scotts Valley, CA.
- Vinson, M. R. and Budy, P. (2011). Sources of variability and comparability between salmonid stomach
 contents and isotopic analyses: Study design lessons and recommendations. *Canadian Journal of Fisheries and Aquatic Sciences*, 68:137–151.
- White, W., Platell, M., and Potter, I. (2004). Comparisons between the diets of four abundant species of elasmobranchs in a subtropical embayment: implications for resource partitioning. *Marine Biology*, 144:439–448.
- Whitehead, D., Murillo-Cisneros, D., Elorriaga-Verplancken, F., Hacohen-Domené, A., Parra, R. D. L.,
 González-Armas, R., and Galván-Magaña, F. (2020). Stable isotope assessment of whale sharks across
 two ocean basins: Gulf of California and the Mexican Caribbean. *Journal of Experimental Marine* Biology and Ecology, 527(151359).

DATA AVAILABILITY


All data analyzed during this study are included in this published article and its Supplemental Informations, which are also stored in the GitHub repository ArturoBell/01072022.

592 FIGURES AND TABLES


Figure 1. Bee swarm (points, bottom axis) and bar (top axis) plots of SHAP explanations for the random forest classifying *H. dipterurus* and *N. entemedor*. The bee swarm plot shows the SHAP values for every prey group per individual. A bluer color expresses lower prey weights, while a redder color indicates higher prey weights, and the position along the x-axis shows whether that prey weight contributed to *H. dipterurus* (left) or *N. entemedor* (right). The bar plot shows the net prey contribution to the prediction.

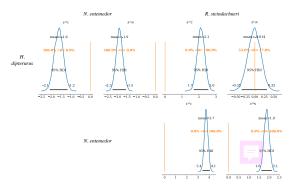


Figure 2. Bee swarm and bar plots of SHAP explanations for the intra-specific classifiers for *Hypanus dipterurus*.

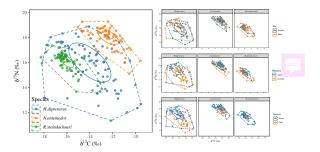


Figure 3. Bee swarm and bar plots of SHAP explanations for the intra-specific classifiers for *Narcine entemedor*.

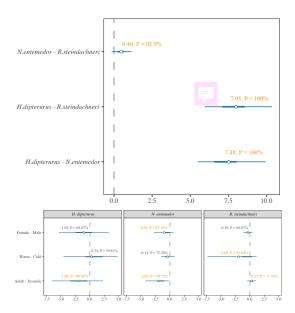


Figure 4. Comparisons between the posterior means of each species' isotopic ratios.

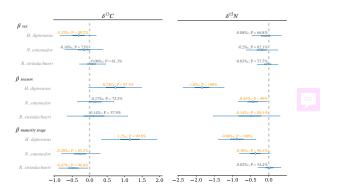


Figure 5. Isotopic niches of the three batoid species (left) and their categories (right), represented with standard ellipses and convex hulls.

Figure 6. Forest plot with the posterior differences in isotopic niche areas (SEA_B) and their probabilities of being greater or smaller than 0.

Figure 7. Forest plot of the posterior distributions of the slopes of every factor (β) for every species and isotopic ratio. Shown as mean; probability of $\beta > 0 \lor \beta < 0$. Thin lines represent the $HDI_{95\%}$, thick lines the $HDI_{50\%}$, and points indicate the mean of the distribution.