β-Glucosidase activity and antimicrobial properties of potentially probiotic autochthonous lactic cultures

3 4 Isadora Kaline Camelo Pires de Oliveira Galdino^{1,2}, Miqueas Oliveira Morais da Silva^{1,3}, Ana

- 5 Paula Albuquerque da Silva^{1,3}, Vanderlania do Nascimento Santos^{1,3}, Raísa Laura Pereira
- Feitosa^{1,3}, Laura Cecília do Nascimento Ferreira^{1,3}, Giordanni Cabral Dantas³, Elainy Virgínia 6
- dos Santos Pereira³, Tiago Almeida de Oliveira⁴, Karina Maria Olbrich do Santos⁵, Antonio 7
- Silvio do Egito⁶, Flávia Carolina Alonso Buriti^{1,3}, Haíssa Roberta Cardarelli⁷. 8

2

9

- 10 ¹ Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraíba, Campina Grande,
- 11 Paraíba, Brazil
- 12 ² Centro de Tecnologia - Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos,
- 13 Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
- 14 ³ Núcleo de Pesquisa e Extensão em Alimentos, Universidade Estadual da Paraíba, Campina
- 15 Grande, Paraíba, Brazil
- ⁴Departamento de Estatística, Universidade Estadual da Paraíba, Campina Grande, Paraíba, 16
- 17 Brazil.
- ⁵ Embrapa Agroindústria de Alimentos, Empresa Brasileira de Pesquisa Agropecuária, Rio de 18
- 19 Janeiro, Rio de Janeiro, Brazil
- 20 ⁶ Embrapa Caprinos e Ovinos, Núcleo Regional Nordeste, Empresa Brasileira de Pesquisa
- 21 Agropecuária, Campina Grande, Paraíba, Brazil
- 22 ⁷ Centro de Tecnologia e Desenvolvimento Regional, Universidade Federal da Paraíba, João
- 23 Pessoa, Paraíba, Brazil.

24

- 25 Corresponding author
- Isadora Kaline Camelo Pires de Oliveira Galdino¹ 26
- 27 Rua Baraúnas, 351, Campina Grande, Paraíba, 58.429-500, Brasil
- 28 E-mail: isadorakaline@servidor.uepb.edu.br

29 30

ABSTRACT

- 31 Background: The demand for lactic acid bacteria products, especially probiotics, has increased.
- 32 Bacteria that increase polyphenol bioavailability and act as bio preservatives are sought after.
- This study aims to identify autochthonous lactic acid cultures from EMBRAPA that demonstrate 33
- 34 β-glucosidase activity and inhibitory effect on microbial sanitary indicators.
- Methods: Cell-free extracts were obtained by sonicating every 5 seconds for 40 minutes. The 35
- extracts were mixed with cellobiose and incubated at 50 °C. The reaction was stopped by 36
- 37 immersing the tubes in boiling water. The GOD-POD reagent was added for spectrophotometer
- 38 readings. Antimicrobial activity was tested against reference strains using the agar well diffusion
- 39 method. Lactic cultures in MRS broth were added to 0.9 cm wells and incubated. The diameter of
- the inhibition zones was measured to determine the extension of inhibition. 40

Results: Only L. rhamnosus EM1107 displayed extracellular β-glucosidase activity, while all 41 42 autochthonous strains except L. plantarum CNPC020 demonstrated intracellular activity for this 43 enzyme. L. plantarum CNPC003 had the highest values. On the other hand, L. plantarum 44 CNPC020, similarly to L. mucosae CNPC007, exhibited notable inhibition against sanitary 45 indicators. These two strains significantly differed from the other 5 autochthonous cultures regarding S. typhimurium ATCC 14028 inhibition (P<0.05). However, they did not differ from at 46 47 least one positive control in terms of inhibition against S. aureus ATCC 25923 and E. coli ATCC 48 25922 (P>0.05). Therefore, it is advisable to consider these cultures separately for different 49 technological purposes, such as phenolics metabolism or bio preservative activity. This will 50 facilitate appropriate selection based on each specific property required for the intended product

52 53 **Subjects:** Applied Microbiology. Food Technology.

Keywords: Autochthonous Lactobacillaceae, β-Glucosidase activity, Biopreservation effect.

Introduction

development.

51

54

55 56

59

60

63

67

71

57 Consumers are becoming increasingly conscious of the role of nutrition and health in their lives. 58

Consequently, they actively seek healthier food options (Barros et al., 2020). This consumer

behavior, coupled with an aging population and an increase in gut-related disorders, drives the probiotic product market. The market for probiotic products is expected to grow to approximately

61 US\$ 85.4 billion by the end of 2027 (Market Research Report, 2022).

62 Various probiotic food products are available on the market, including dairy products such as

fermented milk, cheese, and ice cream, and non-dairy options like cereals, fruit juice, vegetables,

64 and meat (Min et al., 2019). However, using probiotic microorganisms still presents numerous

65 challenges in terms of technological and therapeutic aspects (Barros et al., 2020). Moreover, the

66 high costs associated with commercial probiotics make their use impractical for small producers

and the low-income population. Therefore, it becomes crucial to study new autochthonous strains

68 with probiotic potential (Dos Santos et al., 2015; Vinderola et al., 2008).

69 Similar attention has been directed towards polyphenols, plant compounds that offer many

70 benefits, including antioxidant activity. However, the effects of polyphenols on human health are

influenced by their metabolism within the intestinal microbiota, which plays an essential role in

72 determining their bioavailability (Gaya et al., 2020).

73 Probiotics offer various benefits, including resistance to pathogens, stabilization of intestinal

74 microbiota after antibiotic use, increased mineral absorption, production of vitamins B and K;

75 immune system stimulation, mutagenicity inhibition, anti-carcinogenic effects, reduced risk of

76 colon cancer, decreased risk of cardiovascular disease, reduced serum cholesterol levels, and

77 antihypertensive effects (Freire et al., 2017; Martinez, Bedani and Saad, 2015; Ribeiro et al.,

78 2014; Verruck et al., 2019).

79 Furthermore, the incorporation of probiotics in food can influence the taste, aroma, and texture of

products such as fermented milk, yogurt, cheese, fermented plant-based beverages, fruits and

Deleted: were Deleted: different Deleted: in terms of Deleted: the

Deleted: are Deleted: looking for Deleted: is driving Deleted: market for Deleted: products Deleted: A wide variety of

92 2023). Only a few studies have examined the β-glucosidase and antimicrobial activities of native 93 lactic acid bacteria among the many probiotic studies conducted. For example, flavonoids are glycosylated polyphenols and need to be hydrolyzed to aglycones to 94 95 become bioavailable. This process is facilitated by β-glucosidases from human cells and/or microorganisms from the intestinal microbiota (Lanete, et al. 2016). 96 97 β -Glucosidases are enzymes that catalyze the hydrolysis of β -glycosidic bonds and can be 98 produced by lactic acid bacteria, such as Lactobacillaceae, and bifidobacteria. Several studies 99 demonstrate the ability of Lactobacillaceae strains, many of which possess probiotics properties, 100 to produce the β-glucosidase enzyme (Gouripura and Kaliwal, 2017; Ávila et al., 2009; Rekha 101 and Vijayalakhmi, 2011). This enzyme can be used to convert O-glycosylated phenolic 102 compounds into bioactive aglycones, contributing to either nutritional and sensory aspects of 103 fermented foods, such as better flavor and fragrance, or increasing bioavailability of antioxidant 104 metabolites of plant origin (Rokni et al., 2021; Michelmayer and Kneifel, 2014; Perez-Martin et 105 106 Probiotic strains can inhibit pathogenic and spoilage microorganisms in food matrices by 107 producing substances like organic acids, bacteriocins, and amino acid metabolites. This helps to 108 maintain the food's quality, flavor, and shelf life. Several studies report the efficiency of using 109 probiotics in inhibiting pathogenic microorganisms such as Staphylococcus spp. and Listeria 110 monocytogenes (Buriti, Cardarelli, Saad, 2007; Rolim et al., 2015; Pisano et al., 2022; Kang et 111 al., 2020). In this way, certain probiotic cultures can be used as a natural biopreservative, thus

vegetables, fermented bread dough, and fermented meat (de Souza, de Oliveira and Oliveira,

Materials & methods

91

112

113 114

115

116

117118

119 120

121

Autochthonous cultures of lactic acid bacteria

Five autochthonous strains of Lactiplantibacillus plantarum (CNPC001, CNPC002, CNPC003,

reducing the use of chemical preservatives by the food industry (Wu et al., 2022; Rolim et al.,

This study aimed to identify autochthonous lactic acid cultures from the Brazilian Agricultural

Research Corporation (EMBRAPA) collection with potential for use in food. These cultures must

122 CNPC004 and CNPC020), as well as Limosilactobacillus mucosae CNPC007 and

develop β-glucosidase activity and inhibit microbial sanitary indicators in vitro.

123 Lacticaseibacillus rhamnosus EM1107, all belonging to EMBRAPA's collection, were tested.

124 The autochthonous strains, made available in lyophilized form, were cultured in 5 mL of De Man

125 Rogosa and Sharpe broth (MRS, manufactured by Laboratories Conda S. A., Spain, distributed

by Kasvi, São José dos Pinhais, Brazil) at 35 ± 2 °C for 24 hours for the initial activation. Soon

after, a second activation was carried out by transferring $100 \mu L$ of the first activation to glass

128 tubes containing 5 ml of MRS broth, later incubated at 35 ± 2 °C for 24h. This second procedure

129 was repeated frequently for the maintenance of the cultures in a way that it was always performed

130 <u>before</u> each assay.

Deleted: The objective of this

Deleted: was

Deleted: prior to

134			
135	β-glucosidase activity assay		
136	With some modifications, the β -glucosidase activity assay was performed following the		
137	methodology outlined by Wood and Garcia-Campayo (1990). Intracellular and extracellular β-		
138	glucosidase productions were determined.		
139	Two subsequent activations of autochthonous cultures were carried out in MRS broth, prepared		
140	as a basal medium, and modified by replacing glucose with cellobiose (Êxodo Científica, São		
141	Paulo, Brazil). The cultures were centrifuged at 15 min, 3000 rpm (please report x g) (PARSEC	Deleted: ,	
142	model CT – 0603 – Tecnologia Laboratorial do Brasil, Santa Catarina), and the supernatant was	Formatted: Highlight	
143	used to determine the extracellular β -glucosidase production. The cells were harvested in sodium	Deleted:)	_
144	citrate (50 mM, pH 4.8, Dinâmica, Espírito Santo, Brazil), then sonicated (Unique, model		
145	Ultrasonic Cleaner 2500, Indaiatuba, Brazil, 50 rpm) with intervals of 5 s for a total duration of		
146	40 min for the enzyme release (intracellular production). A 1-mL aliquot of each cell-free extract		
147	was incubated in 1 mL of cellobiose solution for 30 minutes at 50 °C, stopping the reaction by		
148	immersing the tubes in boiling water for 5 min. The glucose oxidase-peroxidase reagent (GOD-		
149	POD, Biotécnica, Varginha, Brazil) was added for readings, in triplicates, in an SP-2000	Deleted: a	
150	spectrophotometer (Spectrum, Shanghai, China) at 500 nm. Enzymatic activity was expressed in		
151	U (μmol of product released per minute), according to equation 1:		
152			
152	$EA = \frac{D \times Concentration (\mu mol/mL) \times total dilution of the reaction mixture (mL)}{(1)}$		
153	$EA = \frac{1}{\text{time (minutes)}} \tag{1}$		
154			
155	EA = value of activity found (μ mol/min or U)		
156	Concentration (μ mol/mL) of the unknown sample $(X) = Y \pm b/a$		
157	Y = absorbance		
158	a = angular coefficient of the line		
159	b = linear coefficient of the line		
160	D = enzyme dilution (if necessary dilute), if the glucose concentration obtained exceeds the		
161	linearity limit of the curve		
162	Total dilution of the reaction mixture $= 2$		
163			
164	The determination of enzyme concentration expressed in U/mL was calculated by equation (2):		
165			
166	$[ENZ] = \frac{D \times Concentration (\mu \text{mol/mL}) \times total dilution of the reaction mixture (mL)}{time (min) \times supernatant vol (mL)} (2)$		
	time (min) \times supernatant vol (mL)		
167			
168	[ENZ] = concentration enzyme (µmol/min mL or U/mL)		
169	Concentration (μ mol/mL) of the unknown sample $(X) = Y \pm b/a$		
170	Y = absorbance found		
171	a = angular coefficient of the line		
172	b = linear coefficient of the line		

177 linearity limit of the curve 178 Total dilution of the reaction mixture = 2179 The complete description of the β -glucosidase activity assay methodology is included in the 180 181 supplemental Data S1. 182 183 Inhibitory effect assay on reference strains of microbial sanitary indicators 184 The autochthonous cultures were tested for antimicrobial activity against the following standard 185 strains of sanitary indicators: Salmonella typhimurium ATCC 14028, Staphylococcus aureus 186 ATCC 25923, and Escherichia coli ATCC 25922. These assays were conducted using the agar 187 well diffusion technique (Fernandes et al., 2021). Before carrying out the assays, the microbial sanitary indicator strains were activated from 188 189 samples in brain heart infusion (BHI) broth and incubated at 35 ± 2 °C for 48 hours. To 190 standardize the inoculum density for the assays, the suspensions were adjusted according to the 191 0.5 McFarland standard, using an SP-2000 spectrophotometer (Spectrum, Shanghai, China) at 192 625 nm, thus obtaining a suspension containing approximately 1 × 108 CFU/mL (Clinical and 193 Laboratory Standards Institute, 2015). 194 Subsequently, aseptically inoculated on the surface by the microorganisms with a swab 195 previously dipped in the standardized suspension. Petri dishes with a 15 × 2.5 cm diameter 196 containing 50 mL Mueller-Hinton agar (Himedia, Mumbai, India). Then the 0.9 cm wells were 197 filled with 50 µL of the autochthonous cultures in MRS broth. As positive controls, Ciprofloxacin 198 2 mg/mL (Fresoflox, Barueri, Brazil) was diluted to a concentration of 5 μg with 25 μL of the 199 diluted solution added to the well (liquid control). A Ciprofloxacin 5 µg disk (Laborclin, Pinhais, 200 Brazil) was also used as the control disk. The plates were incubated at 35 ± 2 °C for 24 hours. All 201 the procedures were repeated twice (independent duplicates). After the incubation time, for the 202 plates that showed satisfactory traces of the inoculum and the resulting zones of inhibition (Fig. 203 S1), the inhibition diameters were measured along with the well diameter. The calculation of the 204 inhibition zones was used, subtracting the well diameter (0.9 cm) and the values were expressed 205 206 The inhibitory effect in percentage (%) was calculated in relation to the inhibition zones of the 207 liquid positive control and the tested strains, according to equation (3): Inhibitory effect (%) = $\frac{HS}{HC} \times 100$

Inhibitory effect (%) = percentage of inhibition of the tested culture

HS = inhibition zone (cm) of tested samples

Statistical analysis

HC = liquid positive control inhibition zone (cm)

D = enzyme dilution (if necessary dilute), if the glucose concentration obtained exceeds the

176

208

209 210

211

212

213 214 **Deleted:** Petri dishes with a 15 × 2.5 cm diameter, containing 50 mL Mueller-Hinton agar (Himedia, Mumbai, India) were

Deleted:

(3)

- 218 Results were expressed as mean \pm standard deviation for the β -glucosidase assay and as mean,
- 219 minimum and maximum values for the microbial inhibitory effect assay. All raw data obtained
- 220 (Data S2) was submitted to one-way analysis of variance (ANOVA) to identify normality, then
- 221 Fisher's least significant difference (LSD) test was performed to assess the lowest probability of
- 222 significant difference between the analyzed cultures, considering P < 0.05 using the Statistica
- 223 software version 6.0 (Statsoft Inc., Tulsa, OK, USA). Spearman's rank-order correlation between
- software version 0.0 (Statisoft Inc., Tuisa, OK, OSA). Spearman's failk-order correlation between
- data of β -glucosidase and antimicrobial assays were evaluated using the R software, with the
- 225 Rstudio integrated development environment (IDE) for R.

227 Results

226

- 228 The results in Table 1 show that Lactiplantibacillus plantarum CNPC003 had the highest
- intracellular β-glucosidase activity (U or μmol/min) and the highest enzyme concentration
- 230 (U/mL), which differed significantly from other cultures tested in the Fisher's LSD test in this
- 231 present study ($P \le 0.034$) (Data S2). Lactiplantibacillus plantarum CNPC020 was the only
- 232 culture that was unable to produce the intracellular enzyme, differing significantly from the
- 233 others in the Fisher's LSD test $(P \le 1.1 \times 10^{10})$ (Data S2). However, when performing the
- 234 extracellular assay, Lacticaseibacillus rhamnosus EM1107 was the only culture that produced β-
- extracellular assay, Lacticaseibacillus rhamnosus EMT10/ was the only culture that produced p
- 235 glucosidase, differing significantly from the others (P = 0.00) (Data S2).
- 236 The results of antimicrobial activity against Salmonella typhimurium ATCC 14028,
- 237 Staphylococcus aureus ATCC 25923, and Escherichia coli ATCC 25922 are shown in Table 2.
- The autochthonous lactic cultures L. plantarum CNPC004, L. plantarum CNPC020, and L.
- 239 mucosae CNPC007 showed the highest values for S. typhimurium inhibition. It differed
- significantly ($P \le 0.0297$) from the other *L. plantarum* strains (CNPC001, CNPC002, and
- 241 CNPC003), although without significant difference from L. rhamnosus EM1107 ($P \ge 0.085$)
- 242 (Data S2). Although for the inhibition against Staphylococcus aureus ATCC 25923 there was no
- 243 significant differences between the autochthonous cultures tested in the one-way ANOVA (P =
- 244 0.107) (Data S2), the L. plantarum strain CNPC002 tended to show the most significant
- 245 inhibition zones with average values of 0.35 cm. However, only *L. plantarum* CNPC003 could
- 246 not inhibit E. coli ATCC 25922. On the other hand, the L. plantarum strains CNPC004 and
- 247 CNPC020, as well as L. mucosae CNPC007 and L. rhamnosus EM1107 were able to inhibit the
- 248 three microbial indicators tested, although in different proportions.
- 249 According to the data shown in Table 2, the strains that exhibited the highest inhibition against S.
- 250 typhimurium ATCC 14028 were L. plantarum CNPC020 (20.62%), L. mucosae CNPC007
- 251 (20.87%) and CNPC004 (16.78%). However, no significant differences were observed between
- 252 these strains (P = 0.0628) based on the one-way ANOVA (Data S2). The L. plantarum strains
- 253 CNPC001, CNPC002, and CNPC003 had no inhibitory effect on Salmonella typhimurium ATCC
- 14028. Despite not differing significantly from the other strains (P = 0.578) (Data S2), L.
- 255 plantarum CNPC002 tended to show the highest percentage of inhibition against Staphylococcus
- 256 aureus ATCC 25923, with an average of 27.97%. L. plantarum cultures CNPC 020 and

CNPC001 showed equal percentages of inhibition (50%) against *Escherichia coli* ATCC 25922, although without significant differences from the other strains (P = 0.943) (Data S2).

No correlations between the results for β -glucosidase and antimicrobial assays were observed for the autochthonous strains of the present study in Spearman's rank (Data S2).

Discussion

257

258

259

260

261 262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

The results of the present study showed that all strains studied could produce intracellular βglucosidase and presented enzymatic activity, apart from L. plantarum CNPC020. On the other hand, the one that presented the best result of intracellular β -glucosidase activity was the culture L. plantarum CNPC003 (0.094 U) and enzymatic concentration (0.019 U/mL). A similar result was observed by Gouripur and Kaliwal (2017), that reported the production of β-glucosidase by L. plantarum LSP-24, but at higher concentrations (0.31 U/mL). These authors observed that the best incubation temperature to produce this enzyme was 37 °C, the same temperature used in the present study. According to these authors, several studies isolated extracellular β-glucosidase, but little attention was given to the intracellular β -glucosidase produced by *L plantarum*. Furthermore, Ronik et al. (2021) reported the induction of extracellular β-glucosidase production by Lactobacillus plantarum FSO1. However, no L. plantarum strain showed extracellular activity in the present study. In this study, only the L. rhamnosus EM 1107 culture exhibited the ability to produce extracellular β-glucosidase, which aligns with the findings of Liu et al. (2021). In their study, the authors demonstrated that L. rhamnosus L08 had membrane-bound β-glucosidase, with enzymatic activity between 2.06 and 2.52 U/mL at different pH levels and showed the best conversion of polyphenols in apple pomace compared to the other strains also studied by these authors. Gaya et al. (2020) reported that Limosilactobacillus mucosae INIA (formerly Lactobacillus mucosae INIA) produce β-glucosidase, which enhances the bioavailability of polyphenols through enzymatic activities. According to Modrackova et al. (2020), the difference in β-glucosidase production can be attributed to strain specificity and growth conditions. Factors such as pH, temperature, and carbon source can change the amount of enzyme produced (Delgado et al., 2019). These studies reinforce the importance of probiotic cultures that can boost the absorption of certain compounds, thus optimizing their potential health benefits. Additionally, there has been a growing interest in finding safe and natural antimicrobial substances, and probiotics are a promising option due to their established health advantages. When used as bio preservatives, probiotic microorganisms can prevent the growth of harmful bacteria in food products, extending their shelf life (Buriti et al., 2007; Rolim et al., 2015). In this study, the strains L. plantarum CNPC 004 and CNPC020, as well as L. mucosae CNPC007 and L. rhamnosus EM1107 were able to inhibit the three microbial indicators studied in Mueller Hinton agar. In turn, together with L. mucosae CNPC007, the L. plantarum strains CNPC020 and CNPC004 tended to show the highest percent values of inhibition against Salmonella, having 20.87%, 20.62%, and 16.78%, respectively. L. plantarum CNPC002 showed

the highest percentage of inhibition against S. aureus ATCC25923, with an average of 27.97%,

followed by L. plantarum strains CNPC020 and CNPC004, L. mucosae CNPC007, L. plantarum

CNPC001 and L. mucosae EM1107, with averages of 24.40% 23.21%, 23.21%, 20.83 and

Deleted:)

Deleted: in the present study, none L.

Formatted: Font: Not Italic

Deleted: reported by

Deleted: %

Deleted: plntarum

303 19.14%, respectively. Against E. coli ATCC25922, both L. plantarum strains CNPC001 and 304 CNPC020 achieved 50% inhibition without significant difference from the positive control 305 (P>0.05). Several studies documented in the literature have reported the bio_preservative effect of 306 lactic acid bacteria among them. For instance, Jabbari et al. (2017) conducted a study where L. 307 plantarum, isolated from Kouzeh cheese, demonstrated inhibitory activity against Escherichia 308 coli ATCC 1228, Salmonella typhi ATCC 19430 and Staphylococcus aureus ATCC 25922. The 309 inhibition zones exhibited maximum diameters of 1.13 cm, 1.45 cm, and 1.38 cm, respectively, 310 also on Muller Hinton agar. Sadeghi et al. (2022) emphasize that the antimicrobial activity of 311 lactic acid bacteria is a specific property of each strain. 312 Some other studies demonstrate the inhibitory activity of lactic acid bacteria directly in the final 313 food product against the same sanitary indicator species of the present study. Several L. 314 plantarum strains could show inhibitory activity against S. aureus in fish-based sausages in the 315 study of Speranza et al. (2017), similar to that was obtained in vitro for the L. plantarum strains 316 of the present study. According to Xu et al. (2023), L. plantarum NO.23941 can be used as a 317 preservative in food processing instead of chemical preservatives simultaneously against two 318 pathogens E. coli and S. aureus. Buriti, Cardarelli, and Saad (2007) also demonstrated in fresh 319 cream cheese that Lacticaseibacillus paracasei (formerly Lactobacillus paracasei) LBC 82, in 320 co-culture with Streptococcus thermophilus TA-40, was able to inhibit total coliforms, 321 Staphylococcus spp. and Staphylococcus DNA positive. In another study, Oliveira et al. (2014) 322 demonstrated that the probiotic microorganisms L. acidophilus La-5 and L. paracasei 01 delayed 323 the growth of Staphylococcus aureus in goat cheese. 324 According to Arrioja-Bretón et al. (2020) the cell-free supernatants of the strains L. plantarum 325 NRRL B-4496 and L. rhamnosus NRRL B-442 were able to inhibit E. coli (2.023 cm and 1.715 326 cm, respectively), Salmonella typhimurium (2.489 cm and 1.889 cm respectively) and 327 Staphylococcus aureus ATCC 29213 (2.053 cm and 2.183 cm, respectively) in tryptic soy agar. 328 L. plantarum NRRL B-4496 was tested as bio preservative in beef, showing the ability to reduce 329 S. typhimurium and Listeria monocytogenes in this product. Moreover, several recent studies also 330 report the antifungal activity of probiotic strains belonging to the species L. plantarum (Adithi et 331

Conclusions

332 333

343

334 All the autochthonous lactic acid cultures, except for L. plantarum CNPC020, showed 335 intracellular β-glucosidase activity. L. plantarum CNPC003 had the highest activity. Bacteria 336 expressing this activity are biotechnologically important for functional foods and bioavailable 337 polyphenols production.

al., 2022; Prabawati, Turner and Bansal, 2023) and L. rhamnosus (Chae et al., 2022).

338 As for the inhibition of pathogens, the cultures that stood out the most were L. plantarum 339 CNPC004 and CNPC020, followed by L. mucosae CNPC007 and L. rhamnosus EM1107, since 340 all of them were able to inhibit Salmonella typhimurium ATCC 14028, Staphylococcus aureus 341 ATCC 25923 and Escherichia coli ATCC 25922. Beyond demonstrating inhibitory activity 342 against the three tested pathogens, L. rhamnosus was the only one capable of showing

extracellular β-glucosidase activity. Although Lacticaseibacillus rhamnosus EM1107 showed

Deleted:

Deleted:

activity in all tests, none of the cultures showed maximum activity in all assays. Therefore, it is recommended to consider each culture separately for different technological purposes (metabolism of phenolics or bio preservative activity) and direct them accordingly based on their Deleted: ability to perform each specific property for the product. Future studies should use these strains as co-cultures to combine their properties and optimize food products. It is also necessary to evaluate dosage-dependent antimicrobial activity. Acknowledgments The authors thank the Brazilian Agricultural Research Corporation (EMBRAPA), which provided autochthonous strains for this study, Center of Research and Extension on Food (NUPEA/UEPB) who helped with the microbiological analyses, and the Laboratories of Phytochemistry and Basic Biochemistry (CCBS/UEPB) which helped with the β-glucosidase analysis. References Adithi, G., Somashekaraiah, R., Divyashree, S., Shruthi, B., & Sreenivasa, M. Y. (2022). Assessment of probiotic and antifungal activity of Lactiplantibacillus plantarum MYSAGT3 isolated from locally available herbal juice against mycotoxigenic Aspergillus species. Food Bioscience, 50, 102118. Arrioja-Bretón, D., Mani-López, E., Palou, E., & López-Malo, A. (2020). Antimicrobial activity and storage stability of cell-free supernatants from lactic acid bacteria and their applications with fresh beef. Food Control, 115, 107286. Formatted: Spanish Ávila, M., Hidalgo, M., Sánchez-Moreno, C., Pelaez, C., Requena, T., & de Pascual-Teresa, S. (2009). Bioconversion of anthocyanin glycosides by Bifidobacteria and Lactobacillus. Food Research International, 42(10), 1453-1461. Barros, C. P., Guimaraes, J. T., Esmerino, E. A., Duarte, M. C. K., Silva, M. C., Silva, R., ... & Cruz, A. G. (2020). Paraprobiotics and postbiotics: concepts and potential applications in dairy products. Current Opinion in Food Science, 32, 1-8. Buriti, F. C., Cardarelli, R., & Saad, S. M. (2007). Biopreservation by Lactobacillus paracasei in coculture with Streptococcus thermophilus in potentially probiotic and synbiotic fresh cream cheeses. Journal of Food Protection, 70(1), 228-235. Clinical and Laboratory Standards Institute (2015) Methods for Dilution of Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—10th Edition.

CLSI Document M07-A10, Clinical and Laboratory Standards Institute, Wayne, PA.

346

347

348

349

350

351

352 353

354

355

356

357

358

359

360 361 362

363

364

365

366 367

368

369

370 371

372

373

374375

376

377

378 379

380

381

382 383

384

385

Chae, S. A., Ramakrishnan, S. R., Kim, T., Kim, S. R., Bang, W. Y., Jeong, C. R., ... & Kim, S. J. (2022). Anti-inflammatory and anti-pathogenic potential of Lacticaseibacillus rhamnosus IDCC 3201 isolated from feces of breast-fed infants. *Microbial Pathogenesis*, 173, 105857.

Delgado, S., Guadamuro, L., Flórez, A. B., Vázquez, L., & Mayo, B. (2019). Fermentation of commercial soy beverages with lactobacilli and bifidobacteria strains featuring high β-glucosidase activity. *Innovative Food Science & Emerging Technologies*, 51, 148-155.

de Souza, E. L., de Oliveira, K. Á. R., & de Oliveira, M. E. G. (2023). Influence of lactic acid bectoria metabolitae on physical and shaminal feed proporties. *Current Oninion in Food Science*

Formatted: Spanish

de Souza, E. L., de Oliveira, K. A. R., & de Oliveira, M. E. G. (2023). Influence of lactic acid bacteria metabolites on physical and chemical food properties. *Current Opinion in Food Science*, 100981.

dos Santos, K. M. O., Vieira, A. D. S., Buriti, F. C. A., do Nascimento, J. C. F., de Melo, M.
 E. S., Bruno, L. M., & Todorov, S. D. (2015). Artisanal Coalho cheeses as source of beneficial
 Lactobacillus plantarum and Lactobacillus rhamnosus strains. Dairy Science & Technology,
 95(2), 209-230.

Fernandes, K. F. D., de Oliveira, K. Á. R., & de Souza, E. L. (2021). Application of
 Potentially Probiotic Fruit-Derived Lactic Acid Bacteria Loaded into Sodium Alginate Coatings
 to Control Anthracnose Development in Guava and Mango During Storage. *Probiotics and Antimicrobial Proteins*, 1-15.

Freire, F. C., Adorno, M. A. T., Sakamoto, I. K., Antoniassi, R., Chaves, A. C. S. D., Dos
Santos, K. M. O., & Sivieri, K. (2017). Impact of multi-functional fermented goat milk
beverage on gut microbiota in a dynamic colon model. *Food Research International*, 99, 315-

413 327.

Gaya, P., Peirotén, Á., & Landete, J. M. (2020). Expression of a β-glucosidase in bacteria with biotechnological interest confers them the ability to deglycosylate lignans and flavonoids in vegetal foods. *Applied Microbiology and Biotechnology*, 104(11), 4903-4913.

419 Gouripur, G., & Kaliwal, B. (2017). Screening and optimization of β-glucosidase producing
 420 newly isolated *Lactobacillus plantarum* strain LSP-24 from colostrum milk. *Biocatalysis and* 421 *Agricultural Biotechnology*, 11, 89-96.
 422

Jabbari, V., Khiabani, M. S., Mokarram, R. R., Hassanzadeh, A. M., Ahmadi, E.,
 Gharenaghadeh, S., ... & Kafil, H. S. (2017). Lactobacillus plantarum as a probiotic potential
 from kouzeh cheese (traditional Iranian cheese) and its antimicrobial activity. *Probiotics and* Antimicrobial Proteins, 9(2), 189-193.

- 428 Kang, S. J., Jun, J. S., Moon, J. A., & Hong, K. W. (2020). Surface display of p75, a
- 429 Lactobacillus rhamnosus GG derived protein, on Bacillus subtilis spores and its antibacterial
- 430 activity against *Listeria monocytogenes*. *AMB Express*, 10(1), 1-9.
- 431
- 432 Landete, J. M., Arqués, J., Medina, M., Gaya, P., de Las Rivas, B., & Muñoz, R. (2016).
- 433 Bioactivation of phytoestrogens: intestinal bacteria and health. Critical reviews in food science
- 434 and nutrition, 56(11), 1826-1843.
- 435
- 436 Liu, L., Zhang, C., Zhang, H., Qu, G., Li, C., & Liu, L. (2021). Biotransformation of
- 437 polyphenols in apple pomace fermented by β-glucosidase-producing *Lactobacillus rhamnosus*
- 438 L08. Foods, 10(6), 1343.
- 439
- 440 Martinez, R. C. R., Bedani, R., & Saad, S. M. I. (2015). Scientific evidence for health effects
- 441 attributed to the consumption of probiotics and prebiotics: an update for current perspectives and
- 442 future challenges. *British Journal of Nutrition*, 114(12), 1993-2015.
- 443
- 444 Market Research Report. Probiotics Market Size, Share and Insights. Disponível em:
- 445 https://www.marketsandmarkets.com/Market-Reports/probiotic-market-advanced-technologies-
- and-global-market-69.html. Acesso em: 5 de janeiro 2023.
- 447
- 448 Michlmayr, H., & Kneifel, W. (2014). β-Glucosidase activities of lactic acid bacteria:
- 449 mechanisms, impact on fermented food and human health. FEMS microbiology letters, 352(1), 1-
- 450 10.
- 451
- 452 Min, M., Bunt, C. R., Mason, S. L., & Hussain, M. A. (2019). Non-dairy probiotic food
- 453 products: An emerging group of functional foods. Critical reviews in food science and nutrition,
- 454 59(16), 2626-2641.
- 455
- 456 Modrackova, N., Vlkova, E., Tejnecky, V., Schwab, C., & Neuzil-Bunesova, V. (2020).
- 457 Bifidobacterium β-glucosidase activity and fermentation of dietary plant glucosides is species
- 458 and strain specific. Microorganisms, 8(6), 839.
- 459
- 460 Oliveira, M. E. G., Garcia, E. F., de Oliveira, C. E. V., Gomes, A. M. P., Pintado, M. M. E.,
- 461 Madureira, A. R. M. F., ... & de Souza, E. L. (2014). Addition of probiotic bacteria in a semi-
- 462 hard goat cheese (coalho): Survival to simulated gastrointestinal conditions and inhibitory effect
- against pathogenic bacteria. Food Research International, 64, 241-247.
- 464
- 465 Prabawati, E. K., Turner, M. S., & Bansal, N. (2023). Lactiplantibacillus plantarum as an
- 466 adjunct culture exhibits antifungal activity in shredded Cheddar cheese. Food Control, 144,
- 467 109330.
- 468

- 469 Pérez-Martín, F., Seseña, S., Izquierdo, P. M., Martín, R., & Palop, M. L. (2012). Screening
- 470 for glycosidase activities of lactic acid bacteria as a biotechnological tool in oenology. World
- 471 *Journal of Microbiology and Biotechnology*, 28(4), 1423-1432.

472

- 473 Pisano, M. B., Fadda, M. E., Viale, S., Deplano, M., Mereu, F., Bla zi c, M., & Cosentino, S.
- 474 (2022). Inhibitory Effect of Lactiplantibacillus plantarum and Lactococcus lactis Autochtonous
- 475 Strains against *Listeria monocytogenes* in a Laboratory Cheese Model. *Foods*, 11(5), 715.

476

- 477 Rekha, C. R., & Vijayalakshmi, G. (2011). Isoflavone phytoestrogens in soymilk fermented
- 478 with β-glucosidase producing probiotic lactic acid bacteria. *International Journal of Food*
- 479 Sciences and Nutrition, 62(2), 111-120.

480

- 481 Ribeiro, M. C. E., Chaves, K. S., Gebara, C., Infante, F. N., Grosso, C. R., & Gigante, M. L.
- 482 (2014). Effect of microencapsulation of Lactobacillus acidophilus LA-5 on physicochemical,
- 483 sensory and microbiological characteristics of stirred probiotic yoghurt. Food Research
- 484 International, 66, 424-431.

485

- 486 Rokni, Y., Abouloifa, H., Bellaouchi, R., Hasnaoui, I., Gaamouche, S., Lamzira, Z., ... &
- 487 **Asehraou**, A. (2021). Characterization of β-glucosidase of *Lactobacillus plantarum* FSO1 and
- 488 Candida pelliculosa L18 isolated from traditional fermented green olive. Journal of Genetic
- 489 Engineering and Biotechnology, 19(1), 1-14.

490

- 491 Rolim, F. R. L., dos Santos, K. M. O., de Barcelos, S. C., do Egito, A. S., Ribeiro, T. S., da
- 492 Conceicao, M. L., ... & do Egypto, R. D. C. R. (2015). Survival of Lactobacillus rhamnosus
- 493 EM1107 in simulated gastrointestinal conditions and its inhibitory effect against pathogenic
- bacteria in semi-hard goat cheese. *LWT-Food science and Technology*, 63(2), 807-813.

495

- 496 Sadeghi, M., Panahi, B., Mazlumi, A., Hejazi, M. A., Komi, D. E. A., & Nami, Y. (2022).
- 497 Screening of potential probiotic lactic acid bacteria with antimicrobial properties and selection of
- 498 superior bacteria for application as biocontrol using machine learning models. LWT, 162,
- 499 113471.

500

- 501 Speranza, B., Racioppo, A., Beneduce, L., Bevilacqua, A., Sinigaglia, M., & Corbo, M. R.
- 502 (2017). Autochthonous lactic acid bacteria with probiotic aptitudes as starter cultures for fish-
- 503 based products. Food microbiology, 65, 244-253.

504

- 505 Verruck, S., Dantas, A., & Prudencio, E. S. (2019). Functionality of the components from
- 506 goat's milk, recent advances for functional dairy products development and its implications on
- 507 human health. *Journal of functional foods*, 52, 243-257.

508

509 Vinderola, G., Capellini, B., Villarreal, F., Suárez, V., Quiberoni, A., & Reinheimer, J. 510 (2008). Usefulness of a set of simple in vitro tests for the screening and identification of probiotic 511 candidate strains for dairy use. LWT-Food Science and Technology, 41(9), 1678-1688. 512 513 Wood, T. M., & Garcia-Campayo, V. (1990). Enzymology of cellulose degradation. 514 Biodegradation, 1(2), 147-161. 515 516 Wu, M., Dong, Q., Ma, Y., Yang, S., Aslam, M. Z., Liu, Y., & Li, Z. (2022). Potential 517 antimicrobial activities of probiotics and their derivatives against Listeria monocytogenes in food 518 field: A review. Food Research International, 111733. 519 520 Xu, Z., Wang, J., Zheng, W., Zhao, S., Yang, Q., Yu, D., & Zhu, Y. (2023). Antibacterial 521 activity and mechanism of a novel bacteriocin produced by Lactiplantibacillus plantarum against 522 Escherichia coli and Staphylococcus aureus. International Journal of Food Science & 523 Technology, 58(1), 181-193.