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ABSTRACT

Background: The demand for lactic acid bacteria products, especially probiotics, has increased.
Bacteria that increase polyphenol bioavailability and act as bio preservatives are sought after.
This study aims to identify autochthonous lactic acid cultures from EMBRAPA that demonstrate
B-glucosidase activity and inhibitory effect on microbial sanitary indicators.

Methods: Cell-free extracts were obtained by sonicating every 5 seconds for 40 minutes. The
extracts were mixed with cellobiose and incubated at 50 °C. The reaction was stopped by
immersing the tubes in boiling water. The GOD-POD reagent was added for spectrophotometer
readings. Antimicrobial activity was tested against reference strains using the agar well diffusion
method. Lactic cultures in MRS broth were added to 0.9 cm wells and incubated. The diameter of
the inhibition zones was measured to determine the extension of inhibition.
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Results: Only L. rhamnosus EM1107 displayed extracellular B-glucosidase activity, while all
autochthonous strains except L. plantarum CNPC020 demonstrated intracellular activity for this
enzyme. L. plantarum CNPC003 had the highest values. On the other hand, L. plantarum
CNPCO020, similarly to L. mucosae CNPC007, exhibited notable inhibition against sanitary
indicators. These two strains gignificantly differed from the other 5 autochthonous cultures

regarding S. typhimurium ATCC 14028 inhibition (P<0.05). However, they did not differ from at

least one positive control in terms of inhibition against S. aureus ATCC 25923 and E. coli ATCC
25922 (P>0.05). Therefore, it is advisable to consider these cultures separately for different
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technological purposes, such as phenolics metabolism or bio preservative activity. This will
facilitate appropriate selection based on each specific property required for the intended product
development.

Subjects: Applied Microbiology. Food Technology.
Keywords: Autochthonous Lactobacillaceae, 3-Glucosidase activity, Biopreservation effect.

Introduction
Consumers are becoming increasingly conscious of the role of nutrition and health in their lives.
Consequently, they actively seek healthier food options (Barros et al., 2020). This consumer

behavior, coupled with an aging population and an increase in gut-related disorders, drives the

probiotic product market. The market for probiotic products is expected to grow to approximately

USS$ 85.4 billion by the end of 2027 (Market Research Report, 2022).
Various probiotic food products are available on the market, including dairy products such as

fermented milk, cheese, and ice cream, and non-dairy options like cereals, fruit juice, vegetables,
and meat (Min et al., 2019). However, using probiotic microorganisms still presents numerous
challenges in terms of technological and therapeutic aspects (Barros et al., 2020). Moreover, the
high costs associated with commercial probiotics make their use impractical for small producers
and the low-income population. Therefore, it becomes crucial to study new autochthonous strains
with probiotic potential (Dos Santos et al., 2015; Vinderola et al., 2008).

Similar attention has been directed towards polyphenols, plant compounds that offer many
benefits, including antioxidant activity. However, the effects of polyphenols on human health are
influenced by their metabolism within the intestinal microbiota, which plays an essential role in
determining their bioavailability (Gaya et al., 2020).

Probiotics offer various benefits, including resistance to pathogens, stabilization of intestinal
microbiota after antibiotic use, increased mineral absorption, production of vitamins B and K;;
immune system stimulation, mutagenicity inhibition, anti-carcinogenic effects, reduced risk of
colon cancer, decreased risk of cardiovascular disease, reduced serum cholesterol levels, and
antihypertensive effects (Freire et al., 2017; Martinez, Bedani and Saad, 2015; Ribeiro et al.,
2014; Verruck et al., 2019).

Furthermore, the incorporation of probiotics in food can influence the taste, aroma, and texture of
products such as fermented milk, yogurt, cheese, fermented plant-based beverages, fruits and
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91  vegetables, fermented bread dough, and fermented meat (de Souza, de Oliveira and Oliveira,

92  2023). Only a few studies have examined the B-glucosidase and antimicrobial activities of native

93  lactic acid bacteria among the many probiotic studies conducted.

94  For example, flavonoids are glycosylated polyphenols and need to be hydrolyzed to aglycones to

95  become bioavailable. This process is facilitated by B-glucosidases from human cells and/or

96  microorganisms from the intestinal microbiota (Lanete, et al. 2016).

97  B-Glucosidases are enzymes that catalyze the hydrolysis of B-glycosidic bonds and can be

98  produced by lactic acid bacteria, such as Lactobacillaceae, and bifidobacteria. Several studies

99  demonstrate the ability of Lactobacillaceae strains, many of which possess probiotics properties,
100  to produce the B-glucosidase enzyme (Gouripura and Kaliwal, 2017; Avila et al., 2009; Rekha
101  and Vijayalakhmi, 2011). This enzyme can be used to convert O-glycosylated phenolic
102  compounds into bioactive aglycones, contributing to either nutritional and sensory aspects of
103  fermented foods, such as better flavor and fragrance, or increasing bioavailability of antioxidant
104  metabolites of plant origin (Rokni et al., 2021; Michelmayer and Kneifel, 2014; Perez-Martin et
105  al., 2012).
106  Probiotic strains can inhibit pathogenic and spoilage microorganisms in food matrices by
107  producing substances like organic acids, bacteriocins, and amino acid metabolites. This helps to
108  maintain the food’s quality, flavor, and shelf life. Several studies report the efficiency of using
109  probiotics in inhibiting pathogenic microorganisms such as Staphylococcus spp. and Listeria
110  monocytogenes (Buriti, Cardarelli, Saad, 2007; Rolim et al., 2015; Pisano et al., 2022; Kang et
111 al.,, 2020). In this way, certain probiotic cultures can be used as a natural biopreservative, thus
112 reducing the use of chemical preservatives by the food industry (Wu et al., 2022; Rolim et al.,

NN

113 2015).

h 14 This )study aimed to identify autochthonous lactic acid cultures from the Brazilian Agricultural CDeleted: The objective of this
115  Research Corporation (EMBRAPA) collection with potential for use in food. These cultures must CDeleted: was

116  develop B-glucosidase activity and inhibit microbial sanitary indicators in vitro.

117

118 Materials &methods

119

120  Autochthonous cultures of lactic acid bacteria

121 Five autochthonous strains of Lactiplantibacillus plantarum (CNPC001, CNPC002, CNPC003,
122  CNPCO004 and CNPC020), as well as Limosilactobacillus mucosae CNPC007 and

123 Lacticaseibacillus rhamnosus EM1107, all belonging to EMBRAPA’s collection, were tested.
124  The autochthonous strains, made available in lyophilized form, were cultured in 5 mL of De Man
125  Rogosa and Sharpe broth (MRS, manufactured by Laboratories Conda S. A., Spain, distributed
126 by Kasvi, Sdo José dos Pinhais, Brazil) at 35 + 2 °C for 24 hours for the initial activation. Soon
127  after, a second activation was carried out by transferring 100 pL of the first activation to glass
128  tubes containing 5 ml of MRS broth, later incubated at 35 + 2 °C for 24h. This second procedure
129  was repeated frequently for the maintenance of the cultures in a way that it was always performed

h30 Dbefore each assay. CDeleted: prior to
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B-glucosidase activity assay

With some modifications, the B-glucosidase activity assay was performed following the
methodology outlined by Wood and Garcia-Campayo (1990). Intracellular and extracellular B-
glucosidase productions were determined.

Two subsequent activations of autochthonous cultures were carried out in MRS broth, prepared
as a basal medium, and modified by replacing glucose with cellobiose (Exodo Cientifica, Sdo

Paulo, Brazil). The cultures were centrifuged at 15 min, 3000 rpm, (please report x g) (PARSEC CDeleted: ,
model CT — 0603 — Tecnologia Laboratorial do Brasil, Santa Catarina), and the supernatant was (Fnrmatted: Highlight
used to determine the extracellular B-glucosidase production. The cells were harvested in sodium CDeleted: )

AN

citrate (50 mM, pH 4.8, Dinamica, Espirito Santo, Brazil), then sonicated (Unique, model
Ultrasonic Cleaner 2500, Indaiatuba, Brazil, 50 rpm) with intervals of 5 s for a total duration of
40 min for the enzyme release (intracellular production). A 1-mL aliquot of each cell-free extract
was incubated in 1 mL of cellobiose solution for 30 minutes at 50 °C, stopping the reaction by
immersing the tubes in boiling water for 5 min. The glucose oxidase-peroxidase reagent (GOD-

POD, Biotécnica, Varginha, Brazil) was added for readings, in triplicates, in an SP-2000 (Deleted: a

spectrophotometer (Spectrum, Shanghai, China) at 500 nm. Enzymatic activity was expressed in
U (umol of product released per minute), according to equation 1:

_ D x Concentration (pmol/mlL) X total dilution of the reaction mixture (mL)

EA - -
time (minutes)

M

EA = value of activity found (umol/min or U)

Concentration (pmol/mL) of the unknown sample (X) =Y + b/a

Y = absorbance

a = angular coefficient of the line

b = linear coefficient of the line

D = enzyme dilution (if necessary dilute), if the glucose concentration obtained exceeds the
linearity limit of the curve

Total dilution of the reaction mixture = 2

The determination of enzyme concentration expressed in U/mL was calculated by equation (2):

D X Concentration (umol/mLy X total dilution of the reaction mixture (mL)
[ENZ] =

)

time (min) X supernatant vol (mL)

[ENZ] = concentration enzyme (umol/min mL or U/mL)
Concentration (wmol/mL) of the unknown sample =Yt b/a
Y = absorbance found

a = angular coefficient of the line

b = linear coefficient of the line
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D = enzyme dilution (if necessary dilute), if the glucose concentration obtained exceeds the
linearity limit of the curve
Total dilution of the reaction mixture = 2

The complete description of the B-glucosidase activity assay methodology is included in the
supplemental Data S1.

Inhibitory effect assay on reference strains of microbial sanitary indicators

The autochthonous cultures were tested for antimicrobial activity against the following standard
strains of sanitary indicators: Salmonella typhimurium ATCC 14028, Staphylococcus aureus
ATCC 25923, and Escherichia coli ATCC 25922. These assays were conducted using the agar
well diffusion technique (Fernandes et al., 2021).

Before carrying out the assays, the microbial sanitary indicator strains were activated from
samples in brain heart infusion (BHI) broth and incubated at 35 + 2 °C for 48 hours. To
standardize the inoculum density for the assays, the suspensions were adjusted according to the
0.5 McFarland standard, using an SP-2000 spectrophotometer (Spectrum, Shanghai, China) at
625 nm, thus obtaining a suspension containing approximately 1 x 10¥ CFU/mL (Clinical and
Laboratory Standards Institute, 2015).

Subsequently, aseptically inoculated on the surface by the microorganisms with a swab

previously dipped in the standardized suspension, Petri dishes with a 15 x 2.5 cm diameter

containing 50 mL Mueller-Hinton agar (Himedia, Mumbai, India). Then the 0.9 cm wells were

filled with 50 pL of the autochthonous cultures in MRS broth. As positive controls, Ciprofloxacin
2 mg/mL (Fresoflox, Barueri, Brazil) was diluted to a concentration of 5 ug with 25 pL of the
diluted solution added to the well (liquid control). A Ciprofloxacin 5 pg disk (Laborclin, Pinhais,
Brazil) was also used as the control disk. The plates were incubated at 35 + 2 °C for 24 hours. All
the procedures were repeated twice (independent duplicates). After the incubation time, for the
plates that showed satisfactory traces of the inoculum and the resulting zones of inhibition (Fig.
S1), the inhibition diameters were measured along with the well diameter. The calculation of the
inhibition zones was used, subtracting the well diameter (0.9 cm) and the values were expressed
in cm.

The inhibitory effect in percentage (%) was calculated in relation to the inhibition zones of the
liquid positive control and the tested strains, according to equation (3):

HS
Inhibitory ef fect (%) = T x 100 3

Where:

Inhibitory effect (%) = percentage of inhibition of the tested culture
HS = inhibition zone (cm) of tested samples

HC = liquid positive control inhibition zone (cm)

Statistical analysis

Deleted: Petri dishes with a 15 x 2.5 cm diameter, containing
50 mL Mueller-Hinton agar (Himedia, Mumbai, India) were
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Results were expressed as mean + standard deviation for the -glucosidase assay and as mean,
minimum and maximum values for the microbial inhibitory effect assay. All raw data obtained
(Data S2) was submitted to one-way analysis of variance (ANOVA) to identify normality, then
Fisher's least significant difference (LSD) test was performed to assess the lowest probability of
significant difference between the analyzed cultures, considering P < 0.05 using the Statistica
software version 6.0 (Statsoft Inc., Tulsa, OK, USA). Spearman’s rank-order correlation between
data of B-glucosidase and antimicrobial assays were evaluated using the R software, with the
Rstudio integrated development environment (IDE) for R.

Results

The results in Table 1 show that Lactiplantibacillus plantarum CNPCO003 had the highest
intracellular B-glucosidase activity (U or umol/min) and the highest enzyme concentration
(U/mL), which differed significantly from other cultures tested in the Fisher’s LSD test in this
present study (P < 0.034) (Data S2). Lactiplantibacillus plantarum CNPCO020 was the only
culture that was unable to produce the intracellular enzyme, differing significantly from the
others in the Fisher’s LSD test (P < 1.1 x 10'%) (Data S2). However, when performing the
extracellular assay, Lacticaseibacillus rhamnosus EM1107 was the only culture that produced -
glucosidase, differing significantly from the others (P = 0.00) (Data S2).

The results of antimicrobial activity against Salmonella typhimurium ATCC 14028,
Staphylococcus aureus ATCC 25923, and Escherichia coli ATCC 25922 are shown in Table 2.
The autochthonous lactic cultures L. plantarum CNPCO004, L. plantarum CNPC020, and L.
mucosae CNPC007 showed the highest values for S. #yphimurium inhibition. It differed
significantly (P < 0.0297) from the other L. plantarum strains (CNPC001, CNPC002, and
CNPC003), although without significant difference from L. rhamnosus EM1107 (P > 0.085)
(Data S2). Although for the inhibition against Staphylococcus aureus ATCC 25923 there was no
significant differences between the autochthonous cultures tested in the one-way ANOVA (P =
0.107) (Data S2), the L. plantarum strain CNPCO002 tended to show the most significant
inhibition zones with average values of 0.35 cm. However, only L. plantarum CNPC003 could
not inhibit E. coli ATCC 25922. On the other hand, the L. plantarum strains CNPC004 and
CNPCO020, as well as L. mucosae CNPC007 and L. rhamnosus EM1107 were able to inhibit the
three microbial indicators tested, although in different proportions.

According to the data shown in Table 2, the strains that exhibited the highest inhibition against S.
typhimurium ATCC 14028 were L. plantarum CNPC020 (20.62%), L. mucosae CNPC007
(20.87%) and CNPC004 (16.78%). However, no significant differences were observed between
these strains (P = 0.0628) based on the one-way ANOVA (Data S2). The L. plantarum strains
CNPCO001, CNPC002, and CNPC003 had no inhibitory effect on Salmonella typhimurium ATCC
14028. Despite not differing significantly from the other strains (P = 0.578) (Data S2), L.
plantarum CNPCO002 tended to show the highest percentage of inhibition against Staphylococcus
aureus ATCC 25923, with an average of 27.97%. L. plantarum cultures CNPC 020 and
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CNPCO001 showed equal percentages of inhibition (50%) against Escherichia coli ATCC 25922,
although without significant differences from the other strains (P = 0.943) (Data S2).

No correlations between the results for f-glucosidase and antimicrobial assays were observed for
the autochthonous strains of the present study in Spearman’s rank (Data S2).

Discussion

The results of the present study showed that all strains studied could produce intracellular -
glucosidase and presented enzymatic activity, apart from L. plantarum CNPC020. On the other
hand, the one that presented the best result of intracellular B-glucosidase activity was the culture
L. plantarum CNPCO003 (0.094 U) and enzymatic concentration (0.019 U/mL). A similar result
was observed by Gouripur and Kaliwal (2017), that reported the production of B-glucosidase by

(Deleted: )

L. plantarum LSP-24, but at higher concentrations (0.31 U/mL). These authors observed that the
best incubation temperature to produce this enzyme was 37 °C, the same temperature used in the
present study. According to these authors, several studies isolated extracellular B-glucosidase, but
little attention was given to the intracellular B-glucosidase produced by L plantarum.
Furthermore, Ronik et al. (2021) reported the induction of extracellular B-glucosidase production

by Lactobacillus plantarum FSO1. However, o L. plantarum,strain showed extracellular activity

in the present study. In this study, only the L. rhamnosus EM 1107 culture exhibited the ability to
produce extracellular B-glucosidase, which aligns with the findings of Liu et al. (2021). In their

CDeleted: in the present study, none L.

(Fnrmatted: Font: Not Italic
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study, the authors demonstrated that L. vhamnosus L08 had membrane-bound B-glucosidase, with
enzymatic activity between 2.06 and 2.52 U/mL at different pH levels and showed the best
conversion of polyphenols in apple pomace compared to the other strains also studied by these
authors. Gaya et al. (2020) reported that Limosilactobacillus mucosae INIA (formerly
Lactobacillus mucosae INIA) produce B-glucosidase, which enhances the bioavailability of
polyphenols through enzymatic activities. According to Modrackova et al. (2020), the difference
in B-glucosidase production can be attributed to strain specificity and growth conditions. Factors
such as pH, temperature, and carbon source can change the amount of enzyme produced
(Delgado et al., 2019). These studies reinforce the importance of probiotic cultures that can boost
the absorption of certain compounds, thus optimizing their potential health benefits. Additionally,
there has been a growing interest in finding safe and natural antimicrobial substances, and
probiotics are a promising option due to their established health advantages. When used as bio
preservatives, probiotic microorganisms can prevent the growth of harmful bacteria in food
products, extending their shelf life (Buriti et al., 2007; Rolim et al., 2015).

In this study, the strains L. plantarum CNPC 004 and CNPCO020, as well as L. mucosae
CNPCO007 and L. rhamnosus EM1107 were able to inhibit the three microbial indicators studied
in Mueller Hinton agar. In turn, together with L. mucosae CNPCO007, the L. plantarum strains
CNPC020 and CNPC004 tended to show the highest percent values of inhibition against
Salmonella, having 20.87%, 20.62%. and 16.78%, respectively. L. plantarum CNPC002 showed

the highest percentage of inhibition against S. aureus ATCC25923, with an average of 27.97%,
followed by L. plantarum strains CNPC020 and CNPC004, L. mucosae CNPCO007, L. plantarum
CNPCO001 and L. mucosae EM1107, with averages of 24.40% 23.21%, 23.21%, 20.83 and
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19.14%, respectively. Against E. coli ATCC25922, both L. plantarum strains CNPC001 and
CNPCO020 achieved 50% inhibition without significant difference from the positive control

(P>0.05). Several studies documented in the literature have reported the biozpreservative effect of (Deleted:

lactic acid bacteria,among them. For instance, Jabbari et al. (2017) conducted a study where L. CDeleted: ,
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plantarum, isolated from Kouzeh cheese, demonstrated inhibitory activity against Escherichia
coli ATCC 1228, Salmonella typhi ATCC 19430 and Staphylococcus aureus ATCC 25922. The
inhibition zones exhibited maximum diameters of 1.13 cm, 1.45 cm, and 1.38 cm, respectively,
also on Muller Hinton agar. Sadeghi et al. (2022) emphasize that the antimicrobial activity of
lactic acid bacteria is a specific property of each strain.

Some other studies demonstrate the inhibitory activity of lactic acid bacteria directly in the final
food product against the same sanitary indicator species of the present study. Several L.
plantarum strains could show inhibitory activity against S. aureus in fish-based sausages in the
study of Speranza et al. (2017), similar to that was obtained in vitro for the L. plantarum strains
of the present study. According to Xu et al. (2023), L. plantarum NO.23941 can be used as a
preservative in food processing instead of chemical preservatives simultaneously against two
pathogens E. coli and S. aureus. Buriti, Cardarelli, and Saad (2007) also demonstrated in fresh
cream cheese that Lacticaseibacillus paracasei (formerly Lactobacillus paracasei) LBC 82, in
co-culture with Streptococcus thermophilus TA-40, was able to inhibit total coliforms,
Staphylococcus spp. and Staphylococcus DNA positive. In another study, Oliveira et al. (2014)
demonstrated that the probiotic microorganisms L. acidophilus La-5 and L. paracasei 01 delayed
the growth of Staphylococcus aureus in goat cheese.

According to Arrioja-Breton et al. (2020) the cell-free supernatants of the strains L. plantarum
NRRL B-4496 and L. rhamnosus NRRL B-442 were able to inhibit £. coli (2.023 cm and 1.715
cm, respectively), Salmonella typhimurium (2.489 cm and 1.889 cm respectively) and
Staphylococcus aureus ATCC 29213 (2.053 cm and 2.183 cm, respectively) in tryptic soy agar.
L. plantarum NRRL B-4496 was tested as bio preservative in beef, showing the ability to reduce
S. typhimurium and Listeria monocytogenes in this product. Moreover, several recent studies also
report the antifungal activity of probiotic strains belonging to the species L. plantarum (Adithi et
al., 2022; Prabawati, Turner and Bansal, 2023) and L. rhamnosus (Chae et al., 2022).

Conclusions

All the autochthonous lactic acid cultures, except for L. plantarum CNPC020, showed
intracellular B-glucosidase activity. L. plantarum CNPCO003 had the highest activity. Bacteria
expressing this activity are biotechnologically important for functional foods and bioavailable
polyphenols production.

As for the inhibition of pathogens, the cultures that stood out the most were L. plantarum
CNPC004 and CNPC020, followed by L. mucosae CNPC007 and L. rhamnosus EM1107, since
all of them were able to inhibit Salmonella typhimurium ATCC 14028, Staphylococcus aureus
ATCC 25923 and Escherichia coli ATCC 25922. Beyond demonstrating inhibitory activity
against the three tested pathogens, L. rhamnosus was the only one capable of showing
extracellular B-glucosidase activity. Although Lacticaseibacillus rhamnosus EM1107 showed
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activity in all tests, none of the cultures showed maximum activity in all assays. Therefore, it is
recommended to consider each culture separately for different technological purposes
(metabolism of phenolics or bio-preservative activity) and direct them accordingly based on their

ability to perform each specific property for the product. Future studies should use these strains
as co-cultures to combine their properties and optimize food products. It is also necessary to
evaluate dosage-dependent antimicrobial activity.
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