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ABSTRACT
Fibrosis can occur in all major organs with relentless progress, ultimately leading to
organ failure and potentially death. Unfortunately, current clinical treatments cannot
prevent or reverse tissue fibrosis. Thus, new and effective antifibrotic therapeutics are
urgently needed. In recent years, a growing body of research shows thatmacrophages are
involved in fibrosis. Macrophages are highly heterogeneous, polarizing into different
phenotypes. Some studies have found that regulating macrophage polarization can
inhibit the development of inflammation and cancer. However, the exact mechanism
of macrophage polarization in different tissue fibrosis has not been fully elucidated.
This review will discuss the major signaling pathways relevant to macrophage-driven
fibrosis and profibrotic macrophage polarization, the role of macrophage polarization
in fibrosis of lung, kidney, liver, skin, and heart, potential therapeutics targets, and
investigational drugs currently in development, and hopefully, provide a useful review
for the future treatment of fibrosis.

Subjects Biochemistry, Cell Biology, Immunology
Keywords Macrophage polarization, Type 2 macrophage, Myofibroblasts, Lung fibrosis, Kidney
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INTRODUCTION
Macrophages are a class of pluripotent and highly plastic immune cells that play a key
role in host defense (Hirayama, Iida & Nakase, 2017), tissue repair and regeneration (Yu et
al., 2022), as well as fibrosis (Shapouri-Moghaddam et al., 2018; Wynn & Vannella, 2016).
Macrophages can be bone marrow derived (i.e., Bone marrow derived macrophages
or BMDM), or tissue resident (i.e., tissue resident macrophages or TRM) (Davies et
al., 2013; Ginhoux & Jung, 2014; Locati, Curtale & Mantovani, 2020). In different tissue
environments, they can be polarized into two primary macrophage subpopulations: (1)
classically activated or M1 macrophages that are activated by LPS or Th1-type cytokines
such as IFN-γ . M1macrophages release pro-inflammatory cytokines like TNF-α, IL-6, and
IL-1β to induce an inflammatory response (Patel et al., 2017). Moreover, M1 macrophages
highly express CD80/CD86 and nitric oxide synthase (iNOS); (2) the alternatively activated
orM2macrophages that can be activated by Th2-type cytokines such as IL-4 and IL-13, and
highly express CD206/CD163. M2 macrophages promote tissue repair, regeneration, and
fibrosis by secreting multiple cytokines, in which TGF-β and platelet-derived growth factor
(PDGF) promote fibroblasts activation and myofibroblasts formation (Wynn & Vannella,
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2016). M2 macrophages can be further polarized into M2a, M2b, and M2c macrophages.
M2a and M2c macrophages secrete TGF-β and other pro-fibrotic factors to induce tissue
fibrosis (Perdiguero & Geissmann, 2016). M2b macrophages, also known as regulatory
macrophages, maintain a balance between pro-inflammatory and anti-inflammatory
functions. Moreover, single-cell RNA sequencing(scRNA-seq) has identified several highly
specific pro-fibrogenic macrophage subpopulations such as TREM2CD206, TREM2CD9
and highly expressing PLA2G7 macrophage (Ramachandran et al., 2019; Satoh et al., 2017;
Wang et al., 2022b; Wendisch et al., 2021).

Fibrosis is a pathological process in that tissue repair becomes dysregulated following
many types of tissue injury (Pakshir & Hinz, 2018). It is characterized by abnormal increase
and excessive deposition of extracellular matrix (ECM) in tissues (Henderson, Rieder &
Wynn, 2020). Fibrosis can occur in multiple organs such as the lung, kidney, liver, heart,
skin, and other organs. The mild fibrosis has few abnormalities in the clinical examination,
no clinical symptoms, and no significant impact on daily life; while the severe fibrosis
shows tissue structure damage and organ sclerosis, eventually leading to organ failure.
At present, there are few effective treatments, which place a heavy burden on humans,
and about 45–50% of deaths can be attributed to fibrosis in developed countries alone
(Friedman et al., 2013). Myofibroblasts undergo excessive proliferation and activation
to produce ECM and collagen, which play an important role in the process of fibrosis.
It is highly heterogeneous, because mesenchymal progenitor cells/stem cells (MSC),
adipocyte progenitor cells (AP), epithelial cells, endothelial cells, pericyte, podocytes,
and monocyte macrophages can transform into myofibroblasts (Bhattacharyya, Wei &
Varga, 2011; Campanholle et al., 2013; Micallef et al., 2012). Macrophage-myofibroblast
transition (MMT), a term coined byNikolic-Paterson, Wang & Lan (2014), is the transition
of infiltrating bone marrow-derived monocytes into myofibroblasts in the injured kidney,
as the cells in the process of transition can express markers of both lineages. Subsequent
studies have shown that MMT is involved in progressive fibrotic disease and MMT
cells were mainly of M2 phenotype (Meng et al., 2016; Yang et al., 2021). However, the
underlying mechanisms of MMT are not well defined. It has been suggested that TGF-
β/Smad and mineralocorticoid receptor (MR) activation may stimulate MMT (Wang et
al., 2016). Epithelial-to-mesenchymal transition (EMT) is a process in which epithelial
cells lose their epithelial features and acquire mesenchymal characteristics (Stone et al.,
2016). Sustained EMT is a key mechanism underlying the fibrotic pathology of multiple
organs including the skin (Chapman, 2011;Kaimori et al., 2007; Postlethwaite, Shigemitsu &
Kanangat, 2004; Zeisberg & Kalluri, 2008). Endothelial-mesenchymal transition (EndoMT)
is a complex biological process in which endothelial cells lose their endothelial markers,
adhesion, and apical-basal polarity and transit into mesenchymal cell type under certain
conditions, leading to organ fibrosis and dysfunction (Dejana, Hirschi & Simons, 2017;
Zeisberg et al., 2008). TGF-β and connective tissue growth fact (CTGF), which activate the
Wnt/β-Catenin pathway, can promote pericyte and podocyte transition to myofibroblasts
(Dai et al., 2016; Lin et al., 2008; Ren et al., 2013). Most importantly, macrophages provide
the microenvironment for the proliferation and activation of myofibroblasts.
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Previous studies have mostly focused on the mechanism of macrophages involved in
inflammation and tissue damage repair. In recent years, more studies have shown that
macrophage polarization plays a role in fibrosis of the lung, kidney, liver, skin, heart,
and other organs (Vannella & Wynn, 2017; Wynn & Barron, 2010). After tissue damage,
the M1 phenotype releases proinflammatory cytokines to involve in the initiation phase
of inflammation. In contrast, the M2 phenotype is involved in the repair phase. A shift
from M1 to M2 was described in the wound healing processes from inflammation to
restoration (Duffield et al., 2005; Gibbons et al., 2011; Lucas et al., 2010). If the initial insult
leads to sustained inflammatory or tissue repair imbalance, both can promote fibrosis.
However, macrophages also produce matrix metalloproteinases (MMP) involved in the
regression of fibrosis. Therefore, exploring the exact mechanism of macrophage phenotype
transformation in fibrosis is helpful to provide a new therapeutic strategy.

The purpose of this review is (1) to summarize the major signaling pathways relevant
to macrophage-driven fibrosis and profibrotic macrophages polarization; (2) to describe
the role of macrophages in fibrosis of lung, kidney, liver, skin, and heart; (3) to discuss
potential therapeutics targets and investigational drugs currently in development. It may
be helpful to study macrophage function, fibrosis pathogenesis, and anti-fibrosis drug.

MAJOR FIBROSIS-RELATED SIGNALING PATHWAYS
TGF-β/Smad pathway
A TGF-β/Smad signaling pathway is one of the main pathways involved in fibrosis. TGF-β
superfamily mainly includes TGF-β1, TGF-β2, and TGF-β3, which are produced by
macrophages, fibroblasts, alveolar epithelial cells, activated T cells, or B cells. Macrophage-
derived TGF-β1 is typically profibrotic, and studies have identified various macrophage
subsets as key producers of TGF-β1 (Wynn & Barron, 2010;Zhu et al., 2017). TGF-β acts on
type II receptors first and then binds to type I receptors to form a receptor complex, which
leads to the phosphorylation of Smad2 and Smad3. It can activate transcription factors,
and promotes collagen synthesis, ECM deposition, and cell transdifferentiation involved in
tissue fibrosis (Fig. 1). Smad7 negatively regulates the TGF-β/Smad signaling pathway
(Hayashi et al., 1997; Heldin, Miyazono & Ten Dijke, 1997). TGF-β/Smad signaling
pathway can promote MMT and EMT (Wang et al., 2016; Zhu et al., 2017). TGF-β/Smad
signaling pathway may be a potential anti-fibrosis therapeutic target. Fisetin (3,3′,4′,7-
tetrahydroxyflavone), a dietary flavonoid, can alleviate renal fibrosis by inhibiting the
phosphorylation of Smad3, and accumulation of profibrotic M2 macrophages (Ju, Kim
& Han, 2023). LY2109761, a small molecule-selective TGF-β receptor type I/II kinase
inhibitor, can block M2 macrophages induce EMT by suppressing TGF-β-induced Smad2
phosphorylation signaling pathway in in-vitro experiments (Kim et al., 2022). Decreasing
the number of TGF-β1-producing macrophages, rather than comprehensively attenuating
TGF-β1 may provide a more rational approach to ameliorate fibrosis. Mannosylated
albumin nanoparticles loaded with TGF-β1-siRNA specifically bind to the mannosylated
receptor CD206 on the surface of M2 macrophages which silences the expression of
TGF-β1 and significantly alleviate bleomycin-induced pulmonary fibrosis in mice (Singh
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Figure 1 The major fibrosis-related signaling patnways. Some signaling pathways are associated with
tissue fibrosis, such as TGF-β/Smad, Wnt/β-Catenin, JAK/STAT3, and Notch which regulate target gene
transcription, ECM production and transformation of different cells into myofibroblasts to lead to tissue
fibrosis.

Full-size DOI: 10.7717/peerj.16092/fig-1

et al., 2022). Baccatin III (BAC), the precursor of the semisynthesis of paclitaxel, suppresses
TGF-β1 production by macrophages (Table 1) (Acharya et al., 2012; Nie et al., 2019).

Wnt/β-Catenin pathway
Wnt, a cell signaling molecule, can stimulate cell proliferation, differentiation, and
migration. The Wnt/β-Catenin pathway is the classic Wnt signaling pathway. Wnt binds
to its receptor Frizzled (an atypical G protein with seven trans-membrane domains)
and co-receptor low-density lipoprotein receptor-associated protein 6 (LRP6) or LRP5,
to activate Dishevelled (Dvl) leading to the phosphorylation of LRP5/6 and inhibiting
the activity of β-catenin-degrading complexes formed by serine/threonine protein kinase
(GSK3) and other proteins, stabilizing free β-Catenin in the cytoplasm (MacDonald, Tamai
& He, 2009). β-Catenin accumulated in the cytoplasm enters the nucleus and binds to T
cell factor (TCF)/lymphatic enhancer binding factor (LEF) to activate the transcription of
target genes, such as c-Myc, Axin2, MMP7, Tcf, fibronectin and so on (Fig. 1) (MacDonald,
Tamai & He, 2009). The expression products of these target genes (Tcf21, Sox2, and Snai2)
can induce EMT to promote cardiac fibrosis (Acharya et al., 2012; Tao et al., 2016). The
Wnt/β-catenin signaling pathway also regulates the differentiation of alveolar macrophages
and promotes the occurrence of pulmonary fibrosis (Sennello et al., 2017).

JAK/STAT3 pathway
Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signal pathways
were first identified in mammals, which regulate cell growth, proliferation, differentiation,
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Table 1 The drugs andmechanisms in blocking macrophage-driven fibrosis.

Drugs Research objects Mechanisms Organs Reference

RP-832c Mice M2 ↓; TGF-β1 Lung Ghebremedhin et al. (2023)
Microcystin-LR Rats, cells M2 ↓; TGF-β1 / Smad,

EMT, FMT
Lung Wang et al. (2020)

Tacrolimus Mice M2 ↓; JAK2/STAT3 Lung Liu et al. (2022)
Baccatin III(BAC) Mice, cells TGF-β1↓ Lung Nie et al. (2019)
Sart1 siRNA-loaded lipo-
somes

Mice, cells M2 ↓; STAT6 / PPAR-γ Lung Pan et al. (2021)

IL-24 knockout The serum of IPF, mice M2 ↓; SOCS, STAT6 /
PPAR-γ

Lung Rao et al. (2021)

Nanoparticles loaded with
TGF-β1-siRNA

Mice, cells TGF-β1↓ Lung Singh et al. (2022)

Ruxolitinib Mice, cells JAK Lung Bellamri et al. (2023)
Capsaicin Mice M1 ↓; Notch Liver Sheng et al. (2020)
Annexin A1 Mice Trem2CD9 macrophage to

Kupffer cells
Liver Gadipudi et al. (2022)

Emodin Rats, cells M1 ↓,M2 ↓; TGF-β, Notch Skin Xia et al. (2021)
CHRFAM7A Mice M2 ↓; Notch Skin Li et al. (2020)
Iguratimod Mice, cells TGF-β1 / Smad Skin Xie et al. (2022)
fisetin Mice M2 ↓; Smad3 Kidney Ju, Kim & Han (2023)
Cucurbitacin-B Mice M2 ↓; JAK2/STAT3 ↓ Liver Sallam, Esmat & Abdel-Naim (2018)

and apoptosis (Hou et al., 2002). Many studies have confirmed that JAK/STAT3 signaling
plays an important role in the pathogenesis of fibrosis, and the up-regulation of STAT3
expression has been detected in fibrotic tissues (Ogata et al., 2006; Pechkovsky et al., 2012;
Pedroza et al., 2016). The phosphorylation of STAT3 can regulate the transcription of
IL-4 and IL-10, and promote the polarization of M2 macrophages (Fig. 1) (Sun et al.,
2021). STAT3 promotes the fibrosis process through the following ways: (1) inducing
the production of ECM; (2) regulating the transcription of MMP and tissue inhibitors of
metalloproteinases (TIMPs); (3) inhibiting the apoptosis of fibroblasts; (4) participating
in the EMT process as a non-standard TGF-β1 downstream factor; (5) promoting M2
macrophage polarization. Some JAK/STAT3 inhibitors, such as dual inhibitor JSI-124;
STAT3 inhibitors C188-9, S3I-201, and Cucurbitacin-B, have been shown to reduce fibrosis
progression in preclinical bleomycin-induced mice models (Chakraborty et al., 2017;
Chakraborty et al., 2021; Milara et al., 2018; Pedroza et al., 2018; Sallam, Esmat & Abdel-
Naim, 2018; Zhang et al., 2022). Tacrolimus inhibits JAK2/STAT3 signaling by targeting
the JAK2 protein in macrophages, thereby suppressing M2 macrophage polarization (Fig.
1). When the secretion of pro-fibrotic cytokines CD206, CD163, TGF-β, IL-10, and IL-12
are blocked, the conversion of fibroblast to myofibroblast is reduced, thus alleviating the
progression of BLM-induced pulmonary fibrosis (Liu et al., 2022).

Notch signaling pathway
Notch signaling occurs via cell–cell contact and is evolutionarily highly conserved
(Artavanis-Tsakonas, Rand & Lake, 1999). The Notch family is made of four Notch
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receptors (Notch 1–4) and five ligands (Jagged1 and 2, Delta-like1,3 and 4) in mammals
(Siebel & Lendahl, 2017). Notch activation requires the binding between a Notch receptor
and a Notch ligand on two different, neighboring cells. Notch intracellular domain
(NICD) liberates from the plasma membrane by enzyme digestion and translocates to the
cell nucleus. In the cell nucleus, NICD interacts with transcription factor CSL (such as
Rbpj, CBF1, and so on) to regulate the expression of downstream genes (such as HEY, HES
family, MYC, and so on) (Fig. 1) (Siebel & Lendahl, 2017). There was research showed that
in human hepatic fibrosis biopsies, stronger Notch activation is correlated withmore severe
fibrosis (He et al., 2015). The Notch can exert a pro-fibrotic role in the lung, kidney, liver,
and skin by regulating myofibroblast activation and EMT, or dialoguing with other potent
fibrogenic pathways, in particular the TGF-β1 signaling (Condorelli et al., 2021; Hu &
Phan, 2016). Notch signaling also plays an important role in the regulation of macrophage
polarization and functions (Chen et al., 2021; Li et al., 2023; Xu, Chi & Tsukamoto, 2015).
In a murine model of liver fibrosis infected with Schistosoma japonicum (a parasite that
is endemic in Asia), inhibition of the Notch1/Jagged1 signaling pathway could reverse
macrophage M2 polarization, thereby alleviating liver fibrosis (Zheng et al., 2016).

MACROPHAGES POLARIZATION AND TISSUE FIBROSIS
Macrophages and lung fibrosis
Idiopathic pulmonary fibrosis (IPF) is the prototypic progressive fibrosing interstitial lung
disease (ILD). The median survival time of IPF is about 3–5 years after diagnosis, and
patients with exacerbation of IPF have in-hospital mortality greater than 50% (Spagnolo
et al., 2021). The pathogenesis of IPF remains obscure. At present, the FDA approved two
drugs, nintedanib, and pirfenidone to treat pulmonary fibrosis. They can stabilize patients’
conditions well but do not reverse the progression of fibrosis (Glass et al., 2022).

Pulmonary macrophages derive from monocytes and are widely present in the alveoli
and lung interstitium. When epithelial cells are damaged, monocyte precursors are largely
activated in the action of monocyte chemoattractant protein-1 (monocyte chemotactic
protein 1,MCP-1) and enter the lungs to differentiate into alveolarmacrophages aggregated
to the site of inflammation (Jiang et al., 1992). Under the action of inflammatory factors
such as LPS, and IFN-γ , they are polarized into M1 macrophages. They secrete TNF-α,
and IL-6, and play the role of promoting inflammation (Routray & Ali, 2016). Sakaguchi
et al. (2016) also confirmed in the rat acute lung injury model induced by LPS, M1
macrophages secrete IL-23 to promote the proliferation of lung memory Th17 cells and
induce the production of IL-17, IL-22, and IFN-γ , thus accelerating the process of lung
injury. Moreover, M1 alveolar macrophages can also produce MMP to promote ECM
degradation and participate in the regression of fibrosis (Wynn, Chawla & Pollard, 2013).
The sustained inflammatory response will promote the occurrence of tissue fibrosis.
Notably, abundant infiltration of M2 macrophages was detected in the lung tissues of IPF
patients and bleomycin-induced pulmonary fibrosis model mice (Wang et al., 2019). M2
macrophages promote the generation of pulmonary fibrosis effector cells in the following
ways: (1) Secreting TGF-β, IL-4, and IL-13 to transdifferentiate circulating fibroblasts into
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Figure 2 Macrophages in lung fibrosis. After damage of alveolar epithelial cells, monocytes are acti-
vated by MCP-1 chemotaxis and further differentiated into M1 and M2 macrophages under the action
of inflammatory factors. M1 macrophages secrete TNF-α, IL-6 and IL-23 to promote inflammation, and
also produce MMP to degrade ECM. The secretion of TGF-β, IL-4, IL-13 and Wnt7 by M2 macrophages
makes fibroblasts, endothelial cells and MSC transdifferentiate into myofibroblasts, producing ECM and
leading to pulmonary fibrosis. Profibrotic TREM2CD206 and PLA2G7high macrophage.

Full-size DOI: 10.7717/peerj.16092/fig-2

α-SAM+ myofibroblasts (Yao et al., 2015); (2) TGF-β activates Smad2/3 to promote EMT
(Tanjore et al., 2009; Zhu et al., 2017); (3) Secreting Wnt7a protein to activate the Wnt/β-
catenin channel and promote the differentiation of lung MSC to myofibroblasts (Hou
et al., 2018). However, M2 macrophages may also directly promote pulmonary fibrosis
through transdifferentiating into myofibroblast. In fibrotic lung tissue with unilateral
ureteral obstruction (UUO) rats, Yang et al. (2021) used immunofluorescence staining
as their bases for quantification and showed that approximately 30% of myofibroblasts
were CD68+α-SMA+ MMT cells, and up to 35% were co-expressing for M2 macrophage
marker CD206(CD206+α-SMA+). There was also a study showing that aldosterone may
affect MMT by activating MR on the surface of macrophage (Marzolla et al., 2014). All in
all, M2 macrophages promote myofibroblast formation to promote pulmonary fibrosis
(Fig. 2).

In recent years, people taking advantage of scRNA-seq identified some disorder-specific
profibrotic macrophage subtypes. In severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2)-induced pulmonary fibrosis, the number of profibrotic TREM2CD206
macrophages is increased (Wendisch et al., 2021). Subsequently, a study showed that
TREM2 silencing might alleviate pulmonary fibrosis possibly through inhibiting the
secretion of profibrotic factors such as TGF-β and PDGF and reducing macrophage
polarization via regulation STAT6 activation (Luo et al., 2023).Wang et al. (2022b) identify
a macrophage subpopulation highly expressing PLA2G7 in the fibrotic lungs, which
promotes fibroblast-to-myofibroblast transition.
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Macrophages and kidney fibrosis
Kidney fibrosis is the ultimate common pathway of most progressive chronic kidney
disease (CKD) (Lv et al., 2018). In 2017, 697.5 million cases of CKD were recorded, for a
global prevalence of 9.1%; 1.2 million people died from CKD, and the global mortality rate
increased by 41.5% compared to 1990 (Collaboration GBDCKD, 2020). Its pathological
features are myofibroblast proliferation and activation, epithelial cell dysfunction,
recruitment of circulating fibrocytes, excessive production, and deposition of ECM (Liu,
2011). At the early stage of kidney injury, a large number of chemokines represented by
CCL2 are released locally to recruit CCR2+/Ly6Chigh monocyte/macrophages to the site of
injury, and producemany inflammatory factors to trigger an inflammatory response (Braga
et al., 2018). Studies have also shown that the accumulation of B cells in the early stage of
kidney injury enhances the mobilization and recruitment of monocyte/macrophage cells,
thus accelerating renal fibrosis (Han et al., 2017). Depletion of monocyte/macrophages
through clodronate liposomes can lower blood pressure and reduce hypertensive kidney
injury and fibrosis (Huang et al., 2018). Hu et al. (2023) also demonstrated that in the
clodronate liposomes treatment group, IL-10, and TGF-β expression was decreased,
and TNF-α was not changed, which may attenuate renal fibrosis because of M1/M2
polarization. In the late repair stage of kidney injury, macrophages transform into M2 type
participating in kidney fibrosis through the following ways: firstly, they release TGF-β,
IL-1β, PDGF, and other pro-fibrosis factors to activate fibroblasts, produce ECM, and
promote the occurrence of renal interstitium fibrosis. Secondly, M2 macrophages are
directly involved in the process of kidney fibrosis by transforming into myofibroblasts
through TGF-β/Smad3-mediated MMT. In the mouse model UUO and kidney biopsy
samples from patients with chronic active renal allograft rejection, CD68+/α-SMA +
cells accounted for about 50% of the total number of α-SMA + myofibroblasts, of
which 75% were M2 type co-expressing CD206, and a small number were M1 type
co-expressing iNOS (Wang et al., 2017b). On the contrary, a study has shown that only a
small part of monocyte/macrophages transformed into myofibroblasts (Kramann et al.,
2018). It deserves further study. Thirdly, macrophage-derived cytokines activate EMT and
transdifferentiate pericytes into myofibroblasts (Falke et al., 2015). Fourthly, podocytes
can obtain a mesenchymal property in a high-glucose condition and transdifferentiate into
myofibroblasts (Yamaguchi et al., 2009). In elevated glucose levels, podocytes and pericytes
also can secrete TGF-β1 to induce mesenchymal transition (Wu et al., 2017; Xie et al.,
2015). Furthermore, there is evidence that pro-fibrotic macrophages participate in the
regression of fibrosis by producing MMP to degrade ECM (Fig. 3) (Anders & Ryu, 2011).
Ang II significantly increased monocyte/macrophage recruitment in the kidney and the
expression of TGFβ1, which is involved in renal fibrosis by promoting the differentiation
of fibroblasts into myofibroblasts and ECM production (Huang et al., 2018; Ruiz-Ortega et
al., 2006).

Macrophages and liver fibrosis
Liver fibrosis is a pathological repair process for the formation of pseudolobules after
hepatocyte destruction caused by chronic liver disease. Cirrhosis affects approximately
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Figure 3 Macrophages in kindey fibrosis. After kidney injury, locally released CCL2 recruits
CCR2+/Ly6Chigh monocyte/macrophages to the injured site, leading to local inflammatory response.
Under the mediation of different signaling pathways macrophages are polarized to M1 and M2, which
produce a variety of cytokines to maintain inflammation, activate fibroblasts, MMT, EMT and hypoxia-
induced fibrosis.

Full-size DOI: 10.7717/peerj.16092/fig-3

2.2 million adults in the US (Tapper & Parikh, 2023). From 2010 to 2021, the annual
age-adjusted mortality of cirrhosis increased from 14.9 per 100,000 to 21.9 per 100 000
people (Tapper & Parikh, 2023).

Hepatic macrophages, including tissue macrophages, namely hepatic Kupffer cells and
BMDM, play their respective roles in different stages of hepatic fibrosis. Kupffer cells
exist in the hepatic sinusoids which recognize, phagocytic, and eliminate foreign antigens,
secrete inflammatory cytokines and chemokines to stimulate the body’s inflammatory
response, and recruit monocytes/macrophages. Han et al. (2019) found that compared
with the normal control group, the expression of CD68 in fibrotic fatty hepatitis tissue
was significantly increased, and all were GFP+, F4/80+, and Ly6C+ macrophages. The
consumption of macrophages with chlorphosphonate liposomes could alleviate liver
fibrosis, indicating that the macrophages involved in liver fibrosis are BMDM rather than
Kupffer cells. Interestingly, the number of hepatic M2 macrophages is positively correlated
with the severity of liver fibrosis, and the up-regulated expression of CCL promotes
macrophages’ conversion to the M2 type (Xi et al., 2021). On the one hand, BMDM
produces IL-1β and TNF-α to promote NF-κB-mediated myofibroblast proliferation
(Pradere et al., 2013). On the other hand, profibrotic TGF-β activates the resting hepatic
stellate cells (HSC) in a smad2/Smad3-dependent manner, and transforms HSCs into
myofibroblasts, producing excessive ECM components and promoting the occurrence
of liver fibrosis (Xu et al., 2016). It has recently been found that increased expression of
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Figure 4 Macrophages in liver fibrosis. Kupffer cell is an inherent macrophage in hepatic sinusoids.
When hepatocytes are damaged, inflammatory mediators such as chemokines are produced, and
monocytes/macrophages are recruited into the tissues. The proliferation of myofibroblasts and the
activation of resting HSC resulted in excessive deposition of ECM leading to liver fibrosis. A novel
TERM2CD9 macrophage subsets promotes collagen formation by HSC and causes liver fibrosis.
Moreover, monocytes/macrophages are also involved in fibrosis regression by secreting MMP9 or
polarizing into M2b macrophages.

Full-size DOI: 10.7717/peerj.16092/fig-4

Mer tyrosine kinase regulates downstream STAT3, ERK1/2, and p38 phosphorylation, and
promotes HSC migration and proliferation (Pastore et al., 2022). HSCs can secret a large
amount of lactate to increase the levels of acetylation modification at the promoter regions
of genes (Arg-1, CD163, IL-10, and TGF-β1), thereby promoting the transformation of
macrophages from M1 type to M2 type and the progression of liver fibrosis (Chen et al.,
2022). Furthermore, macrophages are involved in the regression of fibrosis by secreting
MMP9 to degrade ECM or polarizing into M2b-like macrophages (Fig. 4) (Wang et al.,
2017a). Ramachandran et al. (2019) taking advantage of scRNA-seq identified a novel
scar-associated TERM2CD9 macrophage subset (SAMs), which expands in the human
fibrotic liver. SAM subsets promote collagen formation by HSC and cause liver fibrosis
(Esparza-Baquer et al., 2021). Infiltrating monocytes in liver fibrosis differentiate into
SAMs in response to IL-17A, GM-CSF, and TGF-β (Fabre et al., 2023).

Annexin A1 (AnxA1), a calcium-phospholipid-binding protein, can prevent the
development of fibrosis in NASH by regulating liver macrophage differentiation from
Trem2CD9 profibrotic macrophage to Kupffer cells (Gadipudi et al., 2022). Cenicriviroc
(CVC), a CCR2 and CCR5 receptor antagonist, inhibits infiltrating monocyte-derived
macrophages. In the CENTAUR phase IIb study, CVC 150 mg once daily (QD) improved
fibrosis at month 12 and was twice as likely to provide antifibrotic benefit vs placebo (20%
vs 10%) (Friedman et al., 2018). But in the AURORA phase III study, CVC at 12 months
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did not improve fibrosis of ≥1 stage in NASH patients with liver fibrosis (Anstee et al.,
2023).

Macrophages and skin fibrosis
Keloid (KD) is a common fibroproliferative disease with unknown etiology. It is
characterized by the excessive proliferation of fibroblasts and collagen fiber deposition
in the healing process of skin injury, which is often accompanied by itching and pain. It is
difficult to treat and has a high recurrence rate, which brings a heavy psychological burden
to patients.

Skin macrophages include Langerhans cells in the epidermis and BMDM in the dermis.
Fibrosis is mainly found in the dermis, andM2macrophages play a key role in skin fibrosis.
Knipper and colleagues have shown that collagen fibril assembly following mammalian
dermis injury and repair is highly dependent on M2 macrophages (Knipper et al., 2015).
Compared with normal skin and scar tissue, M2 macrophages in keloid significantly
increased (Direder et al., 2022; Feng et al., 2022), and promoted the proliferation and
migration of skin fibroblasts by generating connective tissue growth factor and activating
ERK1/2/STAT3 and AKT/STAT3 signaling pathways (Zhang et al., 2021). tsRNA-14783
participates in KD formation via promoting M2 macrophages polarization (Wang &
Hu, 2022). IL13RA2 downregulation, a ‘decoy’ receptor of IL13, in fibroblasts, promotes
M2 macrophage polarization and KD fibrosis via STAT6 activation (Chao et al., 2023).
Macrophages and skin fibroblasts were mutually activated to secrete IL-6 and TGF-β
and promote the fibrosis process through STAT3 phosphorylation (Bhandari et al., 2023).
HPH-15, a histidine pyridine-histidine ligand derivative, alleviates bleomycin-induced
mouse skin fibrosis by inhibiting the phosphorylation of Smad3 in skin fibroblasts and
macrophages (Fig. 1) (Luong et al., 2018). In addition, CD301b+ macrophages produce
PDGF and insulin-like growth factors, which selectively promote AP proliferation and
adipocyte-myofibroblast transformation at the trauma site, and then secrete ECM and
collagen fibers to promote the fibrosis process (Fig. 5) (Shook et al., 2018). In skin fibrosis,
macrophages tend to polarize into M2 type, which secrets pro-fibrotic factors to change in
the local microenvironment and further promote M2 macrophage polarization.

Macrophages and cardiac fibrosis
Cardiac fibrosis is the differentiation and proliferation of cardiac fibroblasts and excessive
deposition of ECM, leading to cardiac hypertrophy and reduced diastolic function,
eventually leading to heart failure. It is a key prognostic factor of heart disease. In the early
stage of injury, M1 macrophages are used to induce inflammation and transition from
pro-inflammatory M1 to reparative M2 to mitigate cardiac dysfunction after myocardial
infarction (MI). In the later stage of injury, M2 macrophages primarily induce cardiac
fibrosis. In the fibrotic area of MI, BMDMs differentiate into a-SMA + fibroblasts and
coronary artery endothelial cells undergo an EndoMT induced by TGF-β, which further
increases the number of fibroblasts (Zeisberg et al., 2007). M2 macrophages aggregate and
activate to promote cardiac fibrosis in an angiotensin II-induced hypertensive cardiac
model (Yang et al., 2012). Similarly, in elderly mice, aldosterone-exposed mice as well as
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Figure 5 Macrophages in skin fibrosis.M2 macrophages not only secrete cytokines such as IL-6 and
TGF-β to promote the proliferation and migration of skin fibroblasts, but also produce PDGF and IGF to
transform adipose cells into myofibroblasts, resulting in excessive deposition of collagen, and eventually
leading to skin fibrosis.

Full-size DOI: 10.7717/peerj.16092/fig-5

cardiac biopsy specimens of patients with left ventricular ejection fraction retained, M2
macrophages increased and secreted IL-10 to activate fibroblasts and promote collagen
deposition and myocardial fibrosis (Fig. 6) (Hulsmans et al., 2018). In addition, Shiraishi,
Yamaguchi & Suzuki (2022) demonstrated that neuregulin 1 (Nrg1) produced by BMDM
and Nrg1 co-receptor ErbB expression on the surface of cardiac fibroblasts increased after
MI, which combined to activate the downstream PI3K/Akt pathway, inhibit the aging
and apoptosis of cardiac fibroblasts, promote their proliferation and lead to fibrosis. On
the contrary, some studies have found that the transformation of macrophages from the
pro-inflammatory M1 to the anti-inflammatory M2 can alleviate cardiac fibrosis, and M2b
macrophages can improve cardiac fibrosis in ratmodels ofmyocardial ischemia/reperfusion
injury (Li et al., 2021; Wang et al., 2022a).

DISCUSSION
The response of macrophages to polarization in different states is the key to their high
heterogeneity and functional diversity. The exact mechanism of macrophage polarization
in different tissue fibrosis has not been fully elucidated. This article reviews the role
of macrophage polarization in different tissue fibrosis and several specific pro-fibrotic
macrophage subtypes in recent years. M1 macrophages and M2 macrophages are the two
most studied subtypes. It found that the number ofM2macrophages is positively correlated
with the severity of fibrosis. M2 macrophages can also transform into myofibroblasts or
promotemyofibroblasts proliferation to accelerate fibrosis. Blocking the signaling pathways
that drive M2 macrophage polarization or targeting directly M2 macrophages are likely to
relieve the progression of fibrosis. But there are some unclear insights. On the one hand, it
is not absolute whether any form of macrophage is beneficial or disadvantageous for tissue
fibrosis. Such as M2 can suppress cardiac fibrosis remodeling after MI (Li et al., 2021).
On the other hand, MMT is controversial because it is difficult to ensure myofibroblasts
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Figure 6 Macrophages in cardiac fibrosis.M1 macrophages produce inflammatory cytokines to pro-
mote inflammatory response, which can also be converted into M2 macrophages to participate in the pro-
cess of fibrosis. M2 macrophages differentiate into myofibroblasts, activate cardiac fibroblasts and pro-
mote coronary endothelial cells to transform into myofibroblasts.

Full-size DOI: 10.7717/peerj.16092/fig-6

come from MMT and quantify MMT as a source of myofibroblasts. It is also unclear
whether MMT cells make a significant contribution to collagen deposition in fibrosis
(Kramann et al., 2018). Thus, accurate identification of pro-fibrosis macrophages is very
important. Satoh and colleagues found a new class of pro-fibrotic macrophages, which
is Ceacam1+Msr1+Ly6C−F4/80−Mac1+ monocytes and named segregated-nucleus-
containing atypical monocytes(SatM) (Satoh et al., 2017). It can be considered as a specific
subgroup inM2. In the future, weneed to identify ‘‘disorder-specificmonocyte/macrophage
subtypes’’ corresponding to certain diseases and develop novel, more specific therapeutic
targets with fewer side effects.

SURVEY METHODOLOGY
To summarize the role of macrophage polarization in tissue fibrosis from multiple
perspectives, we incorporated Medical Subject Headings (MeSH terms) into the PubMed
search strategy to search the literature. Search terms included (‘‘Macrophage activation’’
[MeSH terms] OR (‘‘macrophage’’ AND ‘‘polarization’’) OR ‘‘M1 macrophage’’ OR ‘‘M2
macrophage’’ OR ‘‘myofibroblast’’) AND ‘‘fibrosis’’ [MeSH terms]. In the process of
summarizing the literature on tissue fibrosis, we further refined the tissue classification.
We searched the literature with two keywords for fibrosis and macrophages, adding the
tissue type (‘‘lung’’, ‘‘kidney’’, ‘‘liver’’, ‘‘skin’’, or ‘‘cardiac’’,).
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